Induced and non-induced poset saturation problems

Balázs Patkós

Alfréd Rényi Institute of Mathematics & Moscow Institute of Physics and Technology joint work with B. Keszegh, N. Lemons, R.R. Martin, D. Pálvölgyi

Combinatorics and Geometry Days, MIPT, April 16, 2020

Extremal problems vs Saturation problems

Triangle free graphs:

- ► Most number of edges: $\lfloor \frac{n^2}{4} \rfloor$ (Mantel 1908),
- Least number of edges in unextendable triangle-free graphs: n-1.

For graphs:

- ► Turán number: Erdős-Stone Simonovits theorem \rightarrow $ex(n, F) = \Theta(n^2)$ unless F is bipartite. $ex(n, F) = O(n) \iff F$ is a forest.
- ▶ sat(n, G) = least number of edges in maximal/unextendable n-vertex G-free graphs = O(n) Kászonyi, Tuza, 1986.

k-graphs:

- ► Turán number: ???
- ► $sat(n, H) = O(n^{k-1})$ Pikhurko, 1999.

Forbidden subposet problems

Theorem (Sperner, 1928)

If $\mathcal{F} \subseteq 2^{[n]}$ does not contain F, F' with $F \subsetneq F'$, then $|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$.

Theorem (Erdős, 1945)

If $\mathcal{F} \subseteq 2^{[n]}$ does not contain any (k+1)-chain $F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_{k+1}$, then $|\mathcal{F}| \leq \sum_{i=1}^k \binom{n}{\lfloor (n-k)/2 \rfloor + i}$.

Forbidden subposet problems

Theorem (Sperner, 1928)

If $\mathcal{F}\subseteq 2^{[n]}$ does not contain F,F' with $F\subsetneq F'$, then $|\mathcal{F}|\leq {n\choose \lfloor n/2\rfloor}$.

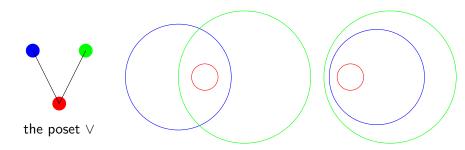
Theorem (Erdős, 1945)

If $\mathcal{F} \subseteq 2^{[n]}$ does not contain any (k+1)-chain $F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_{k+1}$, then $|\mathcal{F}| \leq \sum_{i=1}^k \binom{n}{\lfloor (n-k)/2 \rfloor + i}$.

Katona and Tarján in 1983 introduced forbidden containment patterns described by posets.

Definition

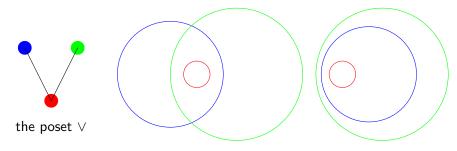
Let P be a partially ordered set. We say that a family $\mathcal F$ of sets contains P if there exists an injection $i:P\to \mathcal F$ such that $p\leq_P q$ implies $i(p)\subset i(q)$.



Definition

Let P be a partially ordered set. We say that a subfamily $\mathcal{G}\subseteq\mathcal{F}$ of sets is

- ▶ a non-induced copy of P if there exists an injection $i: P \to \mathcal{G}$ such that $p \leq_P q$ implies $i(p) \subset i(q)$,
- ▶ an induced copy of P if there exists an injection $i: P \to \mathcal{G}$ such that $p \leq_P q$ if and only if $i(p) \subset i(q)$.



an induced copy of \lor

a non-induced copy of \lor

- ▶ If \mathcal{F} does not contain a non-induced copy of P, then we say that \mathcal{F} is P-free.
- ▶ If \mathcal{F} does not contain an induced copy of P, then we say that \mathcal{F} is induced P-free.

- If \mathcal{F} does not contain a non-induced copy of P, then we say that \mathcal{F} is P-free.
- ▶ If \mathcal{F} does not contain an induced copy of P, then we say that \mathcal{F} is induced P-free.

La(n, P) denotes the maximum size of a P-free family $\mathcal{F} \subseteq 2^{[n]}$. $La^*(n, P)$ denotes the maximum size of an induced P-free family $\mathcal{F} \subseteq 2^{[n]}$.

- If \mathcal{F} does not contain a non-induced copy of P, then we say that \mathcal{F} is P-free.
- ▶ If \mathcal{F} does not contain an induced copy of P, then we say that \mathcal{F} is induced P-free.

