On the number of discrete chains

Nóra Frankl

LSE and MIPT

Joint work with Andrey Kupavskii

14 April 2020

Unit distances

 $u_d(n)$ = max number of unit distances in a set of n points in \mathbb{R}^d .

$$n^{1+c/\log\log n} \le u_2(n) \le C n^{4/3}$$
 [Erdős'46, Spencer-Szemerédi-Trotter'84]

Conjecture (Erdős): $u_2(n) = n^{1+\varepsilon}$

Unit distances

 $u_d(n)$ = max number of unit distances in a set of n points in \mathbb{R}^d .

$$n^{1+c/\log\log n} \le u_2(n) \le Cn^{4/3}$$
 [Erdős'46, Spencer-Szemerédi-Trotter'84]

Conjecture (Erdős): $u_2(n) = n^{1+\varepsilon}$

$$cn^{4/3} \log \log n \le u_3(n) \le Cn^{295/197+\varepsilon}$$
 [Erdős'60, Zahl'19]

Unit distances

 $u_d(n)$ = max number of unit distances in a set of n points in \mathbb{R}^d .

$$n^{1+c/\log\log n} \le u_2(n) \le C n^{4/3}$$
 [Erdős'46, Spencer-Szemerédi-Trotter'84]

Conjecture (Erdős): $u_2(n) = n^{1+\varepsilon}$

$$cn^{4/3}\log\log n \le u_3(n) \le Cn^{295/197+\varepsilon}$$
 [Erdős'60, Zahl'19]

Note that $u_d(n) = \Theta(n^2)$ if $d \ge 4$.

Unit distance paths in the plane

From now on d = 2.

u(n) = max number of unit distances in a set of n points = max number of edges in a unit-distance graph on n vertices

Unit distance paths in the plane

From now on d = 2.

```
u(n) = max number of unit distances in a set of n points = max number of edges in a unit-distance graph on n vertices
```

A more general problem: **Determine** $U_k(n)$, the maximum number of paths with k edges in a unit-distance graph on n vertices (in the plane). [Palsson-Senger-Sheffer '19]

Unit distance paths in the plane

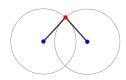
From now on d = 2.

u(n) = max number of unit distances in a set of n points = max number of edges in a unit-distance graph on n vertices

A more general problem: **Determine** $U_k(n)$, the maximum number of paths with k edges in a unit-distance graph on n vertices (in the plane). [Palsson-Senger-Sheffer '19]

$$U_1(n)=u(n)$$

$$U_2(n) = \Theta(n^2)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n)=u(n)$$

$$U_2(n) = \Theta(n^2)$$

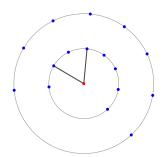
$$U_3(n) = \Omega(n^2)$$

u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

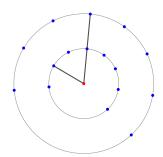


u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

$$U_4(n) = \Omega(n^2)$$

 $u(n) = \max \text{ number of unit distances in a set of } n \text{ points}$

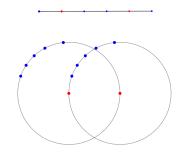
$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

$$U_4(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$



u(n) = max number of unit distances in a set of n points

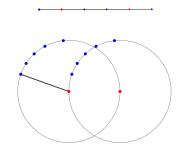
$$U_1(n)=u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

$$U_4(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$



u(n) = max number of unit distances in a set of n points

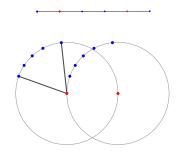
$$U_1(n)=u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

$$U_4(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$



u(n) = max number of unit distances in a set of n points

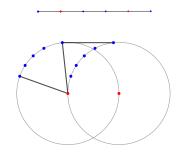
$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

$$U_4(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$



u(n) = max number of unit distances in a set of n points

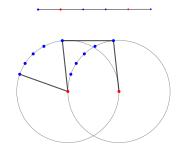
$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

