Monge-Ampère Operator for Plurisubharmonic Functions with Analytic Singularities

Zbigniew Błocki Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki

International Conference on Complex Analysis dedicated to the memory of Andrei Gonchar and Anatoliy Vitushkin Moscow (online), October 6, 2020

Defining Nonlinear Operators for Nonsmooth Functions

Real Monge-Ampère Operator

For convex $u \in C^2(\Omega)$, $\Omega \subset \mathbb{R}^n$

$$MA(u) = \det D^2 u = Jac(\nabla u)$$

and

$$\int_{E} \det D^{2}u \, d\lambda = \lambda(\nabla u(E)), \quad E \subset \Omega.$$

If u is just convex one can define the gradient image

$$\nabla u(x) = \{ y \in \mathbb{R}^n \colon u(x) + \langle \cdot - x, y \rangle \le u \},$$
$$\nabla u(E) = \bigcup_{x \in E} \nabla u(x).$$

This defines a Radon measure MA(u) such that $MA(u_j) \to MA(u)$ weakly if $u_j \to u$ in L^1_{loc} . We also have the following solution of the Dirichlet problem:

Theorem Assume that Ω is a bounded strictly convex domain in \mathbb{R}^n . Let φ be continuous on $\partial\Omega$ and μ a positive Radon measure in Ω such that $\mu(\Omega)<\infty$. Then there exists a unique solution to the following Dirichlet problem:

$$\begin{cases} u \in \mathit{CVX}(\Omega) \cap \mathit{C}(\bar{\Omega}), \\ \mathit{MA}(u) = \mu, \\ u = \varphi \text{ on } \partial\Omega. \end{cases}$$

Real Hessian Operator

For m = 1, ..., n and smooth u we set

$$H_m(u) := S_m(D^2u) = \sum_{1 \leq i_1 < \dots < i_m \leq n} \lambda_{i_1} \dots \lambda_{i_m},$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of D^2u . Then $H_1 = \Delta$ and $H_n = MA$.

A C^2 function u is called m-convex if $H_m(u+a|x|^2) \ge 0$ for $a \ge 0$. Equivalently, $H_i(u) \ge 0$ for $j \le m$.

A nonsmooth u is m-convex if locally it is a limit of a decreasing sequence of smooth m-convex functions.

Trudinger, Wang, 1999 For every m-convex u one can uniquely define a positive measure $H_m(u)$ so that $H_m(u_j) \to H_m(u)$ weakly if $u_j \to u$ in L^1_{loc} .

Complex Monge-Ampère Operator

For $u \in C^2(\Omega)$, $\Omega \subset \mathbb{C}^n$, we set

$$CMA(u) = \det\left(\frac{\partial^2 u}{\partial z_j \partial \bar{z}_k}\right).$$

We have

$$(dd^{c}u)^{n} = dd^{c}u \wedge \cdots \wedge dd^{c}u = 4^{n}n!CMA(u)d\lambda,$$

where $d = \partial + \bar{\partial}$, $d^c = i(\bar{\partial} - \partial)$, $dd^c = 2i\partial\bar{\partial}$.

Example (Shiffman-Taylor, 1974, Kiselman, 1982)

$$u(z) = (-\log |z_1|)^{1/n} (|z_2|^2 + \cdots + |z_n|^2 - 1)$$

Then u is plurisubharmonic (psh) near the origin in \mathbb{C}^n , u is smooth away from $\{z_1 = 0\}$ but $(dd^c u)^n$ has unbounded mass near $\{z_1 = 0\}$.

Bedford-Taylor, 1982 For $u \in PSH \cap L^{\infty}_{loc}$ one can well define $(dd^c u)^n$ as a positive Radon measure so that $(dd^c u_j)^n \to (dd^c u)^n$ weakly if u_j decreases to u.

Recursive definition: for k = 1, ..., n

$$(dd^cu)^k := dd^c \left(u (dd^cu)^{k-1} \right)$$

is a closed positive current.

Demailly, 1985 The same for $u \in PSH(\Omega) \cap L^{\infty}_{loc}(\Omega \setminus U)$, $U \subseteq \Omega$.

