Continuum mechanics of media with innerstructures

A. Duyunova, V. Lychagin, S. Tychkov

May 25, 2020

Motivation

- 1. Diatomic gases. Configuration space of particle is $M = \mathbb{R}^3 \times \mathbb{RP}^2$ or $M = \mathbb{R}^3 \times \mathbb{S}^2$.
- 2. Atmosphere consisting of such gases. Configuration manifold is the total space of the bundle $\pi: M \to \mathbb{R}^+ \times \mathbb{S}^2$, fibers is diffeomorhic to \mathbb{RP}^2 or \mathbb{S}^2 .
- 3. Water. The configuration space of particle is diffeomorphic to \mathbb{RP}^3 .
- 4. Media composed with solids (Cosserat theory). Configuration space of such media is $\mathbb{R}^3 \times SO(3) \to \mathbb{R}^3$.

Configuration space

By a configuration space of such medium, we mean:

- 1. Smooth bundle $\pi \colon M \to B$, where M and B are Riemannian manifolds equipped with metrics g_M and g_B correspondingly.
- 2. To compare inner structures (i.e. fibers of π) at different points of B, we assume that π is equipped with a connection ∇_{π} , which splits tangent spaces $T_m M$ into the vertical $T_m^{\nu} M$ and horizontal $H_m \stackrel{\pi_*}{\simeq} T_{\pi(m)} B$ parts, i.e. $T_m M = T_m^{\nu} M \oplus H_m$, where spaces T_m and H_m are orthogonal. Also, the restriction of the metric g_M to H_m coincides with g_B .
- 3. Flow in the medium is given by a π -projectable vector field X on M. This field can be split due to the connection ∇_{π} into the sum $X = X_H + X_V$, where X_V is a π -vertical field and X_H is a horizontal lift of the vector field $\pi_*(X)$ on the base manifold B.

Thermodynamics of media with inner structure

The extensive quantities: the internal energy density ε and the rate of deformation Δ , where $\Delta = d_{\nabla}X \in \operatorname{End} T$, $X \in T$ is the flow velocity and ∇ is the Levi-Civita connection associated with the metric g_M .

The *intensive*, quantities are the temperature θ and the stress tensor $\sigma \in \operatorname{End} T^*$. We will use the duality of End T and End T^* given by the pairing $\langle \sigma, \Delta \rangle = \operatorname{Tr} \sigma \Delta^*$.

The thermodynamic phase space of the medium is

$$\Phi = \mathbb{R}^3 \times \mathsf{End} \; T^* \times \mathsf{End} \; T,$$

with coordinates

$$(s, \theta, \varepsilon, \sigma, \Delta),$$

where *s* is the entropy density.

 Φ is a contact manifold equipped with the structure form [1]

$$\alpha = ds - \theta^{-1} d\varepsilon + \theta^{-1} \sum_{i,j} \sigma_{ij} d\Delta_{ij}.$$

The first law of thermodynamics: the thermodynamic state is a maximal integral manifold of α , i.e. a Legendrian manifold $L \subset (\Phi, \alpha)$ of dimension dim(End T) + 1.

The projection ϕ of the contact manifold Φ to the symplectic manifold $(\widetilde{\Phi}, d\alpha)$, where $\widetilde{\Phi} = \mathbb{R}^2 \times \operatorname{End} T^* \times \operatorname{End} T$ and $\phi(s, \theta, \varepsilon, \sigma, \Delta) = (\theta, \varepsilon, \sigma, \Delta)$.

