Ring isomorphisms of Murray–von Neumann algebras

Shavkat Abdullaevich Ayupov Karimbergen Kudaybergenov

V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences Karakalpak state university

September 17, 2020

Ring isomorphisms of Murray–von Neumann algebras

Shavkat Abdullaevich Ayupov Karimbergen Kudaybergenov

V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences Karakalpak state university

September 17, 2020

Outline

- Intoduction
 - Short history
 - Prelimanaries
- 2 Main results
 - Continuity of ring isomorphisms in the measure topology
 - General form of ring isomorphisms

Outline

- Intoduction
 - Short history
 - Prelimanaries

- 2 Main results
 - Continuity of ring isomorphisms in the measure topology
 - General form of ring isomorphisms

Intoduction

We shall start with the following famous result due to J. von Neumannn.

THEOREM 4.2: Let \Re , \Re' be regular rings such that \Re has order $n \geq 3$ and such that \bar{R}_{np} and $\bar{R}_{np'}$ are lattice-isomorphic. Then there exists a ringisomorphism of R and R' which generates the given lattice-isomorphism.

I. von Neumann

Continuous geometry

Foreword by Israel Halperin, Princeton Mathematical Series, No. 25 Princeton University Press, Princeton, N.J. (1960).

Operator algebras version of von Neumann Theorem

- Let \mathcal{M} be a von Neumann algebra;
- let $P(\mathcal{M})$ the set of all projections in \mathcal{M} ;
- let $S(\mathcal{M})$ be a *-algebra of all measurable operators with respect to \mathcal{M} .

^adefinitions we shall give later

Theorem 1.1

Let \mathcal{M} and \mathcal{N} be von Neumann algebras of type II_1 and let $\Phi: P(\mathcal{M}) \to P(\mathcal{N})$ be a lattice isomorphism. Then there exists a unique ring isomorphism $\Psi: S(\mathcal{M}) \to S(\mathcal{N})$ such that $\Phi(l(x)) = l(\Psi(x))$ for any $x \in S(\mathcal{M})$, in particular, $\Phi(p) = l(\Psi(p))$ for any $p \in P(\mathcal{M})$.

Here, l(x) is the left projection of x.

Problems of homomorphisms on semifields

Естественно возникает следующий вопрос:

Проблема І. Всякий ли алгебраический гомоморфизм $R^{\Delta} \to R_{\Delta}^{A'}$ является непрерывным, т. е. представляет собой гомоморфизм тихоновских полуполей?

Проблема II. Существует ли алгебраический гомоморфизм $\psi \colon R^{\Delta} \to R$, удовлетворяющий условиям $\psi(1_q) = 0$ для всех $q \in \Delta$, $\psi(1_{\Delta}) = 1$?

M. Ya. Antonovskii, V. G. Boltyanskii, Tikhonov semifields and certain problems in general topology, Russian Mathematical Surveys (1970), 25(3):1-43.

Problems of homomorphisms on semifields

В 1930 г. С. Улам [20] поставил следующую проблему о существовании двузначных счетно-аддитивных мер:

Проблема III. Существует ли нетривиальная двузначная счетно-аддитивная мера $\mu\colon D^\Delta\to R$, удовлетворяющая условию: $\mu(1_q)=0$ для любого $q\in\Delta$?

Предыдущие результаты позволяют обобщить известную теорему Макки (см. [2]). T е o p e m a 6. Hyamb K — сепарабельное нетривиально нормировачное тело, Δ фиксировано. Тогда следующие проблемы эквивалентны:

- 1) Существует ли разрывный K-гомоморфизм $\phi \colon K^\Delta \to K$?
- 2) Существует ли нетривиальная счетно-аддитивная двузначная мера μ на D^{Δ} такая, что μ (1 $_q$) = 0, для всех $q \in \Delta$, μ (1 $_\Delta$) = 1? (Улам [3].)

Sh. A. Ayupov, Homomorphisms of a class of rings and two-valued measures on Boolean algebras, Funct. Anal. Appl., 11:3 (1977), 217–219.

