Covering convex bodies and the closest vector problem

Márton Naszódi

Alfréd Rényi Inst. of Math. and Eötvös Univ., Budapest

joint with

Moritz Venzin EPFL, Lausanne

Closest Vector Problem (CVP)

Given a lattice $\Lambda = \{Ax : x \in \mathbb{Z}^n\}$, with $A \in \mathbb{Q}^{n \times n}$ and a target $t \in \mathbb{Q}^n$.

Find a closest vector in Λ to t with respect to a given norm.

Exact solution: NP-hard for ℓ_p for any $p \in [1, \infty]$.

 $(1+\varepsilon)$ -approximate CVP solver for a norm: find a $v \in \Lambda$ with $||t-v|| \le (1+\varepsilon) \times ($ the minimum).

Notation: $(1+\varepsilon)$ -CVP_K, or for ℓ_p^n , $(1+\varepsilon)$ -CVP_p.

Approximate CVP solvers

Blömer – Naewe '09 extended the algorithm of Ajtai, Kumar and Sivakumar to solve $(1 + \varepsilon)$ -CVP_p for all p. TIME $O(1/\varepsilon)^{2n}$.

Dadush '12 extended the Ajtai–Kumar–Sivakumar sieve to solve $(1+\varepsilon)$ -CVP in any norm. TIME $O(1/\varepsilon)^{2n}$.

For ℓ_2 : better results.

Eisenbrand – Hähnle – Niemeier '11: For $p=\infty$ boosted the Blömer–Naewe-algorithm for $(1+\varepsilon)$ -CVP $_\infty$. TIME $O(\log(1+1/\varepsilon))^n$.

Main idea: a covering problem to do divide and conquer.

Dadush – **Kun '16:** Using lattice sparsification, deterministic algorithm for $(1 + \varepsilon)$ -CVP for any norm. TIME $2^{O(n)}(1/\varepsilon)^n$.

M. Naszódi Covering bodies and CVP 2/14

Definition 1

 $K \subseteq \mathbb{R}^n$ a convex body.

Definition: $(2, \varepsilon)$ -covering

A sequence of convex bodies $\{Q_i\}_{i=1}^N$ is a $(2,\varepsilon)$ -covering of K if

$$K \subseteq \bigcup_{i=1}^{N} Q_i \subseteq \bigcup_{i=1}^{N} 2 \odot Q_i \subseteq (1+\varepsilon)K$$
,

where $2 \odot Q$ means: enlarge Q by factor 2 about the centroid.

M. Naszódi Covering bodies and CVP 3 / 14

Definition 1

 $K \subseteq \mathbb{R}^n$ a convex body.

Definition: $(2, \varepsilon)$ -covering

A sequence of convex bodies $\{Q_i\}_{i=1}^N$ is a $(2,\varepsilon)$ -covering of K if

$$K \subseteq \bigcup_{i=1}^{N} Q_i \subseteq \bigcup_{i=1}^{N} 2 \odot Q_i \subseteq (1+\varepsilon)K$$

where $2 \odot Q$ means: enlarge Q by factor 2 about the centroid.

Easy:

- ▶ If centroid(K) = o than K has a $(2, \varepsilon)$ -covering by $(\frac{10}{\varepsilon})^n$ translates of $\frac{\varepsilon}{2}(K \cap -K)$.
- ▶ By loosing a 10^n factor, we may restrict to centrally symmetric Q_i .

A lower bound: \mathbf{B}_2^n needs $2^{-O(n)}(1/\varepsilon)^{(n-1)/2}$ bodies.

3 / 14

Definition 2

 $K \subseteq \mathbb{R}^n$ a convex body. Assume K = -K.

Definition: modulus of smoothness

The modulus of smoothness of K is the function

$$\rho_{K}(\tau) = \frac{1}{2} \sup_{\|x\|_{K} = \|y\|_{K} = 1} (\|x + \tau y\|_{K} + \|x - \tau y\|_{K} - 2).$$

Easy: $\rho_K(\tau) \leq \tau$ for any K (subadditivity of $\|\cdot\|$).

Key example: Assume $\rho_K(\tau) \leq \tau^2$. Let y be parallel to a tangent of K at x, and $\tau = \sqrt{\varepsilon}$.

Then, $\|x + \tau y\|_{K}$, $\|x - \tau y\|_{K} \ge 1$, and hence

$$||x + \tau y||_{K} \le 1 + 2\varepsilon.$$

M. Naszódi Covering bodies and CVP 4 / 14

Main results: Good mod. of smooth. \Longrightarrow good covering

Theorem

If K has modulus of smoothness $\leq C\tau^q$, then there is a $(2,\varepsilon)$ -covering of K using $C^{O(n)}(\frac{1}{\varepsilon})^{n/q}$ convex bodies.

Corollary: There is a $(2, \varepsilon)$ -covering for ℓ_p balls using $2^{O(n)}(\frac{1}{\varepsilon})^{n/2}$ bodies for $p \ge 2$ and $2^{O(n)}(\frac{1}{\varepsilon})^{n/p}$ for $p \in [1, 2]$.