La(n, P) denotes the maximum size of a P-free family $\mathcal{F} \subseteq 2^{[n]}$. $La^*(n, P)$ denotes the maximum size of an induced P-free family $\mathcal{F} \subseteq 2^{[n]}$.

Erdős's theorem from 1945 about k-Sperner families states that

$$La(n, C_{k+1}) = La^*(n, C_{k+1}) = \sum_{i=1}^k \binom{n}{\lfloor (n-k)/2 \rfloor + i},$$

where C_{k+1} is the total ordering or chain on k+1 elements.

Erdős's result implies that $La(n, P) \leq (|P| - 1) \binom{n}{\lfloor n/2 \rfloor}$.

Methuku and Pálvölgyi (2017) proved $La^*(n, P) \leq C_P\binom{n}{\lfloor n/2 \rfloor}$ for all P.

Still unknown: do

$$\pi(P) = \lim_{n} \frac{La(n, P)}{\binom{n}{\lceil n/2 \rceil}} \qquad \qquad \pi^*(P) = \lim_{n} \frac{La^*(n, P)}{\binom{n}{\lceil n/2 \rceil}}$$

exist for all finite posets P?

Conjecture

- For any poset P let e(P) denote the most number of middle levels without creating a non-induced copy of P. Then $\pi(P)$ exists and is equal to e(P).
- ► For any poset P let $e^*(P)$ denote the most number of middle levels without creating a induced copy of P. Then $\pi^*(P)$ exists and is equal to $e^*(P)$.

Saturation forbidden subposet problems

 $sat(n, P) = minimum \text{ size of a } P\text{-free } \mathcal{F} \subseteq 2^{[n]} \text{ such that } \mathcal{F} \cup \{G\}$ contains a non-induced copy of P for any $G \in 2^{[n]} \setminus \mathcal{F}$,

 $sat^*(n, P) = minimum$ size of an induced P-free $\mathcal{F} \subseteq 2^{[n]}$ such that $\mathcal{F} \cup \{G\}$ contains an induced copy of P for any $G \in 2^{[n]} \setminus \mathcal{F}$.

G6 = Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós (2013)

Construction (G6)

For C_k : for $k \ge 3$, the family

$$\mathcal{F} = 2^{[k-3]} \cup \{[n] \setminus F : F \in 2^{[k-3]}\}$$

is C_k -saturating, so $sat(n, C_k) = sat^*(n, C_k) \le 2^{k-2}$

G6 = Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós (2013)

Construction (G6)

For C_k : for $k \ge 3$, the family

$$\mathcal{F} = 2^{[k-3]} \cup \{[n] \setminus F : F \in 2^{[k-3]}\}$$

is C_k -saturating, so $sat(n, C_k) = sat^*(n, C_k) \le 2^{k-2}$

$$[k-3] \qquad [k-2,n]$$

$$2^{[k-3]} \qquad \bullet \qquad \bullet$$

$$\{[n] \setminus F : F \in 2^{[k-3]}\} \qquad \bullet \qquad \bullet$$

G6 = Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós (2013)

Construction (G6)

For C_k : for $k \ge 3$, the family

$$\mathcal{F} = 2^{[k-3]} \cup \{[n] \setminus F : F \in 2^{[k-3]}\}$$

is C_k -saturating, so $sat(n, C_k) = sat^*(n, C_k) \le 2^{k-2}$

 \mathcal{F} is C_k -free as it is poset-isomorphic to $2^{[k-2]}$.

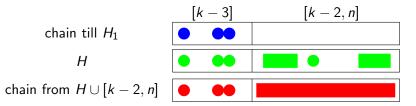
G6 = Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós (2013)

Construction (G6)

For C_k : for $k \ge 3$, the family

$$\mathcal{F} = 2^{[k-3]} \cup \{ [n] \setminus F : F \in 2^{[k-3]} \}.$$

Adding a set $H = H_1 \cup H_2$ with $H_1 \subseteq [k-3]$ and $\emptyset \subsetneq H_2 \subsetneq [k-2, n]$ creates a k-chain:



G6 = Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós (2013)

Construction (G6)

For C_k : for $k \ge 3$, the family

$$\mathcal{F} = 2^{[k-3]} \cup \{[n] \setminus F : F \in 2^{[k-3]}\}$$

is C_k -saturating, so $sat(n, C_k) = sat^*(n, C_k) \le 2^{k-2}$

This is sharp if $k \le 6$. On the other hand

Theorem (G6, 2013)

If
$$k \geq 7$$
, then $2^{\lfloor \frac{k-3}{2} \rfloor} \leq sat(n, C_k) \leq \frac{15}{16} 2^{k-2}$.