Monotone convergence is essential:

Example (Cegrell, 1984) There exists a sequence $u_j \in PSH \cap C^{\infty}$, $0 \le u_j \le 1$, converging in L^1_{loc} (and thus in L^p_{loc} for every $p < \infty$) to $u \in PSH \cap C^{\infty}$ but $(dd^c u_j)^n$ does not converge weakly to $(dd^c u)^n$.

Bedford-Taylor, 1976 Let Ω be a bounded strongly pseudoconvex domain in \mathbb{C}^n , $\varphi \in C(\partial \Omega)$ and $f \in C(\bar{\Omega})$, $f \geq 0$. Then there exists unique solution to the following Dirichlet problem

$$\begin{cases} u \in PSH(\Omega) \cap C(\bar{\Omega}), \\ (dd^c u)^n = f \ d\lambda, \\ u = \varphi \ \text{on} \ \partial\Omega. \end{cases}$$

Kołodziej, 1998 May take nonnegative $f \in L^p(\Omega)$ where p > 1.

Example (Cegrell, 1982) For

$$u(z) = \log |z_1 \dots z_n| = \log |z_1| + \dots + \log |z_n|$$

consider two sequences from $PSH \cap C^{\infty}$ decreasing to u:

$$u_{j} = \frac{1}{2} \log \left(|z_{1} \dots z_{n}|^{2} + \frac{1}{j} \right),$$

$$v_{j} = \frac{1}{2} \log \left(|z_{1}|^{2} + \frac{1}{j} \right) + \dots + \frac{1}{2} \log \left(|z_{n}|^{2} + \frac{1}{j} \right).$$

Then $(dd^c u_j)^n \to 0$ and $(dd^c v_j)^n \to n! 2^n \delta_0$ weakly.

Domain of Definition of CMA

Let $\mathcal D$ denote the subclass of the class of psh functions consisting of those psh u such that there exists a measure μ such that $(dd^c u_j)^n \to \mu$ weakly for any smooth psh u_j decreasing to u.

One can easily show that \mathcal{D} is a maximal subclass of PSH where one can define CMA in such a way that it is continuous for decreasing sequences.

If $\Omega \subset \mathbb{C}^2$ and $u \in C^2(\Omega)$ then

$$\int_{\Omega} \varphi (dd^c u)^2 = - \int_{\Omega} du \wedge d^c u \wedge dd^c \varphi, \quad \varphi \in C_0^{\infty}(\Omega).$$

B. (2004) If
$$n=2$$
 then $\mathcal{D}=PSH\cap W_{loc}^{1,2}$.

- B. (2006) For a negative $u \in PSH(\Omega)$, $\Omega \subset \mathbb{C}^n$, TFAE
 - i) $u \in \mathcal{D}$;
 - ii) For every $u_j \in PSH \cap C^{\infty}$ decreasing to u the sequence $(dd^c u_j)^n$ is locally weakly bounded;
- iii) For every $u_i \in PSH \cap C^{\infty}$ decreasing to u the sequences

$$|u_j|^{n-p-2}du_j\wedge d^c u_j\wedge (dd^c u_j)^p\wedge \omega^{n-p-2}, \quad p=0,1,\ldots,n-2,$$

 $(\omega = dd^c|z|^2)$ are locally weakly bounded;

iv) There exists $u_j \in PSH \cap C^{\infty}$ decreasing to u such that the sequences

$$|u_j|^{n-p-2}du_j\wedge d^cu_j\wedge (dd^cu_j)^p\wedge \omega^{n-p-2}, \quad p=0,1,\ldots,n-2,$$
 $(\omega=dd^c|z|^2)$ are locally weakly bounded.

Complex Hessian Operator

For $u \in C^2(\Omega)$, $\Omega \subset \mathbb{C}^n$, and m = 1, ..., n

$$CH_m(u) := S_m(u_{j\bar{k}}) = \sum_{1 \leq i_1 < \dots < i_m \leq n} \lambda_{i_1} \dots \lambda_{i_m},$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the complex Hessian $(u_{i\bar{k}}) = (\partial^2 u/\partial z_i \partial \bar{z}_k)$. Then $CH_1 = \Delta/4$ and $CH_n = CMA$.

We have

$$(dd^{c}u)^{m} \wedge \omega^{n-m} = 4^{n}m!(n-m)!CH_{m}(u)d\lambda,$$

where $\omega = dd^c |z|^2$.