Question of M. Mori and his conjecture

Let $LS(\mathcal{M})$ be a *-algebra of all locally measurable operators with respect to \mathcal{M} .

Question 1.2

Let \mathcal{M}, \mathcal{N} be von Neumann algebras. What is the general form of ring isomorphisms from $LS(\mathcal{M})$ onto $LS(\mathcal{N})$?

^aM. Mori, Lattice isomorphisms between projection lattices of von Neumann algebras, arXiv:2006.08959 (2020).

• Mori himself gave an answer to the above Question in the case of von Neumann algebras of type I_{∞} and III.

Result of M. Mori

Theorem B. Let M,N be von Neumann algebras of type I_{∞} or III. If $\Psi \colon LS(M) \to LS(N)$ is a ring isomorphism, then there exist a real *-isomorphism $\psi \colon M \to N$ (which extends to a real *-isomorphism from LS(M) onto LS(N)) and an invertible element $y \in LS(N)$ such that $\Psi(x) = y\psi(x)y^{-1}$, $x \in LS(M)$.

• Mori conjectured that the representation of ring isomorphisms, mentioned above for type I_{∞} and III cases holds also for type II von Neumann algebras.^a

^aM. Mori, Lattice isomorphisms between projection lattices of von Neumann algebras, arXiv:2006.08959 (2020).

Isomorphisms of C*-algebras

4.1.20. Theorem. Let \mathcal{A} and \mathfrak{B} be two C^* -algebras and suppose that \mathcal{A} and \mathfrak{B} are isomorphic. Then they are *-isomorphic.

4.1.22. Corollary. Let \mathcal{A} (resp. \mathfrak{B}) be a C*-algebra on a Hilbert space \mathcal{H} (resp. \mathcal{K}) such that its weak closure $\overline{\mathcal{A}}$ (resp. $\overline{\mathfrak{B}}$) contains $1_{\mathscr{L}}$ (resp. $1_{\mathscr{L}}$). Let Φ be an isomorphism of \mathcal{A} onto \mathfrak{B} . Then there exists an invertible positive element h in $\overline{\mathcal{A}}$ such that $\Phi(a) = \Phi_1(hah^{-1})$ $(a \in \mathcal{A})$, where Φ_1 is a *-isomorphism of \mathcal{A} onto \mathfrak{B} . In particular if \mathcal{A} is a W*-algebra or a simple C^* -algebra with identity, then h belongs to \mathcal{A} .

S. Sakai

C*-algebras and W*-algebras Reprint of the 1971 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1998. xii+256 pp.

Abelian case

- If the von Neumann algebra \mathcal{M} is abelian then it is *-isomorphic to $L_{\infty}(\Omega, \Sigma, \mu)$;
- $S(\mathcal{M}) \cong S(\Omega, \Sigma, \mu)$ is the algebra of all measurable complex functions on (Ω, Σ, μ) ;
- A.G. Kusraev by means of Boolean-valued analysis establishes necessary and sufficient conditions for existence of band-preserving non trivial algebra automorphisms on $S(\Omega, \Sigma, \mu)$;
- In particular, he has proved that S[0,1] admits discontinuous algebra automorphisms which identically act on the Boolean algebra $P(L_{\infty}[0,1])$.

^aA. G. Kusraev, *Automorphisms and derivations in an extended complex f-algebra*, Sib. Math. J. **47** (2006) 97–107.

Type I_n case

- \mathcal{M} is a vNa of type I_n , n > 1 with the center $Z(\mathcal{M})$;
- \mathcal{M} is *-isomorphic to $M_n(Z(\mathcal{M}))$ of all $n \times n$ matrices over $Z(\mathcal{M})$;
- $S(\mathcal{M})$ is *-isomorphic to the algebra $M_n(Z(S(\mathcal{M})))$, where $Z(S(\mathcal{M})) = S(Z(\mathcal{M}))$;
- each algebra automorphisms Φ of $S(\mathcal{M})$ can be uniquely represented in the form

$$\Phi(x) = a\overline{\Psi}(x)a^{-1}, x \in S(\mathcal{M}),$$

where $a \in S(\mathcal{M})$ is an invertible element and $\overline{\Psi}$ is an extension of a *-automorphism Ψ of the center $S(Z(\mathcal{M}))$.

