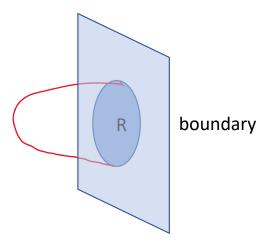
BULK ENTANGLEMENT AND HOLOGRAPHY

Sumit R. Das

(S.R.Das, A. Kaushal, G. Mandal and S.P. Trivedi: 2004.00613)

Entanglement in the Bulk

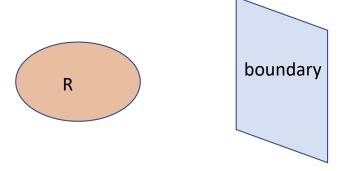
• The Ryu-Takayanagi prescription, and its extensions, provide a strikingly simple geometric expression for the entanglement entropy of a subregion in a field theory when it has a smooth gravity dual.



• In this talk we will explore the question : what is the meaning of the entropy of a codimension one spatial subregion of the bulk ?

Entanglement in the Bulk

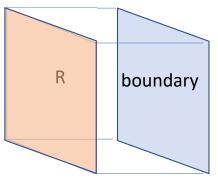
 The Ryu-Takayanagi prescription, and its extensions, provide a strikingly simple geometric expression for the entanglement entropy of a subregion in a field theory when it has a smooth gravity dual.



- In this talk we will explore the question : what is the meaning of the entropy of a codimension one spatial subregion of the bulk ?
- This cannot be simply related to a geometric entropy of the dual theory e.g. the dual theory may not have any space at all !

Entanglement in the Bulk

 The Ryu-Takayanagi prescription, and its extensions, provide a strikingly simple geometric expression for the entanglement entropy of a subregion in a field theory when it has a smooth gravity dual.



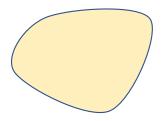
- In this talk we will explore the question : what is the meaning of the entropy of a codimension one spatial subregion of the bulk ?
- This cannot be simply related to a geometric entropy of the dual theory e.g. the dual theory may not have any space at all !

 We will argue that this has a meaning in terms of von Neumann entropy associated with a subalgebra in the dual quantum field theory coming from a subregion of the target space.

- Since the bulk is a theory of gravity, it is not a priori clear what is the meaning of entanglement between two regions – except in the regime where this can be thought of as entanglement of perturbative modes which include matter and gravitons.
- Our motivation is in fact to provide a more precise meaning to this notion which goes beyond the above.
- For gravitational theories with a holographic dual, entanglement in target space provides this notion. In an appropriate limit, this would reduce to the notion of entanglement of perturbative modes.

EE and UV

 In usual field theory, the leading contribution to the entanglement entropy of a region is given by



$$S_{EE} \sim \frac{A}{\epsilon^{d-1}}$$

- Where ϵ is a UV cutoff
- In a UV complete theory of gravity, like string theory, one would expect that the result should be finite.
- We may ask : what provides the cutoff ? Is it the string length l_s , or the Newton constant ${\it G}$?

• We will $\underbrace{conjecture}$ that to the leading order this entropy saturates the Bekenstein bound

 $S = \frac{A}{4G}$

and provide some sanity checks for this in theories of Dp branes.

• A similar conjecture was made by *Bianchi and Myers* some time ago – for rather different reasons.

A clarification

• Sometimes the phrase "bulk entanglement entropy" refers to entanglement of bulk modes across an extremal (or quantum extremal) surface — for a HRT surface this is the 1/N correction to the entropy of a subregion of the dual field theory.

(Faulkner, Lewkowycz and Maldacena; Jaffreis, Lewkowycz, Maldacena and Suh; Agon & Faulkner; Sugishita; Barella, Dong, Hartnoll & Martin; Benin, Iqbal & Lokhande)

(Anous, Karczmarek, Mintun, van Raamsdonk & Way)

• We are interested in a more general question: the entropy we discuss is associated with any region of the bulk – not necessarily ones which are bounded by extremal or quantum extremal surfaces.