$$U_4(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$



u(n) = max number of unit distances in a set of n points

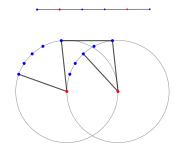
$$U_1(n)=u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

$$U_4(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

u(n) = max number of unit distances in a set of n points

$$U_1(n)=u(n)$$

$$U_2(n) = \Theta(n^2)$$

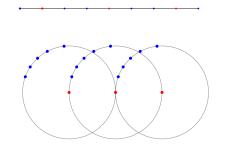
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

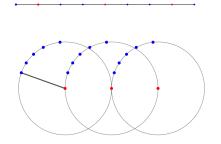
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

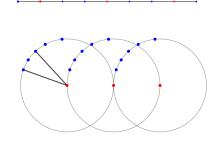
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

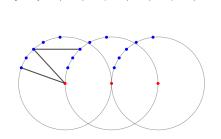
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

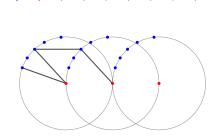
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

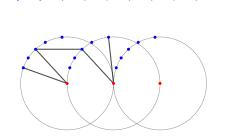
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

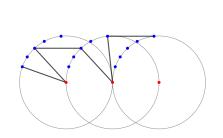
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

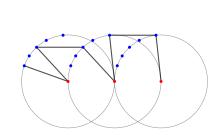
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



u(n) = max number of unit distances in a set of n points

$$U_1(n) = u(n)$$

$$U_2(n) = \Theta(n^2)$$

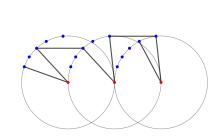
$$U_3(n) = \Omega(n^2)$$

$$U_5(n) = \Omega(n^3)$$

$$U_6(n) = \Omega(n^3)$$

$$U_7(n) = \Omega(n^3)$$

$$U_8(n) = \Omega(n^4)$$



 $u(n) = \max \text{ number of unit distances in a set of } n \text{ points}$

$$U_k(n) = \Omega\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right)$$
 [Palsson-Senger-Sheffer '19]

 $u(n) = \max \text{ number of unit distances in a set of } n \text{ points}$

$$U_k(n) = \Omega\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right)$$
 [Palsson-Senger-Sheffer '19]

$$U_k(n) = \begin{cases} O\left(n \cdot u(n)^{k/3}\right) & \text{if } k \equiv 0 \pmod{3} \\ O\left(u(n)^{(k+2)/3}\right) & \text{if } k \equiv 1 \pmod{3} \\ O\left(n^2 \cdot u(n)^{(k-2)/3}\right) & \text{if } k \equiv 2 \pmod{3} \end{cases}$$
 [PSS'19]

u(n) = max number of unit distances in a set of n points

$$U_k(n) = \Omega\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right)$$
 [Palsson-Senger-Sheffer '19]

$$U_k(n) = \Omega\left(n^{\lfloor (k+1)/3 \rfloor + 1 + \varepsilon}\right) \text{ if } u(n) = O(n^{1+\varepsilon}) \quad \text{[PSS'19]}$$

graph on *n* vertices (in the plane).

u(n)= max number of unit distances in a set of n points $U_k(n)$ = max number of paths with k edges in a unit-distance

$$U_k(n)=\Omega\left(n^{\lfloor(k+1)/3\rfloor+1}
ight)$$
 [Palsson-Senger-Sheffer '19]
$$U_k(n)=\Omega\left(n^{\lfloor(k+1)/3\rfloor+1+arepsilon}
ight) ext{ if } u(n)=O(n^{1+arepsilon}) ext{ [PSS'19]}$$

$$U_k(n)=O\left(n^{2k/5+1+\gamma(k)}
ight) ext{ [PSS'19]}$$

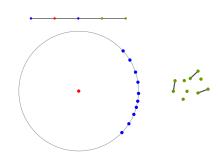
$$(k, \delta)$$
-chains

For $\delta = (\delta_1, \dots, \delta_k)$ a (k+1)-tuple (p_1, \dots, p_{k+1}) of distinct points is a (k, δ) -chain if $||p_i - p_{i+1}|| = \delta_i$ for all $i = 1, \dots, k$.

