Partial regularity of harmonic maps from Alexandrov spaces into compact Riemannian manifolds

Hui-Chun Zhang Sun Yat-sen University

Gemetric Measure Theory and Geometric Analysis in Moscow Sept. 14-18, 2020

> joint with Huibin Ge (Renmin University of China), and Wenshuai Jiang (Zhejiang University, in China)

CONTENTS

We want to introduce some regularity result, in particular the Lipschitz regularity, for harmonic maps from Alexandrov spaces.

- A BRIEF INTRODUCTION OF ALEXANDROV GEOMETRY
- HARMONIC MAPS FROM ALEXANDROV SPACES
 - Harmonic maps and partial Hölder continuity
 - Jost-Lin conjecture
 - Main result
- SKETCH OF THE PROOF
 - Main ingredients
 - Main estimates

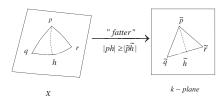
§1. A brief introduction of Alexandov geometry

Alexandrov spaces are of a class of singular metric spaces with curvature bounded from below in the sense of comparison triangles.

Alexandrov curvature: (A. Wald (40'), A. D. Alexandrov (40'–50'))

(X, d) is said to have **curvature** $\geq k$ (in the sense of Alexandrov), if

- d is geodesic; i.e, $\forall p, q \in X$, $\exists \gamma$ from p to q such that $L(\gamma) = d(p, q)$;
- (Toponogov comparison) any triangle $\triangle pqr$ in X is "fatter" than the triangle $\triangle \tilde{p}\tilde{q}\tilde{r}$ in k-plane with $|pq| = |\tilde{p}\tilde{q}|$, $|qr| = |\tilde{q}\tilde{r}|$ and $|rp| = |\tilde{r}\tilde{p}|$,

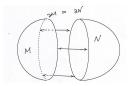


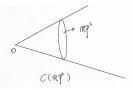
Remark: (1) If X is smooth and $d = d_a$, then $curv \ge k \iff sec_a \ge k$.

(2) CAT(k) (curv $\leq k$ globally) can be defined by replacing "fatter" by "things

Examples and constructions:

- Convex polyhedra; Riem. manifold (M, g) with $sec_g \ge k$;
- Curvature bounded from below (CBB) is closed under some natural geometric constructions: the gluing, cone, suspension and join:





 The condition CBB is stable under Gromov-Hausdorff convergence: If $X_i \stackrel{d_{GH}}{\longrightarrow} X$ and $curv_{X_i} \geqslant k$, then $curv_X \geqslant k$.

Topology:

- $\dim(X) \in \mathbb{N} \cup \{\infty\}$, the Hausdorff dimension; (Burago-Gromov-Perelman)
- Stability theorem (Perelman) :

$$X_j \stackrel{d_{GH}}{\longrightarrow} X_{\infty}, \qquad curv_{X_j} \geqslant k, \\ \dim X_j = \dim X_{\infty}, \qquad diam(X_j) \leqslant D \end{cases} \Longrightarrow X_j \stackrel{homeo}{\cong} X_{\infty}, \text{ as } j \text{ large}$$

Topological statification : (Perelman)

$$X = X_1 \cup X_2 \cup \cdots \setminus X_k \cup \cdots \cup X_n$$

where the each strata X_k is an k-dim **topological manifold** or \emptyset .

Singularity:

Let (X, d) have $curv \ge k$, dim = n.

- p is called a (metrically) singular point iff d_{GH} - $\lim_{\lambda \to \infty} (X, \lambda d, p) \neq \mathbb{R}^n$. (equivalently, $\lim_{r \to 0} \frac{\mu(B_r(p))}{r!} \neq 1$.)
- Sing(X) has co-dim \geqslant 1 but it maybe dense. (Otsu-Shioya, 1994) (If $\partial X = \emptyset$, then Sing(X) has co-dim \geqslant 2.)

(Ostu-Shioya's example: the limit space of a sequence of appropriate convex surfaces in \mathbb{R}^3 .)