A C^2 function u is called m-subharmonic if $CH_m(u+a|z|^2) \ge 0$ for $a \ge 0$. Equivalently, $CH_j(u) \ge 0$ for $j \le m$.

A nonsmooth u is m-subharmonic if locally it is a limit of a decreasing sequence of smooth m-subharmonic functions.

Conjecture If u is m-subharmonic then $u \in L^p_{loc}$ for p < nm/(n-m).

B. 2005 True for p < n/(n - m).

Dinew-Kołodziej, 2012 True for p < nm/(n-m) if the unbounded locus of u is relatively compact.

Psh Functions with Analytic Singularities

A psh u is said to have analytic singularities if locally it can be written in the form

$$u = c \log |F| + b$$
,

where $c \geq 0$, $F = (f_1, \dots, f_m)$ is a tuple of holomorphic functions and b is bounded.

Certainly in general $u \notin \mathcal{D}$!

Definition of CMA (Andersson-Wulcan, 2014)

For $u=\log|F|+b$, $F=(f_1,\ldots,f_m)$, and $k=1,\ldots,n$ we want to define $(dd^cu)^k:=dd^c\big(\mathbf{1}_{\{F\neq 0\}}u(dd^cu)^{k-1}\big).$

For this one needs to show that $T_{k-1} := \mathbf{1}_{\{F \neq 0\}} (dd^c u)^{k-1}$ extends across $\{F = 0\}$ to a closed positive current and uT_{k-1} has a finite mass near $\{F = 0\}$.

If m=1 then we say that u has divisorial singularities. Then $\log |F|$ is pluriharmonic, b is a bounded psh function, and thus $T_{k-1} = (dd^cb)^{k-1}$. In this case we have therefore

$$(dd^{c}u)^{k} = [F = 0] \wedge (dd^{c}b)^{k-1} + (dd^{c}b)^{k},$$

where $[F = 0] = dd^c(\log |F|)$ is the current of integration along $\{F = 0\}$.

Reduction to Divisorial Singularities

For m>1 we use the resolution of singularities. Assume that u is defined in open $X\subset \mathbb{C}^n$ and $Z:=\{F=0\}$. By Hironaka there exists a complex manifold X' and a proper holomorphic mapping $\pi:X'\to X$ such that the exceptional divisor $E:=\pi^{-1}Z$ is a hypersurface and $\pi|_{X'\setminus E}\to X\setminus Z$ is a biholomorphism. We then have $\pi^*F=f_0F'$, where f_0 is a holomorphic function such that $E=\{f_0=0\}$ and F' is a nonvanishing tuple of holomorphic functions. Then

$$\pi^* u = \log |f_0| + \log |F'| + \pi^* b = \log |f_0| + B$$

has divisorial singularities. One can then show that

$$T_{k-1} = \mathbf{1}_{\{F \neq 0\}} (dd^c u)^{k-1} = \pi_* (dd^c B)^{k-1}$$

is indeed a closed positive current and similarly one can show that uT_{k-1} has a locally bounded mass near Z.

The definition of $(dd^c u)^k$ for psh u with analytic singularities is related to the intersection theory and Segre numbers in analytic geometry introduced by Tworzewski in 1995.

Theorem 1 (Andersson-B-Wulcan) Let u be a negative psh function with analytic singularities. Assume that $\chi_j(t)$ are bounded nondecreasing (in t) convex functions on $(-\infty,0]$, decreasing to t as $j\to\infty$. Then for every $k=1,\ldots,n$ we have weak convergence of currents

$$(dd^c(\chi_j\circ u))^k\to (dd^cu)^k.$$

Remark This result can be treated as an alternative definition of $(dd^c u)^k$.

Sketch of proof Similarly as before we may reduce it to the case of divisorial singularities: $u=\log|f|+v$, where f is holomorphic and v bounded psh. Assume that χ_j are smooth. Let γ_j be convex on $(-\infty,0]$ such that $\gamma_j(-1)=\chi_j(-1)$ and $\gamma_j'=(\chi_j')^k$. Then they are also bounded nondecreasing (in t) and $\gamma_j(t)$ decreases to t as $j\to\infty$.