(k, δ) -chains

For $\delta = (\delta_1, \dots, \delta_k)$ a (k+1)-tuple (p_1, \dots, p_{k+1}) of distinct points is a (k, δ) -chain if $||p_i - p_{i+1}|| = \delta_i$ for all $i = 1, \dots, k$.

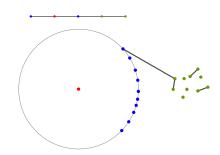
$$C_4(n) = \Omega(u(n)n)$$



(k, δ) -chains

For $\delta = (\delta_1, \dots, \delta_k)$ a (k+1)-tuple (p_1, \dots, p_{k+1}) of distinct points is a (k, δ) -chain if $||p_i - p_{i+1}|| = \delta_i$ for all $i = 1, \dots, k$.

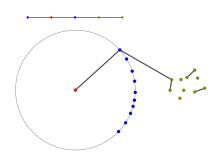
$$C_4(n) = \Omega(u(n)n)$$



(k, δ) -chains

For $\delta = (\delta_1, \dots, \delta_k)$ a (k+1)-tuple (p_1, \dots, p_{k+1}) of distinct points is a (k, δ) -chain if $||p_i - p_{i+1}|| = \delta_i$ for all $i = 1, \dots, k$.

$$C_4(n) = \Omega(u(n)n)$$

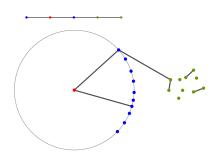


(k, δ) -chains

For $\delta = (\delta_1, \dots, \delta_k)$ a (k+1)-tuple (p_1, \dots, p_{k+1}) of distinct points is a (k, δ) -chain if $||p_i - p_{i+1}|| = \delta_i$ for all $i = 1, \dots, k$.

 $C_k(n)$ = the maximum number of (k, δ) -chains in a set of n points, where the maximum is taken over all δ .

$$C_4(n) = \Omega(u(n)n)$$



Bounds on the number of chains

Clearly
$$C_k(n) \geq U_k(n)$$
.

By the constructions from the previous slides:

$$C_k(n) = \Omega\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right)$$

$$C_k(n) = \Omega\left(n^{(k-1)/3}u(n)\right) \text{ if } k \equiv 1 \pmod{3}$$

Bounds on the number of chains

Clearly
$$C_k(n) \geq U_k(n)$$
.

By the constructions from the previous slides: $C_k(n) = \Omega\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right)$

$$C_k(n) = \Omega(n^{(k-1)/3}u(n))$$
 if $k \equiv 1 \pmod{3}$

Theorem (F.-Kupavskii)

$$C_k(n) = \begin{cases} \tilde{O}\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right) & \text{if } k \equiv 0, 2 \pmod{3} \\ O\left(n^{(k-1)/3 + \varepsilon} u(n)\right) & \text{if } k \equiv 1 \pmod{3} \end{cases}$$

Multipartite version

For simplicity we will only bound $U_k(n)$.

$$\begin{aligned} &U_k(P_1,\ldots,P_{k+1}) = |\{(p_1,\ldots,p_{k+1}) : \|p_i - p_{i+1}\| = 1 \text{ and } p_i \in P_i\} | \\ &U_k(n_1,\ldots,n_{k+1}) = \max_{|P_i| = n_i} U_k(P_1,\ldots,P_{k+1}) \end{aligned}$$

It is enough to bound $U_k(n,\ldots,n)$, since we have

$$U_k(n) \leq U_k(n,\ldots,n) \leq U_k((k+1)n)$$
.