Riemannian structure:

(Perelman, Otsu-Shioya) There exists a open set (with full measure)

$$X^* \supset Reg(X) := X \backslash Sing(X)$$

is a Lipschitz manifold and a (incomplete) Riemannian metric $\{g_{ij}\}$ on X^* such that

- $g_{ii} \in BV_{loc} \cap L^{\infty}_{loc}(X^*);$
- $g_{ii}(x)$ is continuous at each $x \in Reg(X)$.

Remark: (1) In general, Reg(X) is not a manifold, and that $X^* \cap Sing(X)$ maybe dense.

(2) If n = 2, Ambrosio-Bertrand (2016'): $g_{ij} \in W^{1,p}_{loc}(X^* \setminus S_p)$ for each $p \in [1,2)$, where S_p is a discrete set.

Analysis:

• Given a Lipschitz function f, the gradient field ∇f

$$\nabla^i f = g^{ij} \partial_j f$$

is well-defined in $L^{\infty}(X)$. The Sobolev norm on a open subset Ω is

$$||f||_{W^{1,p}(\Omega)} := ||f||_{L^p} + |||\nabla f|||_{L^p}$$

The Sobolev spaces $W^{1,p}(\Omega)$ (and $W_0^{1,p}(\Omega)$, $W_{loc}^{1,p}(\Omega)$) is the closure of Lipschitz functions under the $W^{1,p}$ -norm. (it coincides with the ones introduced by Korevaar-Schoen, Cheeger, Shanmugalingam, and Ambrosio-Gigli-Savaré).

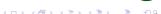
Analysis — continue:

- Let $f \in W_{loc}^{1,2}(\Omega)$. We say $f \in D(\Delta)$ if $\exists g \in L_{loc}^2(\Omega)$ such that: it holds the divergence theorem $\int_{\Omega} \langle \nabla f, \nabla \phi \rangle d\mu = - \int_{\Omega} g \phi d\mu$ for all test function $\phi \in W_0^{1,2}(\Omega)$. In this case, we write $\Delta f = g$ (the Laplacian of f).
- If $\Omega = X$ and $f \in W^{1,2}(X)$, the Δf is same as the infinitesimal generator of Dirichlet form $\mathcal{E}(f, f) := \int |\nabla f|^2 d\mu$ by Gigli.
- Kuwae-Machigashira-Shioya proved that $\operatorname{Lip}_0(\Omega \cap X^*) \subset W_0^{1,2}(\Omega)$ is dense.
 - That is, a $W^{1,2}$ -function can be approximated by Lipschitz functions supported in almost regular part of X.

Alex. geom. HM from Alex. sp. Sketch of the proof Partial Hölder continuity Jost-Lin conjecture Main result

CONTENTS

- A BRIEF INTRODUCTION OF ALEXANDROV GEOMETRY
- MARMONIC MAPS FROM ALEXANDROV SPACES
 - Harmonic maps and partial Hölder continuity
 - Jost-Lin conjecture
 - Main result
- SKETCH OF THE PROOF
 - Main ingredients
 - Main estimates



Harmonic maps (HM):

Notations:

- $\Omega \subset X$ a bounded domain, $curv_X \ge k$, $\Omega \cap \partial X = \emptyset$;
- N a compact Riemannian manifold.

Energy

• $W^{1,2}(\Omega, N)$: Let $N \subset \mathbb{R}^{\ell}$ by Nash imbedding theorem. Then

$$\textbf{\textit{W}}^{1,2}(\Omega,\textbf{\textit{N}}):=\big\{u\in\textbf{\textit{W}}^{1,2}(\Omega,\mathbb{R}^\ell)\big|\ u(\textbf{\textit{x}})\in\textbf{\textit{N}}\ \ \text{for}\ \mu-\text{a.e.}\ \textbf{\textit{x}}\in\Omega\big\}.$$

• E(u): let $u \in W^{1,2}(\Omega, N)$, the energy is defined by

$$E(u) := \int_{\Omega} \mathbf{e}_u \mathrm{d}\mu, \quad \mathbf{e}_u := |\nabla u|^2.$$

- Harmonic map (HM) := a critical point of E(u). If the target $N = \mathbb{R}$, it is just a harmonic function.
 - **minimizing HM** = a (local) minimizer of E(u).
 - (weakly) HM, if we perturb the embedding $N \subset \mathbb{R}^{\ell}$, we get

$$\frac{d}{dt}E(\pi(u+tv))\Big|_{t=0}=0,$$

Euler-Lagrange equation:

$$\Delta u + A(\nabla u, \nabla u) = 0$$

where *A* is the second fundamential form of $N \subset \mathbb{R}^{\ell}$;

minimizing HM ⊂ (weakly) HM.