^aS. Albeverio, S. Ayupov, K. Kudaybergenov, R. Djumamuratov, *Automorphisms of central extensions of type I von Neumann algebras*, Studia Math. **207** (2011), 1-17.

Outline

- Intoduction
 - Short history
 - Prelimanaries
- 2 Main results
 - Continuity of ring isomorphisms in the measure topology
 - General form of ring isomorphisms

von Neumann algebras

- *H* be a Hilbert space, B(H) be the *-algebra of all bounded linear operators on H, \mathcal{M} be a von Neumann algebra in B(H);
- $P(\mathcal{M})$ the set of all projections in \mathcal{M} ;
- $e, f \in P(\mathcal{M})$ are called *equivalent* if there exists an element $u \in \mathcal{M}$ such that $u^*u = e$ and $uu^* = f$;
- $e, f \in \mathcal{M}$ notation $e \lesssim f$ means that there exists a projection $q \in \mathcal{M}$ such that $e \sim q \leq f$;
- $p \in \mathcal{M}$ is said to be *finite*, if it is not equivalent to its proper sub-projection;
- $e \in P(\mathcal{M})$ is abelian, if $e\mathcal{M}e$ is an abelian algebra;
- a finite von Neumann algebra \mathcal{M} without nonzero abelian projections is called of type II₁.

Murray-von Neumann algebras

- M be a von Neumann algebra and let P(M) be a set of all projections in M;
- A linear operator x affiliated with M is called *measurable* with respect to M if $\chi_{(\lambda,\infty)}(|x|)$ is a finite projection for some $\lambda > 0$.
- S(M) be the set of all measurable operators w.r.t. M;
- S(M) equipped with the algebraic operations of the strong addition and multiplication and taking the adjoint of an operator;
- In the case, when M is a finite von Neumann algebras, the algebra S(M) is referred to as the Murray-von Neumann algebra associated with M.

Regularness of $S(\mathcal{M})$

- Let $a \in S(\mathcal{M})$ and let a = v|a| be the polar decomposition of a;
- $l(a) = vv^*$ and $r(a) = v^*v$ are left and right supports of the element a, respectively;
- $s(a) = l(a) \vee r(a)$ is the support of the element a;
- there is a unique element i(a) in $S(\mathcal{M})$ such that ai(a) = l(a), i(a)a = r(a), ai(a)a = a, i(a)l(a) = i(a) and r(a)i(a) = i(a).
- the element i(a) is called the *partial inverse* of the element a.
- $S(\mathcal{M})$ is a regular *-algebra.^{ab}

^bS.K. Berberian, Baer *-rings. Die Grundlehren der mathematischen Wissenschaften, Band 195. Springer-Verlag, New York-Berlin, 1972.

^aK. Saitô, *On the algebra of measurable operators for a general AW*-algebra.* II. Tohoku Math. J. **23** (1971), 525−534.

Measure topology

• Let τ be a a faithful normal finite trace on M. A measure topology t_{τ} on S(M):

$$N(\varepsilon,\delta) = \Big\{ x \in S(M): \, \tau\left(\chi_{(\varepsilon,\infty)}(|x|)\right) \leq \delta \Big\}, \, \, \varepsilon,\delta > 0;$$

• $(S(M), t_{\tau})$ is a complete metrizable topological algebra.

^aE. Nelson, J. Funct. Anal. **15** (1974) 103–116.

Example 1.3

- if $M = \ell_{\infty}$, then $S(M) \cong s \equiv \mathbb{R}^{\aleph_0} + i\mathbb{R}^{\aleph_0}$;
- if $M = L_{\infty}(0,1)$, then $S(M) \cong S(0,1)$;
- if M = B(H), then $S(M) \cong B(H)$.