The $k \equiv 2 \pmod{3}$ case

Claim

For every k and $x \in [0, 1]$ we have

$$U_k(n,n,\ldots,n,n^x) = \tilde{O}\left(n^{\frac{k+x}{3}+1}\right).$$

Theorem (F.-Kupavskii)

$$U_k(n) = \begin{cases} \tilde{O}\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right) & \text{if } k \equiv 0, 2 \pmod{3} \\ O\left(n^{(k-1)/3 + \varepsilon} u(n)\right) & \text{if } k \equiv 1 \pmod{3} \end{cases}$$

Preparation: Rich points

A point p is n^{α} -rich with respect to a set P if there are at least n^{α} points in P at distance 1 from p.

If $|P|=n^x$, then the number of points that are n^{α} -rich with respect to P is $O\left(n^{2x-3\alpha}+n^{x-\alpha}\right)$. [Spencer-Szemerédi-Trotter]

Preparation: Rich points

A point p is n^{α} -rich with respect to a set P if there are at least n^{α} points in P at distance 1 from p.

If $|P|=n^x$, then the number of points that are n^{α} -rich with respect to P is $O\left(n^{2x-3\alpha}+n^{x-\alpha}\right)$. [Spencer-Szemerédi-Trotter]

For
$$\alpha \geq \frac{x}{2}$$
: $O\left(n^{2x-3\alpha} + n^{x-\alpha}\right) = O\left(n^{x-\alpha}\right)$

For
$$\alpha \leq \frac{x}{2}$$
: $O\left(n^{2x-3\alpha} + n^{x-\alpha}\right) = O\left(n^{2x-3\alpha}\right)$

Claim

For every k and $x \in [0,1]$ we have $U_k(n,n,\ldots,n,n^x) = \tilde{O}\left(n^{\frac{k+x}{3}+1}\right)$.

Proof.

Let P_1, \ldots, P_{k+1} be such that $|P_1| = \cdots = |P_k| = n$, $|P_{k+1}| = n^x$ and $U_k(P_1, \ldots, P_k, P_{k+1}) = U_k(n, \ldots, n, n^x)$.

For $\alpha \in [0,x]$ let $P^{\alpha} \subseteq P_k$ be the set of those points that are at least n^{α} -rich w.r.t. P_{k+1} , but at most $2n^{\alpha}$ -rich.

Claim

For every k and $x \in [0,1]$ we have $U_k(n,n,\ldots,n,n^x) = \tilde{O}\left(n^{\frac{k+x}{3}+1}\right)$.

Proof.

Let P_1, \ldots, P_{k+1} be such that $|P_1| = \cdots = |P_k| = n$, $|P_{k+1}| = n^x$ and $U_k(P_1, \ldots, P_k, P_{k+1}) = U_k(n, \ldots, n, n^x)$.

For $\alpha \in [0,x]$ let $P^{\alpha} \subseteq P_k$ be the set of those points that are at least n^{α} -rich w.r.t. P_{k+1} , but at most $2n^{\alpha}$ -rich.

We will show that $U_k(P_1,\ldots,P^\alpha,P_{k+1})=\tilde{O}\left(n^{\frac{k+x}{3}+1}\right)$ for any α .

This is sufficient, because

$$U_k(P_1,\ldots,P_{k+1})=\bigcup_{\alpha\in\Lambda}U_k(P_1,\ldots,P^\alpha,P_k) \text{ with } |\Lambda|=\log n.$$

Claim

$$U_k(P_1,\ldots,P^{\alpha},P_{k+1})=\tilde{O}\left(n^{\frac{k+x}{3}+1}\right)$$
 for any α .

Proof.

Case 1:
$$\alpha \geq \frac{x}{2}$$
.