Sharp: matching lower bound for the ℓ_2^n (ie., Euclidean) ball.

M. Naszódi Covering bodies and CVP 5 / 14

Main results: Good covering ⇒ Fast approx. CVP solver

Theorem (Boosting 2-CVP by a $(2, \varepsilon)$ -covering)

Given a $(2,\varepsilon)$ -covering of K with N bodies. Then we can solve the $(1+7\varepsilon)$ -CVP $_K$ with $O\left(N\log(\frac{1}{\varepsilon})(\log(n)+\log(b))\right)$ calls to a 2-approximate CVP solver for general norms, where b is the input length.

M. Naszódi Covering bodies and CVP 6/14

Main results: Good covering ⇒ Fast approx. CVP solver

Theorem (Boosting 2-CVP by a $(2, \varepsilon)$ -covering)

Given a $(2,\varepsilon)$ -covering of K with N bodies. Then we can solve the $(1+7\varepsilon)$ -CVP $_K$ with $O\left(N\log(\frac{1}{\varepsilon})(\log(n)+\log(b))\right)$ calls to a 2-approximate CVP solver for general norms, where b is the input length.

Corollary: Fast approx. CVP solver for ℓ_p

We have a simple, randomized $(1+\varepsilon)$ -CVP $_p$ algorithm for $1 \le p \le \infty$.

TIME $2^{O(n)} \left(\frac{1}{\varepsilon}\right)^{n/2}$ for $p \ge 2$, and $2^{O(n)} \left(\frac{1}{\varepsilon}\right)^{n/p}$ for $p \in [1,2]$.

Compare with Dadush – Kun, where TIME is $2^{O(n)}(1/\varepsilon)^n$, but works for any norm.

M. Naszódi Covering bodies and CVP 6 / 14

 $K = -K \subset \mathbb{R}^n$ convex body.

Assume $\rho_K(\tau) \leq C\tau^q$

Then, there is a $(2, \varepsilon)$ -covering with

$$2^{O(n)}\log(1/\varepsilon)\left(\frac{C}{\varepsilon}\right)^{n/q}+O(C)^{n/(q-1)}$$

bodies.

7 / 14

 $K = -K \subset \mathbb{R}^n$ convex body.

Assume $\rho_K(\tau) \leq C \tau^q$

Then, there is a $(2, \varepsilon)$ -covering with

$$2^{O(n)}\log(1/\varepsilon)\left(\frac{C}{\varepsilon}\right)^{n/q}+O(C)^{n/(q-1)}$$

bodies.

For simplicity: Assume $\rho_K(\tau) \leq \tau^2$.

 $\delta := \text{roughly } \sqrt{\varepsilon}$. May assume $\delta - \varepsilon \ge \delta/2$.

First, we give a $(2,\varepsilon)$ -covering of K in the neighborhood of a point.

Then, using a packing argument, we extend this construction to obtain a $(2, \varepsilon)$ -covering for K.

Proof cont'd

Fix $p \in \operatorname{bd} K$. T_p : a supporting hyperplane of K at p.

 $B_p := \{ x \in T_p : ||x - p|| \le \delta \}.$

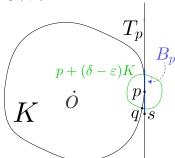
Claim: bd $K \cap (p + (\delta - \varepsilon)K) \subseteq \text{conv}(0, B_p)$.

Indeed, let $q \in \operatorname{bd} K \cap (p + (\delta - \varepsilon)K)$, and let

L: the two-dim linear plane spanned by p, q.

s: the lower end point of $L \cap B_p$.

 $s' := s/\|s\| \in \operatorname{bd} K$.



Proof cont'd

Fix $p \in \operatorname{bd} K$. T_p : a supporting hyperplane of K at p.

$$B_p := \{ x \in T_p : ||x - p|| \le \delta \}.$$

Claim: bd
$$K \cap (p + (\delta - \varepsilon)K) \subseteq \text{conv}(0, B_p)$$
.

Indeed, let $q \in \operatorname{bd} K \cap (p + (\delta - \varepsilon)K)$, and let

L: the two-dim linear plane spanned by p, q.

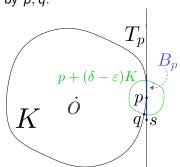
s: the lower end point of $L \cap B_p$.

$$s' := s/\|s\| \in \operatorname{bd} K.$$

Mod. of smooth.: $||s - s'|| \le \varepsilon$.

$$\Rightarrow \|s' - p\| \ge \delta - \varepsilon = \|q - p\|.$$

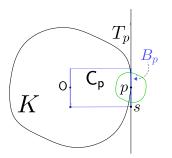
By monotonicity, s' is clockwise further from p than q from p.



Still thaaat Proof (sorry!)

Instead of the cone conv $(0, B_p)$, we take the cylinder

$$C_p = B_p + [0, -p] \supset \operatorname{conv}(0, B_p).$$



Assume $\varepsilon = 2^{-k}$. Logarithmic slicing of the cylinder: k slices 0 = origin to 1/2; 1/2 to 3/4; 3/4 to 7/8; ...; $1 - \varepsilon$ to 1 = p.

