The quadruple bubble in the plane

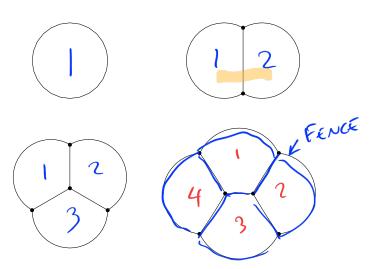
E. Paolini

(Università di Pisa)

Moscow, 17 settembre 2020

200m

Joint works with: Tamagnini (2018) and Tortorelli (2020)



Minimal clusters

Planar N-cluster:

$$\mathbf{E} = (E_1, \dots, E_N)$$
 with $E_j \subset \mathbb{R}^2$, $|E_j \cap E_k| = 0$ for $j \neq k$
External region: $E_0 = \mathbb{R}^2 \setminus \bigcup_{j=1}^N E_j$
Area: $\mathbf{m}(\mathbf{E}) = (|E_1|, \dots, |E_N|) \in \mathbb{R}^N$
Perimeter: $P(\mathbf{E}) = \frac{1}{2} \sum_{i=0}^N P(E_j) \in \mathbb{R}$

see Maggi: sets of finite perimeter...

Existence of optimal clusters:

We say that \boldsymbol{E} is a *minimal cluster* of prescribed areas $\boldsymbol{a} \in \mathbb{R}^N_+$ if P(E) is minimum among all clusters with m(E) = a.

Such minimal cluster exist for any $\mathbf{a} \in \mathbb{R}^{N}_{+}$ (Almgren, Morgan)

M>,3 n= >_

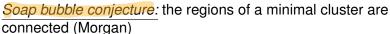
Explicit solutions:

N = 1: isoperimetric problem (Steiner 1890)

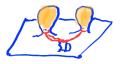
N = 2: double bubble (Foisy et al. 1993)

 $N = \infty$: honeycomb (Hales 1999)

N = 3; triple bubble (Wichiramala 2004, Lawlor 2019)

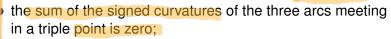


Why do we consider non-connected regions?



Regularity of minimal clusters

(Almgren, Taylor, Morgan...)



to each region E_i a pressure p_i can be assigned, so that the arc between regions E_i and E_j has signed curvature $p_i - p_i$ (and $p_0 = 0$ can be assumed).

Cluster which satisfy these conditions will be called stationary clusters.

Pressure formula

Pressures $\mathbf{p} = (p_1, \dots, p_n)$ are Lagrange multipliers associated to the area constraint:

$$\left[\frac{d}{dt}P(\mathbf{E}(t))\right]_{t=t_0} = \mathbf{p} \cdot \left[\frac{d}{dt}\mathbf{m}(\mathbf{E}(t))\right]_{t=t_0}$$

Applying the previous formula to a rescaling of a stationary cluster **E** we obtain

$$P(E) = 2 p \cdot m(E)$$

The double bubble

Main difficulty: prove that minimizers are connected.

Tool: rotate a subcluster along an edge (two connected components can share at most one edge)

Main idea: enlarge class of minimizers including clusters which enclose more area than prescribed. This enables to easily prove that E_0 is connected (no internal camera)

Weak minimizers

We say that E is a <u>weak minimizer</u> with prescribed areas $a \in \mathbb{R}_+^N$ if P(E) is minimum among all sets with $m(E) \ge a$. Notation $E \in \mathcal{M}^*(a)$.

Properties of weak minimizers:

- the external region E_0 is connected;
- no negative pressures: $p \ge 0$;
- if $|E_i| > a_i$ then $p_i = 0$;
- if the total number of connected components is $M \le 6$ then the weak minimizer is a (strong) minimizer.