Then $|P^{\alpha}| = \tilde{O}(n^{x-\alpha})$, thus $U_1(P^{\alpha}, P_{k+1}) = O(n^x)$. We obtain

$$U_k(P_1,\ldots,P^\alpha,P_{k+1})$$

$$\leq U_{k-3}(P_1,\ldots,P_{k-2})U_1(P^{\alpha},P_{k+1}) = \tilde{O}\left(n^{\frac{k+1}{3}}n^{\kappa}\right)$$

Claim

$$U_k(P_1,\ldots,P^{\alpha},P_{k+1}) = \tilde{O}\left(n^{\frac{k+x}{3}+1}\right)$$
 for any α .

Proof.

Case 1:
$$\alpha \geq \frac{x}{2}$$
.

Then
$$|P^{\alpha}| = \tilde{O}(n^{x-\alpha})$$
, thus $U_1(P^{\alpha}, P_{k+1}) = O(n^x)$. We obtain

$$U_{k}(P_{1},...,P^{\alpha},P_{k+1})$$

$$\leq U_{k-3}(P_{1},...,P_{k-2})U_{1}(P^{\alpha},P_{k+1}) = \tilde{O}\left(n^{\frac{k+1}{3}}n^{x}\right)$$

Case 2:
$$\alpha \leq \frac{x}{2}$$
.
Then $|P^{\alpha}| = O(n^{2x-3\alpha})$. We obtain

$$U_k(P_1, \dots, P^{\alpha}, P_{k+1})$$

$$\leq U_{k-1}(P_1, \dots, P^{\alpha}) 2n^{\alpha} = \tilde{O}\left(n^{\frac{k-1+2x-3\alpha}{3}+1}n^{\alpha}\right)$$

The $k \equiv 0 \pmod{3}$ case

Claim

For every k and $x, y \in [0, 1]$ we have

$$U_k(n^x, n, \ldots, n, n^y) = \tilde{O}\left(n^{\frac{t(k)+x+y}{3}}\right),$$

where f(k) = k + 2 if $k \equiv 2 \pmod{3}$ and f(k) = k + 1 otherwise.

The $k \equiv 0 \pmod{3}$ case

Claim

For every k and $x, y \in [0, 1]$ we have

$$U_k(n^x, n, \ldots, n, n^y) = \tilde{O}\left(n^{\frac{f(k)+x+y}{3}}\right),$$

where f(k) = k + 2 if $k \equiv 2 \pmod{3}$ and f(k) = k + 1 otherwise.

Proof sketch.

We take

$$U_k(P_1,\ldots,P_{k+1}) = \bigcup_{\alpha,\beta\in\Lambda} U_k(P_1,P^\beta,\ldots,P^\alpha,P_k)$$

with $|\Lambda| = \log^2 n$.

We show that
$$U_k(P_1,P^{eta},\ldots,P^{lpha},P_k)= ilde{O}\left(n^{rac{f(k)+x+y}{3}}
ight)$$

The $k \equiv 1 \pmod{3}$ case

Theorem (F.-Kupavskii)

$$U_k(n) = \begin{cases} \tilde{O}\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right) & \text{if } k \equiv 0, 2 \pmod{3} \\ O\left(n^{(k-1)/3 + \varepsilon} u(n)\right) & \text{if } k \equiv 1 \pmod{3} \end{cases}$$

For $k \equiv 1 \pmod{3}$ it is difficult to work with $U_k(n^x, n, \dots, n, n^y)$.

An inductive statement would involve $\max\{U_2(n^x, n), U_2(n^y, n)\}$.

The change of $U_2(n^x, n)$ as x is increasing, is not well understood.