EE in 2d Noncritical String Theory

- Perhaps the earliest example of emergent space is the duality of 2d noncritical strings and gauged quantum mechanics of a single $N \times N$ Hermitian matrix M_{ij} .
- In the $A_t=0$. gauging means that all states are singlets. We can further make the matrix diagonal

$$M_{ij} \to \operatorname{diag}[\lambda_1, \lambda_2, \cdots \lambda_N]$$

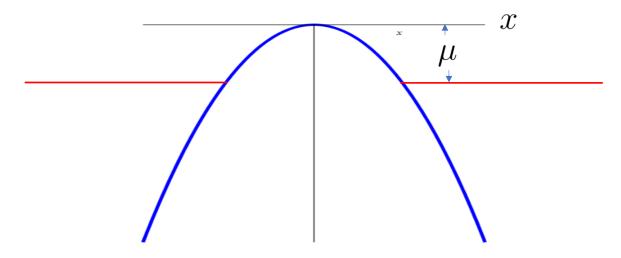
• The eigenvalues λ_i become coordinates of fermions. In the double scaling limit one has a Hamiltonian $\frac{N}{1-N}$ Γ $\frac{J^2}{J^2}$ $\frac{1}{1-J}$

$$H = \frac{1}{2} \sum_{i=1}^{N} \left[-g_s \frac{d^2}{d\lambda_i^2} - \frac{1}{g_s} \lambda_i^2 \right]$$

• In second quantization there is a fermion field

$$H = \int dx \left[\frac{g_s}{2} |\partial_x \psi|^2 - \frac{1}{2g_s} x^2 |\psi|^2 + \frac{1}{2g_s} |\psi|^2 \right] \qquad g_s = \frac{1}{N\mu}$$

• The space of eigenvalues $\,x\,$ becomes an emergent space coordinate. This is the bulk space.



A bosonic formulation is in terms of the density of eigenvalues

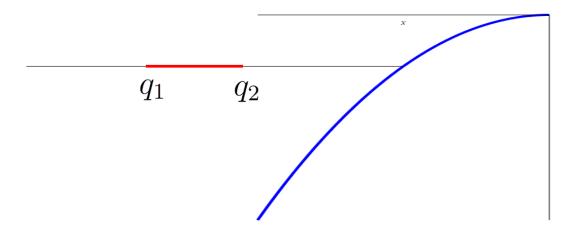
$$\rho(x,t) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - \lambda_i(t))$$

 This is the collective field theory. The fluctuations around the large-N saddle has a space dependent coupling. The classical action is

$$S = \int dq dt \left[\frac{1}{2} \{ (\partial_t \eta)^2 - (\partial_q \eta)^2 \} + \frac{g_s}{2 \sinh^2 q} \{ (\partial_t \eta)^2 \partial_q \eta + \frac{1}{3} (\partial_q \eta)^3 \} \right]$$
$$g_{eff}(q) = \frac{g_s}{\sinh^2 q}$$

• This is the "bulk" description – the field η is related to the only dynamical field in two-dimensional string theory – the "massless tachyon"

We can now ask what is the entanglement entropy of a region of this bulk with the complement – as in any field theory



If we treat the collective field theory *perturbatively*, the lowest order result is logarithmically divergent – just like a massless scalar in 1+1 dimension.

However, the fermionic field theory predicts a finite answer.

(S.R. Das (1995); S. Hartnoll and E. Mazenc (2015)

$$S_{EE} = \frac{1}{3} \log \frac{q_2 - q_1}{\sqrt{g_{eff}(q_1)g_{eff}(q_2)}}$$

- From the point of view of string theory this is a non-perturbative effect.
- The cutoff is provided by the coupling of the theory.
- Seems to indicate that in a general situation the cutoff would be Newton's constant.

WHAT IS THE MEANING OF THIS QUANTITY IN THE QUANTUM MECHANICS?