The restriction of the mapping ϕ to the Legendrian manifold L is a local diffeomorphism on the image $\widetilde{L}=\phi(L)$, and, therefore, $\widetilde{L}\subset\widetilde{\Phi}$ is an immersed Lagrangian manifold in a

 $2(\dim(\operatorname{End} T) + 1)$ -dimensional symplectic manifold equipped with the structure form

$$dlpha = heta^{-2} (d heta \wedge darepsilon + \sum_{i,j} (heta \, d\sigma_{ij} \wedge d\Delta_{ij} + \sigma_{ij} \, d\Delta_{ij} \wedge d heta)).$$

The first law of thermodynamics: the thermodynamic state is a Lagrangian submanifold of the symplectic manifold $(\widetilde{\Phi}, d\alpha)$. Also we require (see [1] for details) the quadratic differential form

$$\kappa = heta^{-2} (d heta \cdot darepsilon + \sum_{i,j} (heta \, d\sigma_{ij} \cdot d\Delta_{ij} + \sigma_{ij} d\Delta_{ij} d heta)).$$

The symplectic structure defines the Poisson bracket on functions on $\widetilde{\Phi}$ of the form

$$[F,G] = \frac{\theta}{2} \left(\frac{\partial G}{\partial \Delta} \cdot \frac{\partial G}{\partial \sigma} - \frac{\partial F}{\partial \Delta} \cdot \frac{\partial G}{\partial \sigma} + \theta \left(\frac{\partial G}{\partial \varepsilon} \frac{\partial F}{\partial \theta} - \frac{\partial G}{\partial \varepsilon} \frac{\partial G}{\partial \theta} \right) - \sigma \cdot \left(\frac{\partial F}{\partial \varepsilon} \frac{\partial G}{\partial \sigma} - \frac{\partial G}{\partial \varepsilon} \frac{\partial G}{\partial \sigma} \right) \right).$$

The thermodynamic state of the medium can be also defined by equations

$$F_k(\theta, \varepsilon, \sigma, \Delta) = 0, \quad k = 1, \dots, \dim(\operatorname{End} T) + 1,$$

where all pair-wise brackets $[F_k, F_l]$ vanish.

We introduce the density of Helmholtz free energy $h=h(\theta,\Delta)$ on L, $h=\varepsilon-\theta s$, then we get the following equations for the Lagrangian manifold \widetilde{L}

$$\sigma = h_{\Delta}, \quad \varepsilon = (\theta h)_{\theta}.$$
 (1)

In these coordinates the quadratic form κ is

Thermodynamic invariants

Consider a medium that possesses a symmetry given by an algebraic group $G \subset GL(T)$.

G-action on the tangent space T can be prolonged to the contact G-action on thermodynamic phase space Φ , if we assume that this action is trivial on $\mathbb{R}^3=(s,\theta,\varepsilon)$ and natural on $\operatorname{End} T^* \times \operatorname{End} T$. Let J_1,\ldots,J_N be a set of algebraically independent rational G-invariants on Φ , which generate the field of rational G-invariants and, therefore, separate regular G-orbits (Rosenlicht theorem [2]). Then a regular G-invariant thermodynamic state, i.e. a G-invariant algebraic Legendrian manifold $L \subset \Phi$ such that almost all G-orbits in L are regular, can be written in the form of $h=h(J_1,\ldots,J_N)$, where h is a rational function.

We consider only 'Newtonian media', i.e. media with a symmetry group $G = O(g) \subset GL(T)$, where T is a Euclidean vector space with a metric g.

Thermodynamic invariants

Theorem (Procesi [3])

Algebra of polynomial O(g)-invariants on $A \in \text{End } T$ is generated by the Artin-Procesi invariants

$$\mathcal{P}_{lpha,eta}(A) = \operatorname{Tr} \left(A^{lpha_1} A'^{eta_1} \cdots A^{lpha_m} A'^{eta_m}
ight), \quad \sum_i (lpha_i + eta_i) \leq 2^n - 1,$$

where $\alpha = (\alpha_1, \dots, \alpha_m)$, $\beta = (\beta_1, \dots, \beta_m)$ are multi-indices.

The next theorem follows from the Procesi theorem, the Rosenlicht theorem [2] and the observation that codimension of regular orbits equals

$$\nu = n^2 - \frac{n(n-1)}{2} = \frac{n(n+1)}{2}.$$

Theorem

Field of rational invariants of the O(g)-action on End T is generated by any ν algebraically independent Artin-Procesi invariants. This field separates regular orbits.