The $k \equiv 1 \pmod{3}$ case

Theorem (F.-Kupavskii)

$$U_k(n) = \begin{cases} \tilde{O}\left(n^{\lfloor (k+1)/3 \rfloor + 1}\right) & \text{if } k \equiv 0, 2 \pmod{3} \\ O\left(n^{(k-1)/3 + \varepsilon} u(n)\right) & \text{if } k \equiv 1 \pmod{3} \end{cases}$$

We use a more complicated decomposition

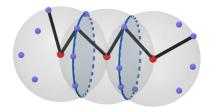
$$U_k(P_1,\ldots,P_k)=\bigcup_{\Lambda}U_k(Q_1,\ldots,Q_k).$$

For k=4 we use $|\Lambda|=\tilde{O}(1)$ parts, such that between consecutive parts we have 'regularity' from left to the right.

For larger $k \equiv 1 \pmod{3}$ we use $|\Lambda| = O(n^{\epsilon})$ parts, such that between consecutive parts we have 'regularity' in both directions.

$$U_k^3(n) = \Omega\left(n^{\lfloor k/2 \rfloor + 1}
ight)$$
 [Palsson-Senger-Sheffer]

$$U_k^3(n) = \Omega\left(n^{\lfloor k/2 \rfloor + 1}
ight)$$
 [Palsson-Senger-Sheffer]



$$U_k^3(n) = \Omega\left(n^{\lfloor k/2 \rfloor + 1}\right) \quad \text{[Palsson-Senger-Sheffer]}$$

$$U_k^3(n) = \begin{cases} O\left(n^{2k/3 + 1}\right) & \text{if } k \equiv 0 \pmod{3} \\ O\left(n^{2k/3 + 23/33 + \varepsilon}\right) & \text{if } k \equiv 1 \pmod{3} \\ O\left(n^{2k/3 + 2/3}\right) & \text{if } k \equiv 2 \pmod{3} \end{cases}$$
 [Palsson-Senger-Sheffer]
$$O\left(n^{2k/3 + 2/3}\right) & \text{if } k \equiv 2 \pmod{3}$$

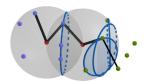
$$\begin{split} U_k^3(n) &= \Omega\left(n^{\lfloor k/2 \rfloor + 1}\right) \quad \text{[Palsson-Senger-Sheffer]} \\ U_k^3(n) &= \begin{cases} O\left(n^{2k/3 + 1}\right) & \text{if } k \equiv 0 \pmod{3} \\ O\left(n^{2k/3 + 23/33 + \varepsilon}\right) & \text{if } k \equiv 1 \pmod{3} \\ O\left(n^{2k/3 + 2/3}\right) & \text{if } k \equiv 2 \pmod{3} \end{cases} \\ U_k^3(n) &= \tilde{O}\left(n^{k/2 + 1}\right) \quad \text{[F.-Kupavskii]} \end{split}$$

$$U_k^3(n) = \tilde{O}\left(n^{k/2+1}\right)$$
 [F.-Kupavskii]

Improved lower bound for odd *k*:

$$U_k^3(n) = \Omega\left(\max\left\{\frac{u_3(n)^k}{n^{k-1}}, us_3(n)n^{(k-1)/2}\right\}\right).$$

 $us_3(n)$ = max number of unit distances between a set of n points in \mathbb{R}^3 and a set of n points on the sphere = max number of incidences between a set of n points and a set of n circles in the plane



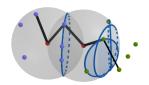
$$cn^{4/3} \le us_3(n) = \tilde{O}\left(n^{15/11}\right)$$

$$U_k^3(n) = \tilde{O}\left(n^{k/2+1}
ight)$$
 [F.-Kupavskii]

Improved lower bound for odd k:

$$U_k^3(n) = \Omega\left(\max\left\{\frac{u_3(n)^k}{n^{k-1}}, us_3(n)n^{(k-1)/2}\right\}\right).$$

 $us_3(n)$ = max number of unit distances between a set of n points in \mathbb{R}^3 and a set of n points on the sphere = max number of incidences between a set of n points and a set of n circles in the plane



$$cn^{4/3} \le us_3(n) = \tilde{O}(n^{15/11})$$

Thank you for watching.