Meaning in the Quantum Mechanics

(S.R.D., G. Mandal and S.P. Trivedi – unpublished)
Mazenc and Ranard, 1910.07449

Let us start with quantum mechanics of ONE particle in ONE space dimension

$$H = \frac{1}{2} \left[-\frac{d^2}{dx^2} + V(x) \right]$$

Let the wavefunction be $\psi(x)$

We now want to restrict ourselves to some interval $A: a \leq x \leq b$ nd concern ourselves to measurements which can be made in this interval. This defines a subalgebra of operators which are of the form

$$\hat{O}_A = \int_a^b dx \int_a^b dx' O(x, x') |x\rangle \langle x'|$$

• We want to define a density matrix in the Hilbert space spanned by |x> where we restrict $a \le x \le b$ which evaluates expectation values of such operators.

The Hilbert space is now a direct sum

$$\mathcal{H} = \mathcal{H}_{1,0} + \mathcal{H}_{0,1}$$
 $\mathcal{H}_{1,0} = \{|x>\}, a \le x \le b$

- $\mathcal{H}_{0,1}$ is the complement.
- The density matrix associated with the sector 1,0 is then given by

$$\tilde{\rho}_{1,0} = \int_{a}^{b} dx \int_{a}^{b} dx' \psi(x) \psi^{*}(x') |x> < x'| \qquad < \psi |\hat{O}_{1,0}| \psi> = \text{Tr}(\tilde{\rho} \hat{O}_{1,0})$$

This has an entanglement entropy

$$S_{1,0} = -\text{Tr}[\tilde{\rho}_{1,0}\log\tilde{\rho}_{1,0}] = -p_A\log p_A$$

- Where $p_A=\int_a^b dx \psi^\star(x) \psi(x)$ is the probability that the particle is in the region. Similarly $S_{0.1}=-(1-p_A)\log(1-p_A)$
- The total entropy is then

$$S = -p_A \log p_A - (1 - p_A) \log(1 - p_A)$$

 This generalizes to N fermions in this setup. Now we have N+1 sectors: the full Hilbert space becomes a direct sum

$$\mathcal{H}_N = \bigoplus_{p,q;p+q=N} \mathcal{H}_{p,q}$$

- Where $\mathcal{H}_{p,q}$ denotes the sector where p of the coordinates are in the subregion and the rest in the complement.
- For example, for two particles

$$\mathcal{H}_{2,0} = \text{span}\{|x_1, x_2\rangle_a, \quad x_1, x_2 \in A\}$$
 $\mathcal{H}_{1,1} = \text{span}\{|x_1, x_2\rangle_a, \quad x_1 \in A, x_2 \in \bar{A}\}$
 $\mathcal{H}_{0,2} = \text{span}\{|x_1, x_2\rangle_a; \quad x_1, x_2 \in \bar{A}\}$

where

$$|x_1, x_2\rangle_a \equiv \frac{1}{\sqrt{2!}} (|x_1\rangle \otimes |x_2\rangle - |x_2\rangle \otimes |\langle x_1\rangle)$$

• This kind of decomposition of the full Hilbert space into a sum over sectors — each of which is a product appears in discussions of entanglement entropy in gauge theories (*Roni and Trivedi*).

Given a density matrix in the full Hilbert space

$$\rho[\{x_i\}, \{x_a\}; \{x_i'\}, \{x_a'\}]$$
 $i = 1 \cdots p; a = p + 1 \cdots N$

the reduced density matrix for the p,N-p subsector is given by

$$\tilde{\rho}_{p,N-p}[\{x_i\}, \{x_i'\}] = \binom{N}{p} \int \prod_{a=p+1}^{N} d\mathbf{x}_a \, \rho_a[\{x_i\}, \{\mathbf{x}_a'\}, \{\mathbf{x}_a'\}, \{\mathbf{x}_a'\}]$$