Then on $\{f \neq 0\}$

$$(dd^{c}(\chi_{j} \circ u))^{k} = (\chi_{j}^{"} \circ u \, du \wedge d^{c}u + \chi_{j}^{'} \circ u \, dd^{c}u)^{k}$$

$$= (k\chi_{j}^{"} \circ u \, du \wedge d^{c}u + \chi_{j}^{'} \circ u \, dd^{c}u) \wedge (\chi_{j}^{'} \circ u \, dd^{c}u)^{k-1}$$

$$= d((\chi_{j}^{'} \circ u)^{k} d^{c}u) \wedge (dd^{c}u)^{k-1}$$

$$= dd^{c}(\gamma_{j} \circ u) \wedge (dd^{c}v)^{k-1}$$

$$= dd^{c}(\gamma_{j} \circ u \, (dd^{c}v)^{k-1})$$

Since none of the above currents charges $\{f=0\}$, the equality holds everywhere. One can show that

$$\gamma_i \circ u (dd^c v)^{k-1} \rightarrow u (dd^c v)^{k-1}$$

weakly as $j \to \infty$.

Psh Functions with Analytic Singularities on Compact Kähler Manifolds

 (X, ω) Kähler manifold

We say that $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if locally $u:=g+\varphi$ is psh, where g is a local Kähler potential, that is $\omega=dd^cg$. We say that such a φ has analytic singularities if locally u has analytic singularities.

Theorem 2 (Andersson-B-Wulcan) Let (X, ω) be a compact Kähler manifold and φ an ω -psh function on X with analytic singularities. Then

$$\int_X (\omega + dd^c \varphi)^n = \int_X \omega^n - \sum_{k=1}^{n-1} \int_Z (\omega + dd^c \varphi)^k \wedge \omega^{n-k},$$

where Z is the singular set of φ . In particular,

$$\int_X (\omega + dd^c \varphi)^n \le \int_X \omega^n.$$

Example Let $X = \mathbb{P}^n$, $n \geq 2$, and let ω be the Fubini-Study metric.Set

$$\varphi([z_0:z_1:\cdots:z_n]):=\log\frac{|z_1|}{|z|}, \quad z\in\mathbb{C}^{n+1}\setminus\{0\}.$$

Then $(\omega + dd^c \varphi)^n = 0$.

Sketch of proof of Theorem 2 For k = 0, ..., n-1

$$T_k := \mathbf{1}_{X \setminus Z} (\omega + dd^c \varphi)^k$$

is a closed positive current on X. Locally we have

$$(\omega + dd^{c}\varphi)^{n} = dd^{c}((g+\varphi)T_{n-1}) = \omega \wedge T_{n-1} + dd^{c}(\varphi T_{n-1})$$

and therefore

$$\int_X (\omega + dd^c \varphi)^n = \int_X \omega \wedge T_{n-1} = \int_X (\omega + dd^c \varphi)^{n-1} \wedge \omega - \int_Z (\omega + dd^c \varphi)^{n-1} \wedge \omega.$$

Continuing this way we will get the result.

Another Definition on Hermitian Manifolds

In the previous definition on Kähler manifold, if we approximate as in Theorem 1, we would locally consider regularizations of the form

$$\chi_j(g+\varphi)\to g+\varphi=u$$

(e.g. $\chi_j(t) = \max\{t, -j\}$). Instead, we may consider direct regularizations of the form

$$\chi_j \circ \varphi \to \varphi$$
.

For this we have to generalize Theorem 1 to quasi-psh functions. (φ is called *quasi-psh* if locally it can be written as $\varphi=u+\psi$, where u is psh and ψ is smooth).

Theorem 3 Let φ be a negative quasi-psh function with analytic singularities on a complex manifold X of dimension n and assume that η is a smooth (1,1)-form on X. Then for $k=1,\ldots,n$ the current $(\eta+dd^c\varphi)^k$ can be uniquely defined in such a way that if χ_j is a sequence of bounded nondecreasing convex functions on $(-\infty,0]$ such that $\chi_j(t)$ decreases to t as t increases to t then

$$(\eta + dd^c(\chi_j \circ \varphi))^k \longrightarrow (\eta + dd^c \varphi)^k$$

weakly as $j \to \infty$.

With this new definition we the obtain the right total mass: Corollary If X is compact and ω is Kähler then

$$\int_X (\omega + dd^c \varphi)^n = \int_X \omega^n.$$

In the above example we will now get $(\omega + dd^c \varphi)^n = [z_1 = 0] \wedge \omega^{n-1}$.

Thank you!