Various isomorphisms of *-algebras

For *-algebras $\mathcal A$ and $\mathcal B$, a (not necessarily linear) bijection $\Phi:\mathcal A\to\mathcal B$ is called

- a ring isomorphism if it is additive and multiplicative;
- a real algebra isomorphism if it is a real-linear ring isomorphism;
- an algebra isomorphism if it is a complex-linear ring isomorphism;
- a real *-isomorphism if it is a real algebra isomorphism and satisfies $\Phi(x^*) = \Phi(x)^*$ for all $x \in \mathcal{A}$;
- an *-isomorphism if it is a complex-linear real *-isomorphism.

Reduction of the general case to the case of a von Neumann algebra with a faithful normal finite trace

- \mathcal{M} and \mathcal{N} be arbitrary type II₁ von Neumann algebras with f.n.s.t. $\tau_{\mathcal{M}}$ and $\tau_{\mathcal{N}}$, respectively;
- Φ is a ring isomorphism Φ from $S(\mathcal{M})$ onto $S(\mathcal{N})$;
- there exists a family $\{z_i\}_{i\in I}$ of mutually orthogonal central projections in \mathcal{M} with $\bigvee_{i\in I} z_i = 1$ such that $\tau_{\mathcal{M}}(z_i) < +\infty$;
- Φ maps $S(Z(\mathcal{M}))$ onto $S(Z(\mathcal{N}))$, $i \in I$ there exists a family $\{z_{i,j}\}_{j\in J}$ of mutually orthogonal central projections in $z_i\mathcal{M}$ with $\bigvee_{j\in J}z_{i,j}=z_i$ such that $\tau_{\mathcal{N}}(\Phi(z_{i,j}))<+\infty$;
- Φ maps each $S(z_{i,j}\mathcal{M})$ onto $S(\Phi(z_{i,j})\mathcal{N}) \equiv \Phi(z_{i,j})S(\mathcal{N})$ for all $i \in I, j \in J$.
- So, it suffices to consider the type II_1 vNa \mathcal{M} and \mathcal{N} with faithful normal finite traces $\tau_{\mathcal{M}}$ and $\tau_{\mathcal{N}}$.

Outline

- Intoduction
 - Short history
 - Prelimanaries
- 2 Main results
 - Continuity of ring isomorphisms in the measure topology
 - General form of ring isomorphisms

Real-linearity and continuity of ring isomorphisms in the measure topology

Theorem 2.1

Let \mathcal{M} and \mathcal{N} be type II_1 von Neumann algebras. Then any ring isomorphism from $S(\mathcal{M})$ onto $S(\mathcal{N})$ is a real algebra isomorphism.

Theorem 2.2

Let \mathcal{M} and \mathcal{N} be type II_1 von Neumann algebras. Then any ring isomorphism from $S(\mathcal{M})$ onto $S(\mathcal{N})$ is continuous in the local measure topology.^a

^aSh.A. Ayupov, K.K.Kudaybergenov, Ring isomorphisms of Murray-von Neumann algebras, Preprint (2020).

Outline

- Intoduction
 - Short history
 - Prelimanaries
- 2 Main results
 - Continuity of ring isomorphisms in the measure topology
 - General form of ring isomorphisms

Partial order

- Let \mathcal{M} and \mathcal{N} be arbitrary type II₁ von Neumann algebras with faithful normal finite traces $\tau_{\mathcal{M}}$ and $\tau_{\mathcal{N}}$;
- $\Phi: \mathcal{M} \to \mathcal{N}$ be a ring isomorphism;
- Φ is a continuous real algebra isomorphism according to Theorems 2.1 and 2.2;
- for $x, y \in S(\mathcal{M})$ set

$$x \prec y \iff y = x + z, s(x)s(z) = 0;$$

• \prec is a partial order on $S(\mathcal{M})$.

Lemma 2.3

There exists a sequence of projections $\{q_n\}$ in \mathcal{M} with $\tau_{\mathcal{M}}(\mathbf{1}-q_n)\to 0$ such that Φ maps $q_n\mathcal{M}q_n$ into \mathcal{N} .