G6 = Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós (2013)

Construction (G6)

For C_k : for $k \ge 3$, the family

$$\mathcal{F} = 2^{[k-3]} \cup \{[n] \setminus F : F \in 2^{[k-3]}\}$$

is C_k -saturating, so $sat(n, C_k) = sat^*(n, C_k) \le 2^{k-2}$

This is sharp if $k \le 6$. On the other hand

Theorem (G6, 2013)

If
$$k \ge 7$$
, then $2^{\lfloor \frac{k-3}{2} \rfloor} \le sat(n, C_k) \le \frac{15}{16} 2^{k-2}$.

Theorem (Morrison, Noel, Scott, 2014)

As k tends to infinity, we have sat $(n, C_k) \le 2^{(0.98+o(1))k}$.

F7 = Ferrara, Kay, Kramer, Martin, Reiniger, Smith, Sullivan (2017)

Found specific posets and classes of posets for which $sat^*(n, P) \to \infty$ as n tends to infinity.

F7 = Ferrara, Kay, Kramer, Martin, Reiniger, Smith, Sullivan (2017)

Found specific posets and classes of posets for which $sat^*(n, P) \rightarrow \infty$ as n tends to infinity.

For all specific small posets the non-induced saturation number $sat(n, P) \leq C_P$.

F7 = Ferrara, Kay, Kramer, Martin, Reiniger, Smith, Sullivan (2017)

Found specific posets and classes of posets for which $sat^*(n, P) \rightarrow \infty$ as n tends to infinity.

For all specific small posets the non-induced saturation number $sat(n, P) \leq C_P$.

Martin, Smith, Walker (2019+)

Improved lower bounds on $sat^*(n, A_k)$ and other induced saturation numbers.

F7 = Ferrara, Kay, Kramer, Martin, Reiniger, Smith, Sullivan (2017)

Found specific posets and classes of posets for which $sat^*(n, P) \rightarrow \infty$ as n tends to infinity.

For all specific small posets the non-induced saturation number $sat(n, P) \leq C_P$.

Martin, Smith, Walker (2019+)

Improved lower bounds on $sat^*(n, A_k)$ and other induced saturation numbers.

Ivan (2020+)

Linear lower bound on $sat^*(n, \bowtie)$ and $\sqrt{n} \leq sat^*(n, N)$.

F7 & Martin, Smith, Walker & Ivan are "right" not to consider non-induced versions as:

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

F7 & Martin, Smith, Walker & Ivan are "right" not to consider non-induced versions as:

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Remark

This is relatively sharp in general, because of the G6 result: $2^{\frac{k-3}{2}} \le sat(n, C_k)$.

F7 & Martin, Smith, Walker & Ivan are "right" not to consider non-induced versions as:

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Remark

This is relatively sharp in general, because of the G6 result: $2^{\frac{k-3}{2}} \le sat(n, C_k)$.

For any poset P on k elements, we have $sat(n, P) \leq sat(n, C_k)$.

The proof

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

The proof

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

GREEDY COLEX ALGORITHM

The proof

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

GREEDY COLEX ALGORITHM

Greedy: consider sets of $2^{[n]}$ in some order F_1, F_2, \dots, F_{2^n} . Let $\mathcal{F}_0 = \emptyset$.

$$\mathcal{F}_{i+1} = \left\{ \begin{array}{cc} \mathcal{F}_i \cup \{F_{i+1}\} & \text{if} \quad \mathcal{F}_i \cup \{F_{i+1}\}, \text{does not contain any copy of} P \\ \mathcal{F}_i & \text{otherwise} \end{array} \right.$$

 $\mathcal{F} := \mathcal{F}_{2^n}$ is clearly P-saturating.

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Colex: the co-lexicographic ordering of $Fin(\mathbb{Z}^+)$:

A < B if and only if $max(A \setminus B) \cup (B \setminus A)$ belongs to B.