Thermodynamic invariants

In this case, the following state equation:

$$\sigma = \frac{\partial h}{\partial \Delta} = \sum_{\alpha,\beta} \frac{\partial h}{\partial \mathcal{P}_{\alpha,\beta}} \frac{\partial \mathcal{P}_{\alpha,\beta}}{\partial \Delta}.$$

If we consider media, which satisfy 'Hooke's law', the Helmholtz free energy is a quadratic function of Δ and, therefore, has the form:

$$h=rac{1}{2}\left(a(heta)\mathcal{P}_2(\Delta)+b(heta)\mathcal{P}_{11}(\Delta)+c(heta)\mathcal{P}_1^2(\Delta)
ight)+d(heta)\mathcal{P}_1(\Delta),$$

where a, b, c, d are some functions.

In this case the state equations take the form:

$$\sigma = a(\theta)\Delta' + b(\theta)\Delta + (c(\theta)\operatorname{Tr}\Delta + d(\theta))1.$$

Thermodynamic invariants of media with inner structure

Let a Euclidean vector space (T,g) be the orthogonal direct sum of a vertical (V, g_F) and a horizontal (H, g_B) Euclidean spaces, that is

$$(T,g) = (V,g_F) \oplus (H,g_B), \tag{2}$$

where dim V = m, dim H = n.

Now we study invariants of the natural $O(g_F) \times O(g_B)$ -action on End T.

Let Π_V be the orthogonal projector to V.

Theorem

Algebra of polynomial $O(g_F) \times O(g_B)$ -invariants on $A \in \text{End } T$ is generated by Artin-Procesi invariants

$$\mathcal{P}_{\alpha,\epsilon,\beta}(A) = \operatorname{Tr}(A^{\alpha_1} \Pi_V^{\epsilon_1} A'^{\beta_1} \cdots A^{\alpha_k} \Pi_V^{\epsilon_k} A'^{\beta_k}), \quad \sum_i (\alpha_i + \epsilon_i + \beta_i) \leq 2^{n+m} - 1$$

where $\alpha = (\alpha_1, \dots, \alpha_m), \ \epsilon = (\epsilon_1, \dots, \epsilon_m), \ \beta = (\beta_1, \dots, \beta_m)$ are multi-indices.

Thermodynamic invariants of media with inner structure

Similar to the ordinary Newtonian media, for the Newtonian media with inner structure, we have the following state equations:

$$\sigma = \frac{\partial h}{\partial \Delta} = \sum_{\alpha, \epsilon, \beta} \frac{\partial h}{\partial \mathcal{P}_{\alpha, \epsilon, \beta}} \frac{\partial \mathcal{P}_{\alpha, \epsilon, \beta}}{\partial \Delta}.$$

In the case when the media satisfy 'Hooke's law', the Helmholtz free energy is a quadratic function of Δ and therefore has the form:

$$h = \frac{1}{2} \left(a_1(\theta) \operatorname{Tr} \Delta^2 + a_2(\theta) \operatorname{Tr} (\Delta \Delta') + a_3(\theta) \operatorname{Tr}^2 \Delta + a_4(\theta) \operatorname{Tr}^2 (\Delta \Pi_V) + a_5(\theta) \operatorname{Tr} (\Delta' \Delta \Pi_V) + a_6(\theta) \operatorname{Tr} (\Delta \Delta' \Pi_V) \right) + b_1(\theta) \operatorname{Tr} \Delta + b_2(\theta) \operatorname{Tr} \Delta \Pi_V,$$

where $a_1, \ldots, a_6, b_1, b_2$ are some functions. In this case the state equations take the form:

$$\begin{split} \sigma &= a_1(\theta) \Delta' + a_2(\theta) \Delta + (a_3(\theta)(\operatorname{Tr} \Delta) + b_1(\theta)) 1 + \\ &\quad (a_4(\theta)\operatorname{Tr} (\Delta \Pi_V) + b_2(\theta)) \Pi_V + a_5(\theta) \Delta \Pi_V + a_6(\theta) \Pi_V \Delta. \end{split}$$

We consider a Riemannian manifold (M,g) and write down the conservation laws for an arbitrary vector field X on M. We will assume that M is an oriented manifold and $\Omega = \Omega_g$ is the volume form associated with the metric g. We denote by ∇ and d_{∇} the Levi-Civita connection and the covariant differential also associated with metric g.