9 / 14

Easy: these slices enlarged by 2 are in $(1 + \varepsilon)K$.

Still thaaat Proof (sorry!)

Local to global: Take a net of $\delta - \varepsilon \approx \sqrt{\varepsilon}$ fineness of bd K. This is of size roughly

$$2^{O(n)}\left(\frac{1}{\varepsilon}\right)^{n/2}$$
.

Take the cones, then the cylinders, and finally the sliced cylinders for each.

Total number of pieces:
$$2^{O(n)} \left(\frac{1}{\varepsilon}\right)^{n/2} \log(1/\varepsilon)$$

M. Naszódi Covering bodies and CVP

Good covering \Longrightarrow Fast $(1 + \varepsilon)$ -CVP

Theorem (Boosting 2-CVP by a $(2, \varepsilon)$ -covering)

Given a $(2,\varepsilon)$ -covering of K with N bodies. Then we can solve the $(1+7\varepsilon)$ -CVP $_K$ with $O\left(N\log(\frac{1}{\varepsilon})(\log(n)+\log(b))\right)$ calls to a 2-approximate CVP solver for general norms, where b is the input length.

M. Naszódi Covering bodies and CVP 11 / 14

Good covering \Longrightarrow Fast $(1 + \varepsilon)$ -CVP

Theorem (Boosting 2-CVP by a $(2, \varepsilon)$ -covering)

Given a $(2,\varepsilon)$ -covering of K with N bodies. Then we can solve the $(1+7\varepsilon)$ -CVP $_K$ with $O\left(N\log(\frac{1}{\varepsilon})(\log(n)+\log(b))\right)$ calls to a 2-approximate CVP solver for general norms, where b is the input length.

We may assume

•

$$n^{-3/2}B_2^n \subseteq K \subseteq B_2^n$$
.

•

$$1 \le \min_{x \in \Lambda(A)} \|x - t\|_{\mathcal{K}} \le n^{5/2} 2^{(n^2 + n)b}.$$

Good covering \Longrightarrow Fast $(1+\varepsilon)$ -CVP :: Proof

We assume

$$1 \le \min_{x \in \Lambda(A)} \|x - t\|_{K} \le 2^{n^{2}b}.$$
 (1)

$$(2,\varepsilon)$$
-covering : $K\subseteq\{c_i+Q_i\}_{i=1}^N$, where $Q_i=-Q_i$.

Goal: Find $f \in \mathbb{Z}$ such that $c_i + (1 + \varepsilon)^f Q_i$ contains a lattice vector for some $i \in [N]$, but $c_i + (1 + \varepsilon)^{f-1} Q_i$ contains no lattice vector for any $i \in [N]$.

M. Naszódi Covering bodies and CVP 12 / 14

We assume

$$1 \le \min_{x \in \Lambda(A)} \|x - t\|_{K} \le 2^{n^{2}b}. \tag{1}$$

$$(2, \varepsilon)$$
-covering : $K \subseteq \{c_i + Q_i\}_{i=1}^N$, where $Q_i = -Q_i$.

Goal: Find $f \in \mathbb{Z}$ such that $c_i + (1 + \varepsilon)^f Q_i$ contains a lattice vector for some $i \in [N]$, but $c_i + (1 + \varepsilon)^{f-1} Q_i$ contains no lattice vector for any $i \in [N]$.

By (1),

$$L := 0 \le f \le \log_{1+\varepsilon} \left(2^{n^2 b} \right) =: U.$$

Algorithm: binary search for f:

Call the Dadush – Kun (or any other) algorithm with $\varepsilon=1$ for each $i\in [N]$ at each iteration.

M. Naszódi Covering bodies and CVP

Binary search for f

- 1. Initialize L := 0, $U := \log_{1+\varepsilon} \left(2^{n^2 b} \right)$.
- 2. While U-L > 4 do
 - 2.1 For all $i \in [N]$, solve a 2-approximate $CVP_{(1+\varepsilon)^{L+(U-L)/2}Q_i}$ problem with target $t - (1 + \varepsilon)^{L + (U - L)/2} c_i$.
 - 2.2 If a $v \in \Lambda$ is returned, update $U := \log_{1+\varepsilon} \|v t\|_{\kappa}$ and x := v.
 - 2.3 Otherwise, update L := L + (U L)/2.
- 3. Return x.

A seemingly unrelated

question

Is there a convex polytope P with

$$(1-\varepsilon)\mathbf{B}_2^n\subseteq P\subseteq \mathbf{B}_2^n$$

A seemingly unrelated

question

Is there a convex polytope P with

$$(1-\varepsilon)\mathbf{B}_2^n\subseteq P\subseteq \mathbf{B}_2^n$$

of combinatorial complexity (ie., total number of all dimensional faces)

$$2^{O(n)} \left(\frac{1}{\varepsilon}\right)^{n/2}$$
?

Thank you!