Invariants of forth order linear differential operators on 2-dimensional manifolds

Valeriy Yumaguzhin

Program Systems Institute of RAS, Pereslavl'-Zalesskiy, Russia; Institute of Control Sciences of RAS, Moscow, Russia yuma@diffiety.botik.ru

ICS RAS, seminar lab. No. 9 and No. 82, May 11, 2020, Moscow

1 Introduction

Let M be an n-dimensional manifold, $A \in \mathbf{Diff}_k(M)$, i.e., A is a k-order linear differential operator on M acting on $C^{\infty}(M)$, and σ_k its symbol, i.e., $\sigma_k \stackrel{df}{=} A \mod \mathbf{Diff}_{k-1}(M) \equiv \Sigma_k(M)$.

A stationary Lie algebra of σ_k is trivial at every point when $n \geq 2$ and $k \geq 3$, [3]. Then codimension of orbit of σ_k is

$$c(n,k) = \binom{n+k-1}{k} - n^2.$$

 $c(n,k) \ge n$ for all $n \ge 2$ and $k \ge 3$ excepting three cases:

$$n = 2, k = 3; n = 2, k = 4; n = 3, k = 3.$$

It follows that the field of differential invariants of regular operator is generated by 0-order invariants in non exceptional cases.

The case n=2, k=3 was investigated in [4]. We consider the case n=2, k=4. In this case c(2,4)=1. This means that there is a unique independent differential invariant of 0-order for σ_{4} .

2 Introduction

Essentially, this invariant has long been known. Indeed, in the Hilbert lectures [1], p. 57, two relative invariants for a forth degree homogeneous polynomial of two variables $a_0x^4 + 4a_1x^3y + 6a_2x^2y^2 + 4a_3xy^3 + a_4y^4$ are found:

$$\mathcal{R}_2 = a_0 a_4 - 4a_1 a_3 + 3a_2^2,$$

$$\mathcal{R}_3 = a_0 a_2 a_4 - a_0 a_3^2 - a_1^2 a_4 + 2a_1 a_2 a_3 - a_2^3.$$

These invariants have weights 2 and 3 respectively. Hence,

$$I_0 = \mathcal{R}_3^2 / \mathcal{R}_2^3 \tag{1}$$

is an invariant for the the polynomial.

3. First rational differential invariants

Let M be an oriented 2-dimensional manifold, x, y its local coordinates, $A \in \mathbf{Diff}_4(M)$, and σ_4 its regular symbol. Then:

$$\begin{split} A &= a_0 \partial_x^4 + 4 a_1 \partial_x^3 \partial_y + 6 a_2 \partial_x^2 \partial_y^2 + 4 a_3 \partial_x \partial_y^3 + a_4 \partial_y^4 \\ &+ \text{lower order terms}, \\ \sigma_4 &= a_0 \partial_x^4 + 4 a_1 \partial_x^3 \cdot \partial_y + 6 a_2 \partial_x^2 \cdot \partial_y^2 + 4 a_3 \partial_x \cdot \partial_y^3 + a_4 \partial_y^4, \end{split}$$

where all coefficients are smooth functions of x, y.

Thus the function $I_0(A) \in C^{\infty}(M)$ defined by (1), where coefficients a_i are coefficients of σ_4 , is a rational differential invariant of A.

Suppose $dI_0(A) \neq 0$ on M. Then

$$I_1(A) = \langle dI_0(A)^4, \, \sigma(A) \rangle \tag{2}$$

is a first order rational differential invariant of A. Here $\langle \cdot, \cdot \rangle$ is the convolution of symmetric 4-form and symmetric 4-vector.

4. The bundle of differential operators

Let $\chi_4: \mathrm{Diff}_4(M) \to M$ be the bundle of operators $A \in \mathrm{Diff}_4(M)$, (x,y,u^α) its local canonical coordinates, $\alpha = (\alpha_1,\alpha_2)$, and $0 \le |\alpha| = \alpha_1 + \alpha_2 \le 4$. Then the section $S_A: M \to \mathrm{Diff}_4(M)$ generated by operator $A = \sum_{0 \le |\alpha| \le 4} a^\alpha(x,y) \partial_x^{\alpha_1} \partial_y^{\alpha_2}$, has the form $u^\alpha = a^\alpha(x,y)$. Let $\pi_l: J^l(\chi_4) \to M$, $l = 0,1,2,\ldots$, be the bundles of l-jets of sections of χ_4 . The bundles χ_4 and π_l are natural in the sense that the action of the diffeomorphism group $\mathcal{G}(M)$ of M is lifted to automorphisms

$$\varphi^{(l)}: [A]_p^l \mapsto [\varphi_*(A)]_{\varphi(p)}^l, \ \varphi \in \mathcal{G}(M)$$

of these bundles in the natural way.