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Colex: the co-lexicographic ordering of $Fin(\mathbb{Z}^+)$:

A < B if and only if $max(A \setminus B) \cup (B \setminus A)$ belongs to B.

$$A = \{1, 3, 5, 7, 9\}, B = \{2, 5, 8, 9\}$$

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Colex: the co-lexicographic ordering of $Fin(\mathbb{Z}^+)$:

A < B if and only if $max(A \setminus B) \cup (B \setminus A)$ belongs to B.

$$A = \{1, 3, 5, 7, 9\}, B = \{2, 5, 8, 9\}$$

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{1,2\}$, $\{3\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$, $\{4\}$, $\{1,4\}$. . .

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Colex: the co-lexicographic ordering of $Fin(\mathbb{Z}^+)$:

A < B if and only if $max(A \setminus B) \cup (B \setminus A)$ belongs to B.

$$A = \{1, 3, 5, 7, 9\}, B = \{2, 5, 8, 9\}$$

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{1,2\}$, $\{3\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$, $\{4\}$, $\{1,4\}$. . .

The greedy colex algo is NOT what you would think!

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Let $F_1, F_2, \dots, F_{2^{n-1}}$ be the enumeration of all sets in $2^{[n-1]}$ and let $G_i = [n] \setminus F_i$.

So the G_j 's contain n, the F_i 's do not.

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Let $F_1, F_2, \dots, F_{2^{n-1}}$ be the enumeration of all sets in $2^{[n-1]}$ and let $G_i = [n] \setminus F_i$.

So the G_j 's contain n, the F_i 's do not.

The greedy colex algorithm considers the sets of $2^{[n]}$ in the order $F_1, G_1, F_2, G_2, \ldots, F_{2^{n-1}}, G_{2^{n-1}}$.

Theorem (KLMPP, 2020+)

For any poset P, we have $sat(n, P) \le 2^{|P|-2}$.

Let $F_1, F_2, \dots, F_{2^{n-1}}$ be the enumeration of all sets in $2^{[n-1]}$ and let $G_i = [n] \setminus F_i$.

So the G_i 's contain n, the F_i 's do not.

The greedy colex algorithm considers the sets of $2^{[n]}$ in the order $F_1, G_1, F_2, G_2, \ldots, F_{2^{n-1}}, G_{2^{n-1}}$.

$$\emptyset$$
, $[n]$, $\{1\}$, $[n] \setminus \{1\}$, $\{2\}$, $[n] \setminus \{2\}$, $\{1,2\}$, $[3,n]$, ..., $[n-1]$, $\{n\}$.

$$\mathcal{F}_{i+1} = \begin{cases} \mathcal{F}_{i} \cup \{F_{i+1}, G_{i+1}\} & \text{if } \mathcal{F}_{i} \cup \{F_{i+1}, G_{i+1}\} \text{ is } P\text{-free} \\ \mathcal{F}_{i} \cup \{F_{i+1}\} & \text{if } \mathcal{F}_{i} \cup \{F_{i+1}\} \text{ is } P\text{-free, } \mathcal{F}_{i} \cup \{F_{i+1}, G_{i+1}\} \text{ not} \\ \mathcal{F}_{i} \cup \{G_{i+1}\} & \text{if } \mathcal{F}_{i} \cup \{F_{i+1}\} \text{ not } P\text{-free, } \mathcal{F}_{i} \cup \{G_{i+1}\} \text{ is } P\text{-free,} \\ \mathcal{F}_{i} & \text{otherwise.} \end{cases}$$

 $\mathcal{F} := \mathcal{F}_{2^{n-1}}$ is the output of the greedy colex algorithm.

Theorem (KLMPP, 2020+)

For $1 \leq k \leq n$, let P be a k-element poset and let $\mathcal{F} := \mathcal{F}_{2^{n-1}}$ be the output of the greedy colex process. Then, \mathcal{F} is P-saturating, $\mathcal{F} = \mathcal{F}_{2^{k-3}}$ and therefore $|\mathcal{F}| \leq 2^{k-2}$. In particular, $sat(n,P) \leq 2^{k-2}$ holds.

Theorem (KLMPP, 2020+)

For $1 \leq k \leq n$, let P be a k-element poset and let $\mathcal{F} := \mathcal{F}_{2^{n-1}}$ be the output of the greedy colex process. Then, \mathcal{F} is P-saturating, $\mathcal{F} = \mathcal{F}_{2^{k-3}}$ and therefore $|\mathcal{F}| \leq 2^{k-2}$. In particular, sat $(n,P) \leq 2^{k-2}$ holds.