The entanglement entropy now becomes

$$S = -\sum_{p,q;p+q=N} \operatorname{Tr}_{\mathcal{H}_A^p} \tilde{\rho}_{p,q} \log(\tilde{\rho}_{p,q})$$

• For example, for 2 particles in a state

$$\Psi_a(x_1, x_2) = \frac{1}{\sqrt{2}} [u_1(x_1)u_2(x_2) - u_1(x_2)u_2(x_1)]$$

• This entanglement entropy can be expressed in terms of

$$\int_{A} dx |u_1(x)|^2 \qquad \int_{A} dx |u_2(x)|^2 \qquad \int_{A} dx u_1^{\star}(x) u_2(x)$$

- This is an example of TARGET SPACE ENTANGLEMENT.
- We proved that this is exactly the same quantity which is computed in the second quantized framework, with the condition that the number of particles is N.
- Target space entanglement entropy has appeared implicitly in discussions of entropy in String Theory using a world-sheet formalism (*Dabholkar*; Witten).
- This is related to discussions of holographic entanglement entropies which involve the internal sphere as well as the boundary (*Graham & Karch*; *Mollabashi, Shiba & Takayanagi,.....*)
- This is also related to notions of entwinement (*Erdmenger & Gerbershagen*)

- This quantity is finite because N is finite a fact which becomes less apparent in the second quantized formalism.
- This then is the origin of finiteness of EE in two-dimensional string theory this is why the "cutoff" is the bulk coupling which is ~ 1/N.
- From this point of view the finiteness is tracable to the "stringy exclusion principle".
- In terms of the original matrix, these fermion wavefunctions can be related to Schur polynomials made out of multiple traces of the Matrix (*Jevicki*) which realizes the stringy exclusion principle.
- In an exact bosonization at finite N this manifests itself as a discretization of the emergent space with lattice spacing ~ 1/N (*Dhar and Mandal*).

WE NOW APPLY THESE LESSONS TO HOLOGRAPHIC THEORIES WITH MULTIPLE MATRICES.

DO BRANE BACKGROUNDS

Consider the IIA background of N coincident D0 brane

$$ds_{string}^{2} = -H_{0}(r)^{-1/2}dt^{2} + H_{0}(r)^{1/2}[dx_{1}^{2} + \dots + dx_{9}^{2}]$$

$$e^{-2\phi} = H_{0}(r)^{-3/2}, \qquad r^{2} = x_{1}^{2} + \dots + x_{9}^{2}.$$

$$H_{0}(r) = \frac{R^{7}}{r^{7}}, \qquad R^{7} = \frac{(2\pi)^{7}}{7\Omega_{8}}l_{s}^{7}(g_{s}N).$$

• Let us divide the 9-dimensional space into two parts by a surface

$$x_1 = d$$

• We want to give a meaning to the entanglement between the two regions in terms of a holographic description: D0 brane quantum mechanics

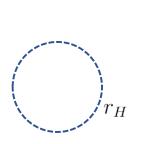
In fact we will consider a heated version

$$ds_{string}^2 = -H_0(r)^{-1/2} f(r) dt^2 + H_0(r)^{1/2} \left[\frac{dr^2}{f(r)} + r^2 d\Omega_8^2 \right]$$
$$f(r) = 1 - \left(\frac{r_H}{r} \right)^7$$

• The temperature given by

$$T = \frac{7}{4\pi R} \left(\frac{r_H}{R}\right)^{5/2}$$

• In this case the $x_1=d$ surface will be taken to be far from the horizon.