Recall the regularity for HM between smooth manifolds:

- $\dim(\Omega) = 2$, weakly HM is smooth (Morrey, Schoen, Helein (91'));
- $\dim(\Omega) > 3$, Energy miniming map is smooth off a closed set $Z_{\mu} \subset \Omega$ with $\dim(Z_{ii}) < n - 3.$
 - If $sec_N < 0$, the exceptional set $Z_{ii} = \emptyset$. (Schoen-Uhlenbeck (83'), Giaquinata-Ginsti);
- There is a weakly HM $u: \mathbb{B}^3 \to \mathbb{S}^2$, everywhere discontinuous (Riviere (95')).

The study of HM in the singular setting was initiated by M. Gromov & R. Schoen. They proved the following regularity result:

THEOREM (GROMOV-SCHOEN, 92', KOREVAAR-SCHOEN, 93')

Let B_1 be the unit ball in \mathbb{R}^n and let Y be of CAT(0). Suppose $u:(B_1,g)\to Y$ is a minimizing map, where the Riemannian matric g is of C¹. Then u is Lipschitz continuous in $B_{1/2}$.

After this, the regularity problem for the HM in the singular settings can be described as the following three directions:

- from a singular domain into a smooth target;
- from a smooth domain into a singular target;
- Both the domain and the target are singular.

Alex, geom. HM from Alex, sp. Sketch of the proof Partial Hölder continuity Jost-Lin conjecture Main result

Remark:

In the smooth setting: the basic tools are

- E-L equation $\Delta u = -A(\nabla u, \nabla u)$,
- Monotonicity: the normalized energy $r^{2-n} \int_{B_r(x)} e_u d\mu$ is non-increasing.
- Main different in the three directions:

domain	target	E-L equation	Monotonicity
singular	smooth	Yes	No
smooth	singular	No	Yes
singular	singular	No	No

Now, we will focus on: from a singular domain into a smooth target.

Partial Hölder continuity (for HM from a singular domain):

THEOREM

- (Y. G. Shi, 1996) Let B_1 be the unit ball in \mathbb{R}^n , and let g be a L^{∞} -metric on B_1 , with $\Lambda^{-1}I \leq g \leq \Lambda I$, where Λ is a positive constant, I is the unit matrix. Assume $u:(B_1,g)\to N$ is an energy minimizing map. Then u is Hölder continuous off a closed set Z_{ij} with $\mathcal{H}^{n-2}(Z_{ij}) = 0$.
- (F. H. Lin, 1997) Let Ω be a open domain in an Alexandrov space X of CBB. Suppose $u: \Omega \to N$ is an energy minimizing map, then u is Hölder continuous off a closed exceptional set Z_u with dim(Z_u) $\leq n-3$.

Remark: If we assume only $g \in L^{\infty}$ (in the first item), the Hölder continuity is sharp.

More generally, the **Hölder continuity** also holds for energy minimizing maps $u: \Omega \subset X \to Y$ in the following settings:

Χ	Υ	
simplicial complex	CAT(0)-complex	J. Chen ('95), Daskalopoulos-Mese ('08 quantitative Hölder index
Riem. polyhedron	CAT(0)-space	Eells-Fuglede ('01)
Riem. polyhedron	CAT(1)-space, image in regular ball	Fuglede ('03)
manifold with L^{∞} -Riem. metric	smooth	Y. G. Shi ('96) Ishizuka-C. Y. Wang ('08) (for (weak) HM)

- Recall that any Hölder continuous HM between two smooth manifolds can be improved to be smooth, by the elliptic regularity theory.
- From the above Gromov-Schoen's Lipschitz regularity theorem, a natural question is how to improve the Hölder continuity (in the above settings) to a "higher regularity".
- (Jost-Lin conjecture: From Hölder to Lipschitz)
 F. H. Lin (1997) conjectured that the Hölder continuity for minimizing maps, from an Alexandrov space with CBB into a compact Riemannian manifold, can be improved to the Lipschitz continuity. A similar problem about Lipschitz regularity was given by Jost (1998).

