Holographic confinement confronts lattice

Niko Jokela

Key collaborators: C.Hoyos, J.M.Penín, A.Pönni, A.V.Ramallo, T. Rindlischbacher, K.Rummukainen, A.Salami, J.G.Subils, J.Tarrío

Holography: from high-energy physics to quantum information virtually in Steklov Mathematical Institute Moscow – 19 October 2020

Outline

- Motivation
- 1. Bulk story: gravity side
 - Is entanglement a probe of confinement?
- 2. Boundary meets bulk
 - Bulk reconstruction from data
- 3. Boundary story: gauge field theory side
 - Simulating Yang-Mills to extract entanglement entropy
- Summary

Motivation

Wish to understand confinement

```
conformal symmetry must be broken
```

- Non-perturbative: defied analytic attempts. Numerical progress.
- Use non-AdS/non-CFT
- Tools at disposal:
 - Wilson etc loops
 - Entanglement entropy
 - C-functions
- Holography is never going to solve confinement, but

```
we may learn valuable lessons
```

Holography score card by comparison to YM simulations

Why entanglement entropy?

- Quantum information theory (related entanglement measures)
- Universal order parameter for quantum phase transitions
 [Kitaev-Preskill hep-th/0510092]
- "Measured" in cold atom systems

[Islam et al. 1509.01160]

- $N_c \ll \infty$: Computable from the lattice [Buividovich-Polikarpov 0802.4247, . . .]
- $N_c = \infty$: Holography
 - simple prescription via minimal surfaces [Ryu-Takayanagi hep-th/0603001, Hubeny-Rangamani-Takayanagi 0705.0016]
 - relationship to black hole entropy
- Claim from holography: entanglement probes confinement [Nishioka-Takayanagi hep-th/0611035,Klebanov-Kutasov-Murugan 0709.2140]

Is entanglement a probe confinement?

- Effective degrees of freedom:
 - deconfining phase: colorful (e.g. gluons) $\sim \mathcal{O}(N_c^2)$
 - ullet confining phase: color singlets (e.g. glueballs) $\sim \mathcal{O}(1)$
- Derived quantities of EE capture the number of dofs
- Key idea: C-function constructed from EE acts as an order parameter for deconfinement at $N_c\sim\infty$
- Disclaimer:
 - in the presence of fundamentals, there is no local order parameter at finite- N_c [see however Cherman-Jacobson-Sen-Yaffe 2007.08539]
 - not equivalent to linear interquark potential at large separation [NJ-Subils 2010.tomorrow]

C-theorems

C-theorems state that \exists a function $C(g_i, \Lambda)$ s.t.

- decreases under RG
- is stationary at fixed points
- morally counts dofs: at UV more than at IR

Assuming Lorentz invariance under RG:

- 1d: g-theorem: thermal free energy decreases [Affleck-Ludwig '90]
- 2d: Zamolodchikov's c-theorem, at fixed points CFT and hence c = central charge
- 3d: F-theorem (F=free energy on sphere), holographic proofs
 [Jafferis, Jafferis-Klebanov-Pufu-Safdi]
 [Casini-Huerta]
- 4d: a-theorem (a = anomaly) [perturbative proof Osborn, non-perturbative Komargodski-Schwimmer]
- >4d: only holographic proposals

[Myers-Sinha,Liu-Mezei]

In anisotropic case, many proposals only from holography...

 $[\dots, \mathsf{Hoyos}\text{-}\mathsf{NJ}\text{-}\mathsf{Penin}\text{-}\mathsf{Ramallo}\ 2001.08218,\dots]$

Definition of EE

ullet Take scalar QFT in \mathbb{R}^{d+1} in vacuum state $|0\rangle$ and split

$$A = \mathbb{R}^d \times I_\ell$$
 , $B = \mathbb{R}^d \times (\mathbb{R} - I_\ell)$

• Quantum entanglement (von Neumann) entropy

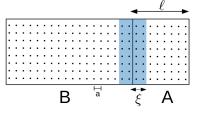
$${\cal S}_{A}=-{
m Tr}
ho_{
m A}\log
ho_{
m A}$$
 , reduced density matrix $ho_{
m A}={
m Tr}_{
m B}|0
angle\langle 0|$