A rational function $I \in C^{\infty}(J^l(\chi_4))$ invariant w.r.t. these automorphisms $\varphi^{(l)}$ is called an l- order natural invariant. Functions $I_1 \in C^{\infty}(J^0(\chi_4))$ and $I_2 \in C^{\infty}(J^1(\chi_4))$ defined by

$$(S_A)^*(I_0) = I_0(A), \quad (j^1 S_A)^*(I_1) = I_1(A), \quad \forall A \in \mathbf{Diff}_4(M)$$

are natural invariants.

5. The bundle of differential operators

Let $S_2 = \{\theta_2 \in J^2 \chi_4 \mid (\widehat{dI_0} \wedge \widehat{dI_1})_{\theta_2} = 0\}$. Then $\widehat{dI_0} \wedge \widehat{dI_1} \neq 0$ on the domain $J^2 \chi_4 \setminus S_2$.

Let I be a natural invariant, then

$$\widehat{d}\widehat{\mathbb{I}} = \widehat{\mathbb{I}}_1 \widehat{dJ_1} + \widehat{\mathbb{I}}_2 \widehat{dJ_2},$$

where functions \mathcal{I}_i are natural invariants (*Tresse derivatives*).

We will denote them by $\frac{dJ}{dJ_i}$.

The 4-order total differential operator

$$\Box: C^{\infty}(J^{l}(\chi_{4})) \longrightarrow C^{\infty}(J^{l+4}(\chi_{4})), \ l = 0, 1, \dots,$$

is defined by the formula

$$(j_{4+l}S_A)^*(\Box(f)) = A((j_lS_A)^*(f)),$$

for all $f \in C^{\infty}(J^l(\chi_4))$ and all operators $A \in \mathbf{Diff}_4(M)$. In jet-coordinates of π_l , this operator has the form

$$\Box = \sum_{0 \le |\alpha| \le 4} u^{\alpha} \frac{d^{|\alpha|}}{d_x^{\alpha_1} d_y^{\alpha_2}}.$$

6. Constant type operators

Let V be a 2-dimensional vector space and let $\varpi \subset S^k(V)$ be a regular GL(V)-orbit. Recall, that:

- a symbol σ_4 has a constant type ϖ if for any point $q \in M$ and any isomorphism $\varphi : T_q(M) \to V$ the image $\varphi_*(\sigma) \in S^k(V)$ belongs to ϖ ;
- 2 an operator $A \in \mathbf{Diff}_4(M)$ has the constant type ϖ if its symbol $\sigma_4(A)$ has the constant type ϖ .

Remark that a symbol $\sigma \in \Sigma_4(M)$ has a constant type if and only if its zero order invariant $I_0(\sigma)$ is constant.

7. The field of natural invariants of non constant type operators

Theorem The field of all natural rational invariants of non constant operators $A \in \mathbf{Diff}_4(M)$ is generated by the invariants I_0, I_1 , and Tresse derivatives

$$\frac{d^{|\beta|}J_{\alpha}}{dI_0^{\beta_1}dI_1^{\beta_2}}$$

of invariants

$$J_{\alpha} = \Box (I_0^{\alpha_1} \cdot I_1^{\alpha_2}), \quad 0 \le |\alpha| \le 4.$$

The field of rational natural invariants separates regular orbits in the jet spaces of differential operators of non constant type.

8. The Wagner connection.

Theorem A regular symbol $\sigma \in \Sigma_4$ has a constant type if and only if it has a linear connection ∇^{σ} in the tangent bundle to M such that for all vector fields X on M

$$\nabla_X^{\sigma}(\sigma) = 0. \tag{3}$$

We call this connection by a Wagner connection.

A regular symbol σ can be reduced to the following forms by transformation of coordinates of M:

$$\sigma = \partial_x \cdot \partial_y \cdot (\alpha_0 \partial_x^2 + 2\alpha_1 \partial_x \cdot \partial_y + \alpha_2 \partial_y^2), \text{ or }$$
 (4)

$$\sigma = (\partial_x^2 + \partial_y^2) \cdot (\alpha_0 \partial_x^2 + 2\alpha_1 \partial_x \cdot \partial_y + \alpha_2 \partial_y^2). \tag{5}$$

Let σ be defined by (4). Then non zero components Γ^i_{jk} of its Wagner connection are defined from (3) by the formulas:

$$\begin{split} &\Gamma_{1\,1}^1 = (-3\alpha_2\partial_x\alpha_0 + \alpha_0\partial_x\alpha_2)/(8\alpha_0\alpha_2),\\ &\Gamma_{2\,1}^1 = (-3\alpha_2\partial_y\alpha_0 + \alpha_0\partial_y\alpha_2)/(8\alpha_0\alpha_2),\\ &\Gamma_{1\,2}^2 = (\alpha_2\partial_x\alpha_0 - 3\alpha_0\partial_x\alpha_2)/(8\alpha_0\alpha_2),\\ &\Gamma_{2\,2}^2 = (\alpha_2\partial_y\alpha_0 - 3\alpha_0\partial_y\alpha_2)/(8\alpha_0\alpha_2)_{\text{distance}} \end{split}$$