The obstructions from Hölder to Lipschitz:

1. The elliptic regularity theory does not work:

Elliptic Regularity : $g \in C^{\alpha}$, $h \in C^{1,\alpha}$, $u \in C^{\alpha} \Rightarrow u \in C^{1,\alpha}$.

But, it is not true for $\alpha = 0$. Indeed, $g \in C^0$, $h \in C^{\infty}$, $u \in C^0 \not\Rightarrow u \in \text{Lip}$.

• Example:(T. Jin, V. Maz'ya & J. Schaftingen (2009)) Let $\alpha(r) = \frac{-n}{(n-1)\log\frac{r_0}{r}}$ for some r_0 enough large, and let

$$\sqrt{g}g^{ij}(x) := \delta_{ij} + \alpha(|x|)(\delta_{ij} - \frac{x_ix_j}{|x|^2}) \in C(B_1, \mathbb{R}^{n \times n}).$$

Then: $u = x_1 \cdot \log \frac{f_0}{|x|}$ solves $\partial_i(\sqrt{g}g^{ij}\partial_j u) = 0$ on B_1 , but $Du \notin L^{\infty}(B_{1/2})$.

- Recall that $\{g_{ij}\}$ on $X^* \subset X$,
 - $\{g_{ij}\} \in BV_{loc} \cap L^{\infty}_{loc}(X^*)$, and is continuous at $x \in X^* \setminus Sing(X)$;
 - but, $\{g_{ii}\}$ may be NOT continuous on a *dense* subset of X^* .

The obstructions — continue:

2. Gromov-Schoen's and Korevaar-Schoen's method:

THEOREM (GROMOV-SCHOEN, 92', KOREVAAR-SCHOEN, 93')

From smooth domain to singular target:

Let B_1 be the unit ball in \mathbb{R}^n and let Y be of CAT(0). Let $u: (B_1, g) \to Y$ be a minimizing map, where the g is of C^1 . Then u is Lipschitz continuous in $B_{1/2}$.

- The Lipschitz norm of u on $B_{1/2}$ depends on the C^1 -norm of g.
- Daskalopoulos-Mese (08'): It depends on the Lip norm of g.
- Serbinowski (95'), Breiner-Fraser-Huang-Mese-Sargent-Zhang (18') extends the regularity to HM into a regular ball of a CAT(1)-space. The Lipschitz norm of u on B_{1/2} depends on the Lip norm of g.

The obstructions — continue:

3. Bochner method:

THEOREM (Z-ZHU, 18')

Both domain and target are singular:

Let $B_R(x)$ be a ball with radius R in an n-dimensional Alexandrov space with curv $\geqslant k$. Y is a CAT(0)-space. Then any minimizing map $u: B_R(x) \to Y$ is Lipschitz continuous in $B_{R/2}(x)$.

In fact, we deduced a weak Bochner inequality:

$$\Delta e_u \geqslant 2nke_u$$

in the sense of distributions. This implies $e_u \in L^{\infty}_{loc}$.

 Recently, Gigli-Tyulenev consider how to extend a Bochner-type formula for HM from an RCD-space into a CAT(0)-space.

The obstructions — continue:

3. Bochner method:

- It is essential to assume that u is CAT(0)-valued.
- Indeed, recall the classical Bochner formula for $u: M \to N$

$$\Delta e_u \geqslant 2Ke_u - 2\kappa e_u^2$$

provided $Ric_M \ge K$ and $sec_N \le \kappa$.

• Suppose that $\kappa=1$ and K=0, then $\Delta e_u\geqslant -2e_u^2$. To conclude $e_u\in L^\infty_{\rm loc}$, we must assume a monotonicity for the $r^{2-n} \int_{B_r(x)} e_u d\mu$ (or $e_u \in L^{n/2}$).