Remark

Oh my God! Oh one God! OMG! (according to Dömötör: O1G!)

$$F_1, G_2, F_2, G_2, \ldots, F_{2^{k-3}}, G_{2^{k-3}}$$

is exactly the construction

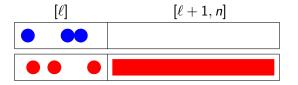
$$2^{[k-3]} \cup \{[n] \setminus F : F \in 2^{[k-3]}\}$$

of the G6 guys!

Can we say something about $\{\ell+2\}$ or $\{\ell+5,\ell+17\}$?

Can we say something about $\{\ell+2\}$ or $\{\ell+5,\ell+17\}$?

Sets considered so far:



Can we say something about $\{\ell+2\}$ or $\{\ell+5,\ell+17\}$?

Sets considered so far:

So if $\{\ell+1\}$ is not added, then later on the other two cannot be added either.

Induced results

Induced results

The following is implicitly in the work of F7

Lemma

For any poset P, the following are equivalent:

- 1. There exists a constant C_P such that $sat^*(n, P) \leq C_P$ holds for all n.
- 2. There exists $x < y \le m$ and a P-saturating $\mathcal{F} \in 2^{[m]}$ such that \mathcal{F} does not separate x and y. (i.e. for all $F \in \mathcal{F}$ we have $|F \cap \{x,y\}| = 0,2$.)

Induced results

The following is implicitly in the work of F7

Lemma

For any poset P, the following are equivalent:

- 1. There exists a constant C_P such that $sat^*(n, P) \leq C_P$ holds for all n.
- 2. There exists $x < y \le m$ and a P-saturating $\mathcal{F} \in 2^{[m]}$ such that \mathcal{F} does not separate x and y. (i.e. for all $F \in \mathcal{F}$ we have $|F \cap \{x,y\}| = 0,2$.)

Consequences of the lemma:

Theorem

For any poset P,

- either there exists a constant K_P with $sat^*(n, P) \leq K_P$
- or for all n, $sat^*(n, P) \ge \log_2 n$.

Consequences of the lemma:

Theorem

For any poset P,

- either there exists a constant K_P with sat* $(n, P) \leq K_P$
- or for all n, $sat^*(n, P) \ge \log_2 n$.

We conjecture the following strengthening.

Conjecture

For any poset P,

- either there exists a constant K_P with sat* $(n, P) \leq K_P$
- or for all n, $sat^*(n, P) \ge n + 1$.

Proposition

BoundedInducedSaturation is recursively enumerable.

Proposition

BoundedInducedSaturation is recursively enumerable.

Is it recursive?

► Run the greedy colex for your favorite *P* and *n* (not very large).

- ► Run the greedy colex for your favorite *P* and *n* (not very large).
- ▶ Pray for the output not to separate n-1 and n.

- Run the greedy colex for your favorite P and n (not very large).
- ▶ Pray for the output not to separate n-1 and n.
- ▶ If it does not, then $sat^*(n, P) \le C_P$.

- Run the greedy colex for your favorite P and n (not very large).
- ▶ Pray for the output not to separate n-1 and n.
- ▶ If it does not, then $sat^*(n, P) \le C_P$.
- ▶ If it does, bad luck. :(

- ▶ Run the greedy colex for your favorite P and n (not very large).
- ▶ Pray for the output not to separate n-1 and n.
- ▶ If it does not, then $sat^*(n, P) \leq C_P$.
- ▶ If it does, bad luck. :(

Yet, the greedy colex algo can be useful even if $sat^*(n, P) \to \infty$.

Let \bowtie be the butterfly poset on four elements with a, b < c, d.

Analyzing the output of the greedy colex alg, one obtains

$$sat^*(n,\bowtie) \leq 6n-10.$$

Corollary

$$sat^*(n,\bowtie) = \Theta(n).$$

Let \bowtie be the butterfly poset on four elements with a, b < c, d.

Analyzing the output of the greedy colex alg, one obtains

$$sat^*(n,\bowtie) \leq 6n - 10.$$

Corollary

$$sat^*(n,\bowtie) = \Theta(n)$$
.