9. The Wagner connection.

Let M be a connected and simply connected manifold, $\sigma \in \Sigma_4$ a regular symbol, and ∇^{σ} the complete Wagner connection. Let the torsion tensor T^{σ} of ∇^{σ} is parallel, i.e., $d_{\nabla^{\sigma}}(T^{\sigma}) = 0$. Then the 2-dimensional vector space \mathfrak{g}^{σ} of all parallel vector fields on M, is a Lie algebra with respect to the bracket

$$X,Y\in \mathfrak{g}^{\sigma}\longrightarrow T^{\sigma}(X,Y)\in \mathfrak{g}^{\sigma}.$$

Theorem. Let $\sigma \in \Sigma_4(M)$ be a regular symbol and ∇^{σ} be its Wagner connection with parallel torsion tensor T^{σ} . Then:

1 Symbol σ is locally equivalent to the following one

$$\sigma = c_0 \partial_x^4 + 4c_1 \partial_x^3 \cdot \partial_y + 6c_2 \partial_x^2 \cdot \partial_y^2 + 4c_3 \partial_x^3 \cdot \partial_y + c_4 \partial_y^4, \quad c_i \in \mathbb{R},$$
 if and only if $T^{\sigma} = 0$.

2 Symbol σ is locally equivalent to the symbol

$$\sigma = c_0 e^{4y} \partial_x^4 + 4c_1 e^{3y} \partial_x^3 \cdot \partial_y + 6c_2 e^{2y} \partial_x^2 \cdot \partial_y^2 + 4c_3 e^y \partial_x \cdot \partial_y^3 + c_4 \partial_y^4,$$

$$c_i \in \mathbb{R},$$

if and only if $T^{\sigma} \neq 0$.

10. Symbols and quantization

Let $\Sigma = \bigoplus_{k \geq 0} \Sigma^k(M)$ be the graded algebra of symmetric differential forms and let ∇ be a Wagner connection of a regular symbol from $\Sigma_4(M)$. Then taking symmetrization of the covariant differential $d_{\nabla} : \Sigma^k(M) \longrightarrow \Sigma^k(M) \otimes \Omega^1(M)$, we get operators

$$d^s_{\nabla}: \Sigma^k(M) \longrightarrow \Sigma^{k+1}(M).$$

Let $\sigma_k \in \Sigma_k(M)$ be a regular symbol. We define a differential operator $\mathcal{Q}(\sigma_k) \in \mathbf{Diff}_k(M)$ as follows:

$$Q(\sigma_k)(h) \stackrel{\text{def}}{=} \frac{1}{k!} \left\langle \sigma_k, \left(d_{\nabla}^s \right)^k (h) \right\rangle$$

where $h \in C^{\infty}(M)$, $\left(d_{\nabla}^{s}\right)^{k}(h) \in \Sigma^{k}(M)$, and $\langle \cdot , \cdot \rangle$ is the natural convolution $\Sigma_{k}(M) \otimes \Sigma^{k}(M) \to C^{\infty}(M)$.

Remark that the symbol of operator $\mathcal{Q}(\sigma_k)$ equals σ_k . We call this operator $\mathcal{Q}(\sigma_k)$ a quantization of symbol σ_k .

11. Natural decomposition

Let now $A \in \mathbf{Diff}_4(M)$ and $\sigma_4(A)$ be its symbol. Then operator

$$A-\mathcal{Q}(\sigma_4(A))$$

has order 3. Let $\sigma_3(A)$ be its symbol.

Then operator $A - \mathcal{Q}(\sigma_4(A)) - \mathcal{Q}(\sigma_3(A))$ has order 2.

Repeating this process we get subsymbols $\sigma_i(A) \in \Sigma_i(M)$, $0 \le i \le 3$, such that

$$A = \mathcal{Q}(\sigma_{(4)}(A)),$$

where

$$\sigma_{(4)}(A) = \sigma_4(A) + \sigma_3(A) + \ldots + \sigma_0(A)$$

is a total symbol of the operator, and

$$Q(\sigma_{(4)}(A)) = Q(\sigma_4(A)) + Q(\sigma_3(A)) + \ldots + Q(\sigma_0(A)).$$

12. Differential invariants of constant type operators

Let $\pi_4: S^4T(M) \to M$ be the bundle of symmetric 4-vectors (symbols) and let $\nu_l \in \Sigma_l(\pi_4)$ be the universal symbol (of order 0).