Region of Interest

DO BRANE QUANTUM MECHANICS

The dual theory is supersymmetric quantum mechanics of 9 matrices

$$S = \frac{N}{2(g_s N)l_s} \text{Tr} \int dt \left[\sum_{I=1}^{9} (D_t X^I)^2 - \frac{1}{l_s^4} \sum_{I \neq J=1}^{9} [X^I, X^J]^2 \right] + \text{fermions}$$

- ullet In a gauge $A_t=0$ the Gauss Law constraint requires wavefunctions to be singlets.
- In terms of suitably rescaled variables the Hamiltonian is

$$H = \frac{(g_s N)^{1/3}}{2l_s} \text{Tr} \left[\frac{1}{N} \sum_{I=1}^{9} (\tilde{P}^I)^2 + N \sum_{I \neq J=1}^{9} [\tilde{X}^I, \tilde{X}^J]^2 \right] + \text{fermions}$$

• The theory has no dimensionless parameter – it is characterized by an energy scale

$$\Lambda = \frac{(g_s N)^{1/3}}{l_s}$$

- This theory has a coulomb branch where all the $< X^I >$ are diagonal. These diagonal elements are the coordinates of the N D0 branes.
- The base space of the gravitational theory becomes the target space of this quantum mechanics.
- The gravity solution we wrote is the dual of the origin of the Coulomb branch $\langle X^I \rangle = 0$ There are also solutions at generic points.
- The wavefunction of course has a spread, leading to

$$<\sqrt{\operatorname{Tr}(X^I)^2}>\sim (g_sN)^{1/3}l_s$$

This is the size of the bound state.

In fact in the gravity solution the string frame curvature becomes large when

$$r > r_0 \sim (g_s N)^{1/3} l_s$$

- Furthermore the dilaton becomes large when $r < r_1 \sim (g_s N)^{1/7} l_s$
- We will therefore work in the domain $(g_s N)^{1/7} l_s \ll d \ll (g_s N)^{1/3} l_s$

- In the $A_t=0$ gauge, the remaining time independent symmetry can be fixed by diagonalizing one of the matrices, X^1 . Denote the eigenvalues by $\lambda_i, i=1,\cdots N$.
- The remaining symmetry is now Weyl transformations.
- In this gauge a generic state may be written as

$$|\psi\rangle = \int [d\mu] \Psi(\lambda_i; X_{ij}^2, \cdots X_{ij}^9) |\lambda_i; X_{ij}^2, \cdots X_{ij}^9\rangle + (\text{Weyl Transforms})$$

A general operator is given by

$$\hat{O} = \int [d\mu] \int [d\mu'] \mathcal{O}(\lambda_i, X_{ij}^I; \lambda_i', X'^I) |\lambda_i; X^I\rangle \langle \lambda_i', X'^I| + \text{Weyl transforms}$$

 Our proposal is that the quantity of interest is the entropy associated with a restriction in the target space. • Using the standard relation between the matrices with the coordinates in the supergravity solution, we therefore the target space subregion to be defined by a restriction on the eigenvalues of X^1

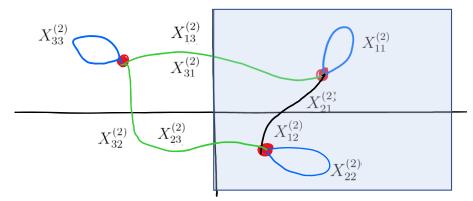
$$\lambda_i > d_0 \qquad \qquad d_0 = \frac{d}{(g_s N)^{1/3} l_s}$$

- This is pretty much like the single matrix problem.
- Now we need to decide what to do with the other matrices.

• To decide on that it is useful to consider a typical snapshot of a configuration of the eigenvalues λ_{α} and the matrix elements $X_{\alpha\beta}^I$. Consider N=3, and the matrices

$$X^{1} = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix} \qquad X^{2} = \begin{pmatrix} X_{11}^{(2)} & X_{12}^{(2)} & X_{13}^{(2)} \\ X_{21}^{(2)} & X_{22}^{(2)} & X_{23}^{(2)} \\ X_{31}^{(2)} & X_{32}^{(2)} & X_{33}^{(2)} \end{pmatrix}$$

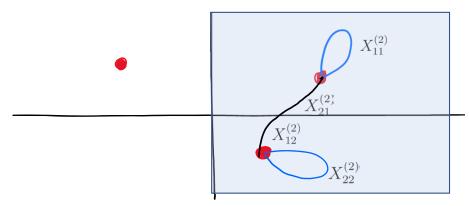
A typical configuration can be pictorially represented as



• Note this is a picture of a configuration, not a picture of expectation values. The wavefunction evaluated on this configuration provides the probability amplitude.