Ву

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \nabla_X,$$

we denote the material derivative.

Divergence

The divergence of a vector field, $\operatorname{div} X$, is defined in the standard way in terms of Lie derivative:

$$\mathcal{L}_X\Omega = (\operatorname{div} X)\Omega.$$

On the other hand, the covariant differential $d_{\nabla}X \in T \otimes T^*$ is a field of linear operators acting in the tangent spaces and we get

$$\operatorname{div} X = \operatorname{Tr}(d_{\nabla}X).$$

To see that we get an equivalent construction, let us write down the latter in local coordinates x_1, \ldots, x_n .

We get

$$d_{\nabla}X = \sum_{i,j} \left(\frac{\partial X_i}{\partial x_j} + \sum_k \Gamma^i_{kj} X_k \right) \frac{\partial}{\partial x_i} \otimes dx_j,$$

where $X = \sum X_i \frac{\partial}{\partial x_i}$, and Γ^i_{kj} are the Christoffel symbols.

Divergence

The important case for us is the case of linear operators

$$A \in \text{End } T = T \otimes T^*$$
.

In this case, $d_{\nabla}A \in \text{End } T \otimes T^* = T \otimes T^* \otimes T^*$ and, by taking (1,3)-contraction $c_{1,3}$, we get a differential 1-form that we call the divergence of the operator A:

$$\operatorname{div} A = c_{1,3}(d_{\nabla}A) \in T^*.$$

In local coordinates, we have

$$A = \sum a_i^k \frac{\partial}{\partial x_i} \otimes dx_k, d_{\nabla} \left(\frac{\partial}{\partial x_i} \right) = \sum \Gamma_{ij}^k \frac{\partial}{\partial x_k} \otimes dx_j,$$

$$d_{\nabla} (dx_i) = -\sum \Gamma_{jk}^i dx_k \otimes dx_j$$

and, therefore,

$$\operatorname{div} A = \sum_{i,k} \left(\frac{\partial a_i^k}{\partial x_i} + \sum_j (a_j^k \Gamma_{ij}^i - a_i^j \Gamma_{ik}^j) \right) dx_k.$$

Density if internal force

We consider the stress tensor $\sigma \in \operatorname{End} T$ as the surface force $\widehat{\sigma} = g(\sigma(\nu), \cdot) \in T^*$ applied to an imaginary surface orthogonal to a normal vector ν . In our case we cannot directly find the 'integral sum' of all forces applied to a volume, since each of the 'applied forces' belongs to different spaces.

It can be shown that the density of internal force is div σ (see [4]).

Conservation laws

We have the following system of differential equations describing media with inner structures:

$$egin{cases} rac{d
ho}{dt} +
ho \operatorname{div} X = 0, \
ho rac{dX}{dt} = \operatorname{div}^{lat} \sigma, \ rac{darepsilon}{dt} + arepsilon \operatorname{div} X + \operatorname{div}(\mathcal{J}_q) + \langle \sigma, \Delta
angle = 0, \end{cases}$$

where

$$\sigma = \frac{\partial h}{\partial \Delta}, \quad \varepsilon = h + \theta \frac{\partial h}{\partial \theta},$$

and X is a π -projectable vector field.

References

- Lychagin, Valentin, Contact geometry, measurement, and thermodynamics. Nonlinear PDEs, their geometry, and applications, 3–52, Tutor. Sch. Workshops Math. Sci., Springer, 2019.
- Rosenlicht M., A remark on quotient spaces, An. Acad. Brasil. Cienc. 35 (1963) 487–489.
- Procesi C., Lie groups: an approach through invariants and representations, Springer, (2005).
- arXiv:2005.05840 [math-ph]