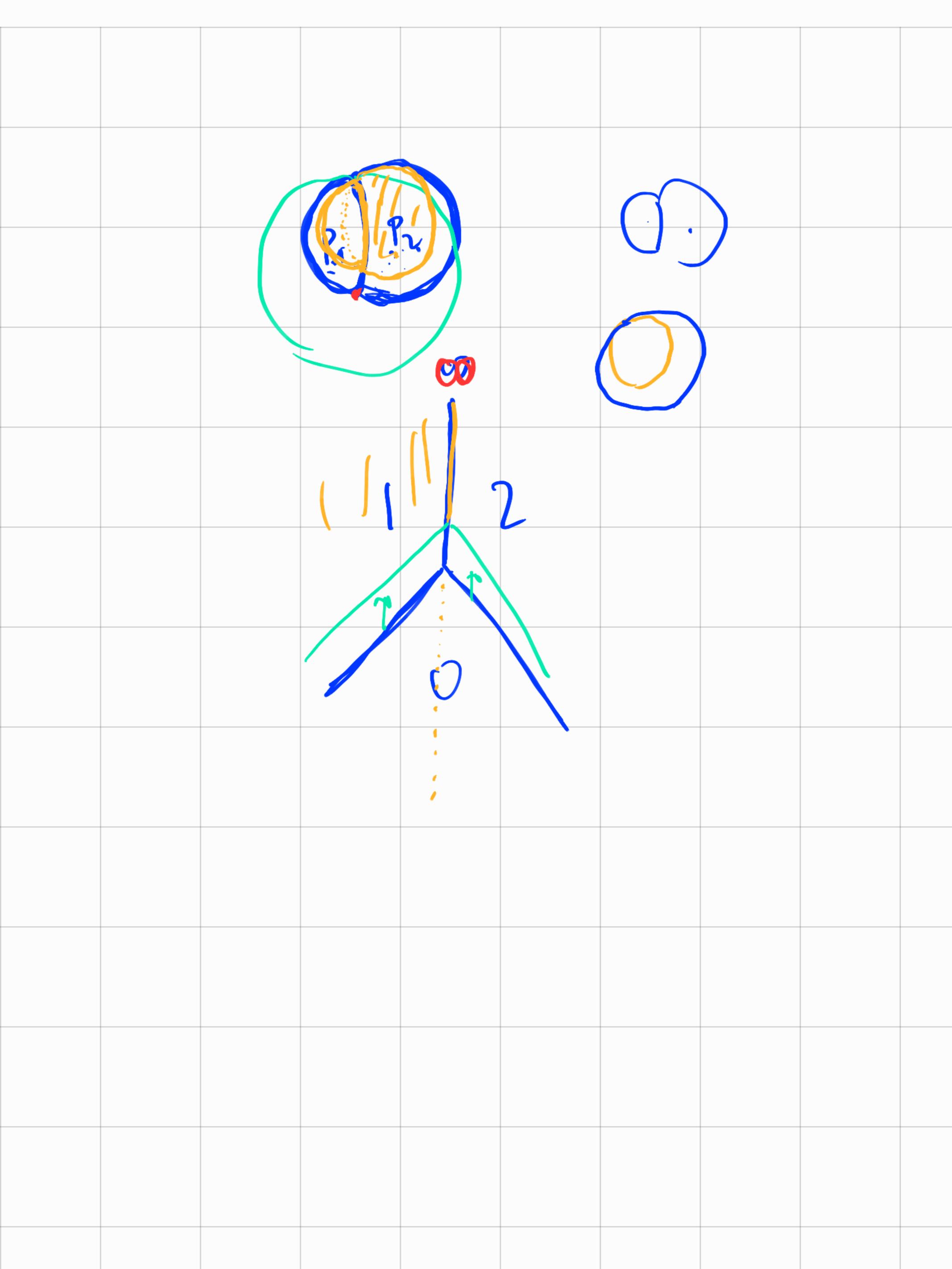
Möbius transforms / monotonicity

Möbius transformations preserve stationarity of clusters!

Passing throught Möbius transformations it is easy to inflate/deflate triangular components of a cluster.

Monotonicity: when a triangular component is inflated (resp. deflated) both the area and the radius of each edge increases (resp. decreases).

Uniqueness: in double-bubbles and triple-bubbles there is a one-to-one corrispondence $p \mapsto a$ between pressures and areas. (Montesinos)



Four equal areas

with Andrea Tamagnini (unifi): Minimal clusters of four planar regions with the same area (ESAIM COCV 2018)

with Vincenzo M. Tortorelli (unipi): The quadruple planar bubble enclosing equal areas is symmetric (Calc. Var. 2020)

Variational tools

<u>Variation I</u>. Remove a component C with an edge of length ℓ and replace it by a disk of equal area. Then $\ell \leq 2\sqrt{\pi}\sqrt{|C|}$.