• One possibility is to keep only the 2 X 2 block and integrate out the rest

$$X^{1} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix} \qquad X^{2} = \begin{pmatrix} X_{11}^{(2)} & X_{12}^{(2)} \\ X_{21}^{(2)} & X_{22}^{(2)} \end{pmatrix}$$



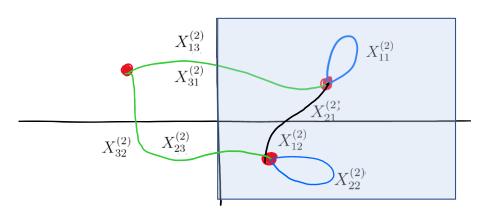
$$\tilde{\rho}_{2,1} \left[\lambda_i, X_{ij}^{(2)}; \lambda_i', X_{ij}^{(2)'} \right]$$

$$= \int [d\lambda_a dX_{ia}^{(2)} dX_{ai}^{(2)} dX_{ab}^{(2)}] \rho \left[\lambda_i, X_{ij}^{(2)}, \overline{\lambda_a, X_{ia}^{(2)}, X_{ai}^{(2)}, X_{ab}^{(2)}}; \lambda_i', X_{ij}^{(2)\prime}, \overline{\lambda_a X_{ia}^{(2)}, X_{ab}^{(2)}}; \lambda_i', X_{ab}^{(2)\prime}, \overline{\lambda_a X_{ia}^{(2)}, X_{ab}^{(2)}}\right]$$

+ Weyl

 A second possibility is to retain the off-block-diagonal matrix elements and integrate out only

$$X^{1} = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \end{pmatrix} \qquad X^{2} = \begin{pmatrix} X_{11}^{(2)} & X_{12}^{(2)} & X_{13}^{(2)} \\ X_{21}^{(2)} & X_{22}^{(2)} & X_{23}^{(2)} \\ X_{31}^{(2)} & X_{32}^{(2)} & \end{pmatrix}$$



$$\begin{split} \tilde{\rho}_{2,1} \ & [\lambda_i, X_{ij}^{(2)}, X_{ia}^{(2)}, X_{ai}^{(2)}; \lambda_i', X_{ij}^{(2)\prime}, X_{ia}^{(2)\prime}, X_{ai}^{(2)\prime}] \\ &= \int [d\lambda_a dX_{ab}^{(2)}] \rho \ [\lambda_i, X_{ij}^{(2)}, X_{ia}^{(2)}, X_{ai}^{(2)}, \boxed{\lambda_a, X_{ab}^{(2)}}; \lambda_i', X_{ij}^{(2)\prime}, X_{ia}^{(2)\prime}, X_{ai}^{(2)\prime}, \boxed{\lambda_a, X_{ab}^{(2)}}] \\ &+ \text{Weyl} \end{split}$$

- What could the answer look like?
- Consider the case where the state of the whole system is a thermal state (or more precisely a thermofield double state) with a dimensionless temperature T_0
- The answer for the target space entanglement entropy we discussed is therefore some function of T_0 and d_0
- Since the density matrices in a generic sector encode entanglement of N^2 degrees of freedom we expect that the answer should be proportional to N^2
- We therefore expect an answer for large N

$$S \sim N^2 F(T_0, d_0)$$

- What could the answer look like?
- Consider the case where the state of the whole system is a thermal state (or more precisely a thermofield double state) with a dimensionless temperature T_0
- The answer for the target space entanglement entropy we discussed is therefore some function of T_0 and d_0
- Since the density matrices in a generic sector encodes entanglement of N^2 degrees of freedom, we expect that the answer should be proportional to N^2
- This becomes evident when we write the expression in terms of the normalized density matrices for each sector,