We denote by $\mathcal{O}_0 \subset J^0(\pi_4)$ the domain of regular symbols. The symbols having the constant type ϖ constitute a subbundle

$$\pi_4^{\varpi}: E^{\varpi} \longrightarrow M$$

of the bundle $\pi_4|_{\mathcal{O}_0}:\mathcal{O}_0\to M$ of regular symbols. Then the Wagner connection defines a total covariant differential

$$\widehat{d}_{\varpi}: \Sigma_1(\pi_4^{\varpi}) \longrightarrow \Sigma_1(\pi_4^{\varpi}) \otimes \Omega^1(\pi_4^{\varpi}),$$

over \mathcal{O}_0 , and, by the construction $\widehat{d}_{\varpi}(\nu_4) = 0$. Let $T^{\varpi} \in \Omega^2(\pi_4^{\varpi}) \otimes \Sigma_1(\pi_4^{\varpi})$ be the total torsion of the connection and $\theta^{\varpi} \in \Omega^1(\pi_4^{\varpi})$ be the total torsion form. (Recall that torsion form of the Wagner connection is defined by the formula $\theta^{\sigma}(X) = \text{Tr}(Y \to T^{\sigma}(X,Y))$, where T^{σ} is the torsion tensor.)

13. Differential invariants of constant type operators

Let us apply the total differential of the dual (to Wagner) connection $\widehat{d}_{\varpi}^*: \Omega^1(\pi_4^{\varpi}) \to \Omega^1(\pi_4^{\varpi}) \otimes \Omega^1(\pi_4^{\varpi})$, we get the following tensor

$$\widehat{d}_{\varpi}^*(\theta^{\varpi}) \in \Omega^1(\pi_4^{\varpi}) \otimes \Omega^1(\pi_4^{\varpi}).$$

Taking the symmetric g^{ϖ} and antisymmetric a^{ϖ} parts of this tensor, we get tensors

$$g^{\varpi} \in \Sigma^2(\pi_4^{\varpi}), \quad a^{\varpi} \in \Omega^2(\pi_4^{\varpi}).$$

Assuming that tensor g^{ϖ} is non degenerated, we get a total operator

$$A^{\varpi} \in \Sigma_1(\pi_4^{\varpi}) \otimes \Omega^1(\pi_4^{\varpi}),$$

instead of a^{ϖ} , and horizontal 1-forms

$$\theta_1^{\varpi} = \theta^{\varpi}, \quad \theta_2^{\varpi} = A^{\varpi}(\theta_1^{\varpi}).$$
 (6)

14. Differential invariants of constant type operators

Let $(e_1^{\varpi}, e_2^{\varpi})$ be the frame of horizontal vector fields $e_i^{\varpi} \in \Sigma_1(\pi_4^{\varpi})$ dual to coframe $(\theta_1^{\varpi}, \theta_2^{\varpi})$. Let $\chi_4^{\varpi} : \mathrm{Diff}_4(M) \to M$ be the bundle of scalar differential operator of order 4, having symbols of constant type ϖ , $\mathrm{Diff}_4^{\varpi}(M)$ its module of smooth sections, $A \in \mathrm{Diff}_4^{\varpi}(M)$,

$$\sigma_{(4)}(A) = \sigma_4 + \sigma_3 + \ldots + \sigma_0$$

the total symbol of A, and ν_4 , ν_3 , ..., ν_0 corresponding universal symbols. Then

$$\nu_i = \sum_{|\alpha|=i} J_{\alpha}^{\varpi} (e_1^{\varpi})^{\alpha_1} \cdot (e_2^{\varpi})^{\alpha_2}$$

Teorem The field of natural differential invariants of linear scalar differential operators of order 4 having constant type ϖ is generated by the basic invariants J_{α}^{ϖ} , $|\alpha| \leq 4$, and invariant derivatives e_i^{ϖ} , i = 1, 2.

Bibliography

- David Hilbert, *Theory of Algebraic Invariants*, Cambridge university press, 1993, pp.193.
- Valentin Lychagin, Valeriy Yumaguzhin, *Invariants of forth order linear differential operators*, arXiv:2004.11905v1.
- Valentin Lychagin, Valeriy Yumaguzhin, On structure of linear differential operators, acting in line bundles, Journal of geometry and physics, Volume 148, February 2020, 103549.
- Valentin Lychagin, Valeriy Yumaguzhin, On equivalence of third order linear differential operators on two-dimensional manifolds, Journal of geometry and physics, Vol. 146, December 2019, 103507.
- Valentin Lychagin, Valeriy Yumaguzhin, Classification of second order linear differential operators and differential equations, Journal of Geometry and Physics, Vol. 130, August 2018, pp. 213-228.