<u>Variation II</u>. Remove a component C of the region E_i with n edges and rescale the resulting cluster to recover the prescribed areas. Then

$$|C| \geq \frac{16\pi |E_i|^2}{n^2 P^2(\boldsymbol{E})} \left(1 - \frac{16\pi |E_i|}{n^2 P^2(\boldsymbol{E})}\right).$$

<u>Variation III</u>. Remove a component C with n edges and recover the measure by enlarging an external edge ℓ of the same region E_i . Then

$$p_i \geq \frac{2\sqrt{\pi}}{n\sqrt{|C|}} - \frac{2}{\ell}.$$

A priori estimate on the number of components

Let M be the number of connected components of a weak minimal N-cluster $\mathbf{E} \in \mathcal{M}^*(\mathbf{a})$ with $N \geq 3$. Then

$$M \leq \frac{9}{20} N^2 \frac{\|\boldsymbol{a}\|_{\frac{1}{2}}}{\|\boldsymbol{a}\|_{-1}}.$$

$$\|\boldsymbol{a}\|_{p} = \big(\sum_{j=1}^{N} |a_{j}|^{p}\big)^{1/p}$$

Isoperimetric inequality

$$P(\mathbf{E}) = \frac{1}{2} \sum_{i=0}^{N} P(E_i) \ge \sqrt{\pi} \left[\sqrt{\sum_{i=1}^{N} |E_i|} + \sum_{i=1}^{N} \sqrt{|E_i|} \right]$$

If $E_i = E_i' \cup E_i''$ is disconnected:

$$P(E_i) \geq 2\sqrt{\pi} \left(\sqrt{|E_i'|} + \sqrt{|E_i''|} \right)$$

big / small components...

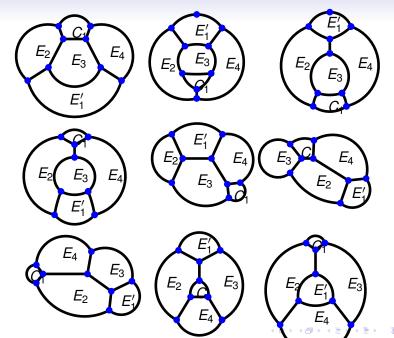
$$E \in \mathcal{M}^*(1,1,1,1)$$

Explicit computation on well choosen competitor:

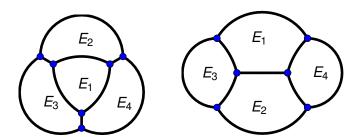
$$P(E) \le 11.1962$$

--o-

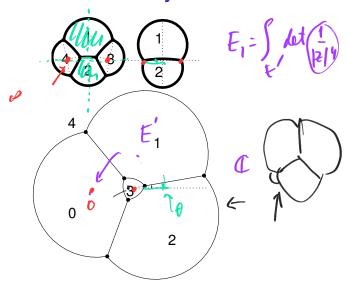
- Minimal clusters have at most 4 + 2 components (big + small).
- Exclude there can be two small components.
- Reduce to 9 possible topologies for clusters with 4 + 1 components.
- Exclude them: minimal clusters have 4 connected components.
- Two topologies: sandwich, flower.
- Exclude flower.



Flower / Sandwich



the Sandwich is symmetric



the Sandwich is symmetric

Let
$$F_k = T(E_k)$$
 with $T(z) = \frac{1}{\overline{z}}$, det $DT(z) = \frac{1}{z^4}$

$$|E_1| - |E_2| = \iint_{F_1} \frac{1}{|x + iy|^4} dxdy - \iint_{F_2} \frac{1}{|x + iy|^4} dxdy$$

$$= \int_0^{\frac{3}{2}\pi} \int_{r_1(t,\theta)}^{r_2(t,\theta)} \left[\frac{1}{|1 + re^{i(\theta+t)}|^4} - \frac{1}{|1 + re^{i(\theta-t)}|^4} \right] r dr dt.$$

but

$$|1+re^{i\alpha}|^2=1+2r\cos\alpha+r^2$$
 and for $t\in(0,\frac{2}{3}\pi]$ and $\theta\in(0,\frac{\pi}{3})$
$$\cos(\theta+t)<\cos(\theta-t).$$