$$\hat{\rho} = \frac{1}{P_{p,q}} \tilde{\rho}_{p,q} \qquad P_{p,q} = \text{Tr} \tilde{\rho}_{p,q}$$

$$S = -\sum_{p,q} \text{Tr} \tilde{\rho}_{p,q} \log \tilde{\rho}_{p,q} = -\sum_{p,q} [P_{p,q} \log P_{p,q} + P_{p,q} \text{Tr} \hat{\rho}_{p,q} \log \hat{\rho}_{p,q}]$$

- The theory of course has fermionic matrices $\; \theta_A \;$
- They should be treated in a manner identical to the bosonic matrices

$$X^I, I=2,\cdots 9$$

- While the existence of the bound state with N D0 branes has been proved (e.g. Sethi and Stern) explicit expressions for the wavefunction is not known.
- However there has been considerable progress in calculating quantities in D0 brane quantum mechanics and related models numerically.

(Hanada, Hyakutake, Ishiki & Nishimura (2016); Berkowitz, Rindaldi, Hanada, Ishiki, Shimasaki & Vranas (2016)).

- This gives us a hope that a numerical calculation of this target space entanglement entropy should be possible in the near future.
- We are currently setting up the problem by utilizing a replica trick in a way which will make such a calculation possible.

The Conjecture

 Our conjecture is that the target space entanglement entropy we discussed is given by the expression

$$S_{EE}(d) = \frac{A_d}{4G_N}$$

- Where A_d is the Einstein Frame area of the $x_1=d$ surface.
- For the black D0 brane metric

$$ds_{string}^2 = -H_0(r)^{-1/2} f(r) dt^2 + H_0(r)^{1/2} \left[\frac{dr^2}{f(r)} + r^2 d\Omega_8^2 \right] \qquad r^2 = x_1^2 + x_2^2 + \dots + x_9^2$$

The result is

$$A_d(T) = \Omega_7 R^{7/2} \int_0^{\rho_0} d\rho \ \rho^7 \ \frac{1}{(d^2 + \rho^2)^{7/4}} \left[(f(\bar{r})^{-1} - 1) \frac{\rho^2}{d^2 + \rho^2} + 1 \right]^{1/2}$$

• Where ρ is the radial coordinate in the $x_1=d$ plane.

- The integral is IR divergent, which is why we have introduced a cutoff.
- Since the curvature becomes large at $r \sim (g_s N)^{1/3} l_s$ natural to take $\rho_0 \sim (g_s N)^{1/3} l_s$ But this is rather ambiguous.
- The key point is that the difference of this area and the area at zero temperature

$$A_d(T) - A_d(0)$$

is finite – so this quantity is insensitive to this cutoff for large $|g_sN|\gg 1$

- We can then take the upper limit to infinity and expand the result in powers of r_H/d which is small.
- The leading result for the difference of (conjectured) entropies is

$$S(d,T) - S_{EE}(d,T=0) = C_0 \frac{\Omega_7 R^{7/2} r_H^7}{4G_N d^{5/2}} \qquad C_0 = \frac{2048}{69615}$$

 To compare with D0 brane QM we need to express this quantity in terms of the dimensionless temperature and location of the entangling surface. Recall that

$$R^7 = \frac{(2\pi)^7}{7\Omega_8} l_s^7(g_s N)$$
 $T = \frac{7}{4\pi R} \left(\frac{r_H}{R}\right)^{5/2}$ $G_N = 8\pi^6 g_s^2 l_s^8$

• Since the D0 brane QM has just one scale $\Lambda=\frac{(g_sN)^{1/3}}{l_s}$ the appropriate dimensionless temperature is

$$T = T_0 \Lambda$$

 As is standard in AdS/CFT correspondence, the transverse distance is also proportional to the energy scale of the theory

$$d = d_0(g_s N)^{1/3} l_s$$

This leads to

$$S(d,T) - S_{EE}(d,T=0) = B_0 N^2 T_0^{14/5} d_0^{-5/2}$$

• This is exactly of the form we expected from D0 brane quantum mechanics. In particular this is proportional to N^2