Is it true that the greedy colex always gives the correct order of magnitude of $sat^*(n, P)$?

Let \bowtie be the butterfly poset on four elements with a, b < c, d.

Analyzing the output of the greedy colex alg, one obtains

$$sat^*(n,\bowtie) \leq 6n-10.$$

Corollary

$$sat^*(n,\bowtie) = \Theta(n)$$
.

Is it true that the greedy colex always gives the correct order of magnitude of $sat^*(n, P)$?

No :(For $2C_3$ the greedy colex process gives a quadratic family, but we can prove a linear upper bound.

Even worse: for \diamondsuit' it gives an exponential family, while we can prove a linear bound, again.

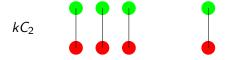
But we do not have an example of a poset P with bounded saturation number, and the greedy colex giving an unbounded family.

More things we do not know

F7 introduced a class of posets for which $sat^*(n, P)$ is unbounded. We enlarged this class, while we showed sufficient conditions for $sat^*(n, P)$ to be bounded. But we do not understand what is happening and why.

More things we do not know

F7 introduced a class of posets for which $sat^*(n, P)$ is unbounded. We enlarged this class, while we showed sufficient conditions for $sat^*(n, P)$ to be bounded. But we do not understand what is happening and why.



Conjecture

Let k be a positive integer. There exists a constant c_k such that $sat^*(n, kC_2) \le c_k$ if and only if k is odd.

Conjecture

Let k be a positive integer. There exists a constant c_k such that $sat^*(n, kC_2) \le c_k$ if and only if k is odd.

Odd values of k: we constructed families using circular intervals that are non-separating and conjectured they are saturating. The ones for k=3 and 5 have this property, but the one for k=7 does not work. However, the greedy colex does yield $sat^*(n, 7C_2) \le 60$.

Conjecture

Let k be a positive integer. There exists a constant c_k such that $sat^*(n, kC_2) \le c_k$ if and only if k is odd.

Odd values of k: we constructed families using circular intervals that are non-separating and conjectured they are saturating. The ones for k=3 and 5 have this property, but the one for k=7 does not work. However, the greedy colex does yield $sat^*(n, 7C_2) \le 60$.

For even values of k we were only able to prove the conjecture for k = 2.

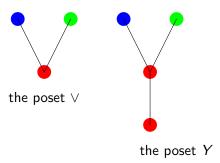
Theorem (KLMPP, 2020+)

If $\mathcal{F} \subseteq 2^{[n]}$ is saturating induced $2C_2$ -free, then \mathcal{F} contains a maximal chain in [n]. So $n+1 \leq sat^*(n,2C_2) \leq 2n$.

In a poset y covers x if there is no z with x < z < y.

A poset P is said to have UCTP (unique cover twin property) if whenever y covers x, then there is a z that is comparable with one of x and y and is incomparable to the other one.

That is either x is covered by not only y and thus the covering of x by y is not 'unique', or x is not the only one covered by x and thus x has a 'twin' covered by y.



Theorem (F7)

Let P be a poset that has UCTP. Then any P-saturating family is separating, thus $sat^*(n, P) \ge \log_2 n$.

A poset is called UCTP with top chain if it consists of two parts: a poset P_0 that has UCTP and a chain such that every element of P_0 is smaller than every

For technical reasons, we also require $|P_0| \ge 2$ (i.e., the poset itself is not a chain).

Theorem (KLMPP, 20+)

element of the chain.

Let P be a poset that has UCTP with top chain. Then any P-saturating family is separating, thus $sat^*(n, P) \ge \log_2 n$.

For example, the poset on four elements defined by a < c; b < c; c < d (an upside-down 'Y') is a UCTP with top chain for which it was not known before whether it has an unbounded induced saturation function.

Recall: $e^*(P)$ is the most number of middle layers in $2^{[n]}$ without having an induced copy of P.

Theorem

If P is a poset with $e^*(P) \le k-2$, then $sat^*(n, C_k + P) \le K_P$ for some constant independent of n.

In particular, for $P = C_{i_1} + C_{i_2} + \cdots + C_{i_k}$ with $i_1 \geq \max\{i_j : 2 \leq j \leq k\} + 2$, then $sat^*(n, P) \leq K_P$ for some constant K_P independent of n.

Thank you for your attention!