Alex. geom. HM from Alex. sp. Sketch of the proof Partial Hölder continuity Jost-Lin conjecture Main result

Main result:

THEOREM (H. GE, W. JIANG & Z, ARXIV:1907.09646)

From singular domain to smooth target:

Let Ω be a bounded domain of an n-dimensional Alexandrov space with CBB, and let N be a compact smooth Riemannian manifold.

Then any continuous HM (need not be energy minimizing map) $u:\Omega\to N$ is locally Lipschitz continuous in Ω .

Remark: (1) The Lipschitz constant of u depends on $n, k, \Omega, \int_{\Omega} e_u d\mu$ and the $\sup_{N} |A|$, where A is the second fundament form of $N \subset \mathbb{R}^{\ell}$.

(2) This solves the above Jost-Lin's conjecture.

CONTENTS

- f 1 A brief introduction of Alexandrov geometry
- 2 HARMONIC MAPS FROM ALEXANDROV SPACES
 - Harmonic maps and partial Hölder continuity
 - Jost-Lin conjecture
 - Main result
- SKETCH OF THE PROOF
 - Main ingredients
 - Main estimates

Notations:

- $\Omega \subset X$ a bounded domain, $curv_X \geqslant k$, $\Omega \cap \partial X = \emptyset$;
- N a compact Riemannian manifold.

Main ingredients:

• Euler-Langrange equation:

$$\Delta u = -A(\nabla u, \nabla u).$$

(recalling that ∇u makes sense in L^p , and Δu is a measure.)

- Alfors regularity: $c_1 \leqslant \frac{\mu(B_r(x))}{r^n} \leqslant c_2$ for all ball $B_r(x) \subset \Omega$.
- Bochner formula for functions: $\Delta |\nabla f|^2 \ge -c |\nabla f|^2$ for any harmonic function on Ω .
- Gradient estimate for heat kernel:

$$|
abla
ho_t(\cdot,y)|(x) \leqslant rac{c}{\sqrt{t}\mu(B_{s/t}(x))} \exp\Big(-rac{d^2(x,y)}{5t}+ct\Big).$$

LEMMA (DECAY ESTIMATE, DUE TO T. HUANG & C. Y. WANG 10')

Let Ω , N, u be as above. Then it holds: For any $\alpha \in (0,2)$, if

$$\operatorname{osc}_{B_{r_0}(x_0)} u < \epsilon$$
, (depending on $\alpha, n, k, \Omega, \operatorname{inj}(N), \sup_{N} |A|$,)

then for any ball $B_r(x) \subset B_{r_0}(x_0)$,

$$r^{2-n}\int_{B_r(x)}e_{\scriptscriptstyle U}(y)d\mu(y)\leqslant Cr^{lpha},\qquad C=C_{lpha,n,k,\Omega,r_0}.$$

Remark: By this decay estimate, Huang-Wang obtain a $W^{1,p}$ -regularity property for harmonic map from the Euclidean domain to N, when the oscillation is sufficiently small.

LEMMA (GE-JIANG-Z, 19')

Let $u \in W^{1,2}(B_R) \cap L^{\infty}(B_R)$ solve

$$\Delta u = f \in L^1(B_R), \quad f \geqslant 0.$$

Then

$$|\nabla u|(x) \leqslant C||u||_{L^{\infty}} + C \int_{B_R} \left(\frac{f(y)}{d^{n-1}(x,y)} + |\nabla u|(y) \right) d\mu(y)$$

for almost all $x \in B_{R/4}$.

Remark: The proof is based on the gradient estimate of heat kernels.

By using the above gradient estimate and a potential-theoretic argument, one can improve the Huang-Wang's $W^{1,p}$ -regularity to the following $W^{1,\infty}$ -regularity:

LEMMA (GE-JIANG-Z, 19')

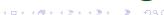
Let Ω , N, u be as above. Then $\exists \epsilon > 0$ (depending on n, k, Ω , $\operatorname{inj}(N)$, and $\sup_{N} |A|$), such that if

$$\operatorname{osc}_{B_{r_0}(x_0)} u < \epsilon$$
,

then for any $Q \in N$ near the Image(u),

$$\sup_{B_r(x)} |\nabla u_Q| \leqslant C,$$

where $u_Q := d_N^2(Q, u(x))$.



Thank you very much!