- It is important that the "cutoff" appearing in the bulk entanglement entropy is the Newton's constant and not the string length.
- If we used the string length, the answer would have an additional factor of g_s^2 .
- This cannot be a result in D0 brane quantum mechanics since this theory does not have any dimensionless parameter.
- The result we displayed is valid in the regime where supergravity is reliable. This requires

$$T_0 \ll 1, N \gg 1$$

• Furthermore, we have taken the entangling surface far from the horizon. This means

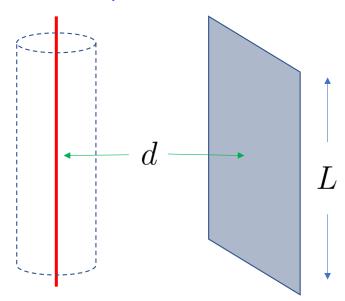
$$d_0 \gg T_0^{2/5}$$

- For smaller d_0 the relationship between the transverse coordinates of the background and matrices becomes complicated.
- ullet For higher T_0 stringy and loop corrections become important and one expects corrections to the area law conjecture.

- If we compute the area in string frame and use the formula with Newton's constant replaced by string length, once again powers of g_s^2 disappear.
- However the result is now N^0 rather than N^2 which is rather unnatural.

Dp Branes

- These considerations generalize for $\mbox{\rm Dp}$ branes with $\,p < 3.$
- We take a surface located at some distance from the center in the transverse direction, and fills the entire Dp brane



The energy scale of the dual theory is now

$$\Lambda = (g_s N)^{\frac{1}{n-4}} l_s^{-1} \qquad n = 7 - p$$

• The appropriate dimensionless quantities are now

$$T = T_0 \Lambda$$
 $L = L_0 \Lambda^{-1}$ $d = d_0 \Lambda l_s^2$

• The conjecture for the entanglement entropy now becomes

$$\Delta S_{EE} = B_p \ N^2 \ T_0^{\frac{2n}{n-2}} \ L_0^{7-n} \ d_0^{1-\frac{n}{2}}$$

- The string coupling has disappeared so this result is conceivable in the dual (p+1) dimensional field theory.
- The entanglement entropy in the field theory is again a target space entanglement the procedure is pretty similar, except that all the matrix elements are functions of the Dp brane coordinates. We again expect an answer proportional to N^2
- We could also consider an entanglement entropy which comes from a restriction in both target space and base space.

Other entangling surfaces

- We have considered in detail simple entangling surfaces for which the connection to the matrices of the dual theory is simple.
- However we can also consider more interesting surfaces in the bulk, e.g.

$$\sum_{i=1}^{9} (x^i)^2 \le R^2$$

• The corresponding operator in the dual theory is a Hermitian operator

$$\sum Tr(\hat{X}^i)^2$$

- We can choose to diagonalize this operator.
- This is technically much more involved.

Epilogue

- We have proposed that entanglement of bulk regions map to target space entanglement – or more generally a combination of target and base space entanglement.
- For simple entangling surfaces this map can be stated precisely and we find that there are two natural candidates for the reduced density matrix.
- This quantity should be calculable numerically we are setting up a replica trick method to make this possible.

- We conjectured that the leading answer saturates the area law.
- This means that in a UV complete theory of gravity the cutoff in the entanglement entropy is provided by the Newton constant.
- The target space entanglement entropy is of course defined for all values of the parameters T_0, d_0, N it may be possible to see how this quantity changes beyond the regime we explored.
- In particular, for finite N and higher T_0 bulk locality fails and stringy and loop corrections become important, but the target space entanglement entropy continues to make sense.
- Hopefully this can be calculated explicitly in the near future and our conjecture can be proved or disproved.