Range projection

Let $e \in S(\mathcal{M})$ be an idempotent, i.e., $e^2 = e$. Then

$$l(e)e = e, \ el(e) = l(e). \tag{1}$$

The first equality is the definition of the left projection. Using equality ei(e) = l(e) we obtain that

$$el(e) = e(ei(e)) = e^{2}i(e) = ei(e) = l(e).$$

Lemma 2.4

Let $\{e_n\} \subset S(\mathcal{M})$ be a sequence of idempotents such that $e_n \to e \in P(\mathcal{M})$ in the measure topology. Then $l(e_n) \to e$ in the same topology.

Cutting of derivation

Let $D: S(\mathcal{M}) \to S(\mathcal{M})$ be a derivation and let $e \in P(\mathcal{M})$. Then the mapping $D^{(e)}: S(e\mathcal{M}e) \to S(e\mathcal{M}e)$ defined as

$$D^{(e)}(x) = eD(x)e, x \in S(e\mathcal{M}e)$$

is a derivation. Here, essentially used the equality eD(e)e = 0.

But in general, for isomorphisms such type cutting do not work even in the case $\mathcal{M} = \mathcal{N}$, because, in general, $\Phi(e)$ is an idempotent, but is not a projection.

Cutting of isomorphism

- $p \in \mathcal{M}$ be an arbitrary projection;
- $\Phi(p)^2 = \Phi(p^2) = \Phi(p)$. But in general, $\Phi(p)^* \neq \Phi(p)$.
- $\widetilde{p} = l(\Phi(p))$ is the range projection of $\Phi(p)$;
- the mapping $\Phi_{p,\widetilde{p}}: S(p\mathcal{M}p) \to S(\widetilde{p}\mathcal{N}\widetilde{p})$ defined as

$$\Phi_{p,\widetilde{p}}(x) = \Phi(x)\widetilde{p}, x \in S(p\mathcal{M}p)$$
(2)

is a real algebra isomorphism from S(pMp) onto $S(\widetilde{p}N\widetilde{p})$.

Lemma 2.5

There exists a sequence of projections $\{p_n\}$ in \mathcal{M} with $\tau_{\mathcal{M}}(\mathbf{1}-p_n)\to 0$ such that $\Phi_{p_n,\widetilde{p_n}}$ maps $p_n\mathcal{M}p_n$ onto $\widetilde{p_n}\widetilde{\mathcal{N}}\widetilde{p_n}$ for all $n\in\mathbb{N}$, where $\Phi_{p_n,\widetilde{p_n}}$ is defined by (2).

Main Theorem

The following main result confirms the Conjecture 5.1^1 and answers the above Question 1.2 for the type II_1 case.

Theorem 2.6

Let \mathcal{M} and \mathcal{N} be von Neumann algebras of type II_1 . Suppose that $\Phi: S(\mathcal{M}) \to S(\mathcal{N})$ is a ring isomorphism. Then there exist an invertible element $a \in S(\mathcal{N})$ and a real *-isomorphism $\Psi: \mathcal{M} \to \mathcal{N}$ (which extends to a real *-isomorphism from $S(\mathcal{M})$ onto $S(\mathcal{N})$) such that $\Phi(x) = a\Psi(x)a^{-1}$ for all $x \in S(\mathcal{M})$.

^aSh.A. Ayupov, K.K.Kudaybergenov, Ring isomorphisms of Murray-von Neumann algebras, Preprint (2020).

¹M. Mori, Lattice isomorphisms between projection lattices of von Neumann algebras, arXiv:2006.08959 (2020).

Main Theorem

Corollary 2.7

Let \mathcal{M} and \mathcal{N} be von Neumann algebras of type II_1 . The projection lattices $P(\mathcal{M})$ and $P(\mathcal{N})$ are lattice isomorphic, if and only if the von Neumann algebras \mathcal{M} and \mathcal{N} are real *-isomorphic (or equivalently, \mathcal{M} and \mathcal{N} are Jordan *-isomorphic).

Example 2.8

Let \mathcal{R} be a hyperfinite factor of type II_1 . There exists an *-regular subalgebra $\mathcal{A} \subset S(\mathcal{R})$ which admits an algebra automorphism, discontinuous in the measure topology.