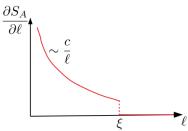
 EE for region A is entropy seen by an observer unable to access dofs in B

Toy example

• Consider 1+1d example [Calabrese-Cardy hep-th/0405152,0905.4013, Holzhey-Larsen-Wilczek

$$S_A(\ell) = \left\{ \begin{array}{ll} \frac{c}{3} \log \frac{\ell}{a} + const. & , \ \ell \ll \xi \\ \frac{c}{6} \log \frac{\xi}{a} & , \ \ell \gg \xi \end{array} \right.$$





• A possible proposal for a c-function would be

$$c(\ell) = 3\ell \frac{\partial S_A}{\partial \ell}$$

as it picks the central charge.

1. Bulk story

Holographic entanglement entropy

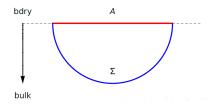
Given a spatial partition of the (d + 1)-dim. spacetime on QFT:

[Ryu-Takayanagi hep-th/0603001, Hubeny-Rangamani-Takayanagi 0705.0016,...]

$$S_A = \min rac{\operatorname{Vol}(\Sigma)}{4G_N^{10}} \; ,$$

where Σ is a co-dimension two bulk surface subject to

- Σ is homologous to A
- $\partial \Sigma = \partial A$



Holographic Wilson loop

 The Wilson loop operator is dual to the partition function of fundamental strings attached to the boundary [Rey-Yee hep-th/9803001, Maldacena hep-th/9803002]

$$\langle W(C) \rangle = \int_{\partial \Sigma = C} dX e^{-S_{string}(X)} .$$

- In the 't Hooft limit, sufficient to minimize the bosonic tree-level Nambu-Goto action.
- Potential for quarks separated by $L \ll \tau$ (temporal loop)

$$V(L) = \frac{S_{NG} - S_{NG}^{\parallel}}{\tau} .$$

Holographic EE and Wilson loops

- For simplicity, let us consider temporal Wilson loop and entanglement entropies for strips/slabs of width ℓ .
- For a (d+1)-dimensional scale-free theory dual to $AdS_{d+2} \times \mathcal{M}_{8-d}$, the finite parts are trivial to compute

$$V(L) \propto 1/L$$

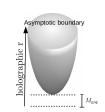
 $S_{RT} \propto 1/\ell^{d-1}$

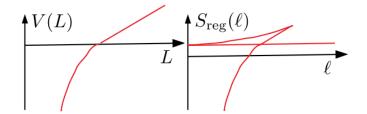
• Our interest, asymptotically free theories close to (super) Yang-Mills in 3d and 4d, dual to geometries induced by Dp-branes, p = 2,3:

$$V(L)\big|_{p=2} \propto 1/L^{2/3}$$

 $S_{RT} \propto 1/\ell^{\frac{4}{5-p}}\big|_{p=2} = 1/\ell^{4/3}$

• Common lore: geometries that are confining are cigar-like or have some "IR bottom"

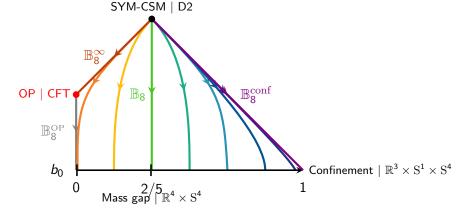




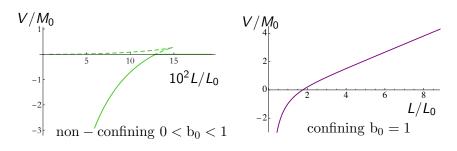
- ⇒ both are sensitive to deconfinement transition
 - We claim: not so fast!

• Case study in a family of theories
[Faedo-Mateos-Pravos-Subils 1702.05988]
[NJ-Subils 2010.tomorrow]

$$U(N)_k \times U(N+M)_{-k}$$

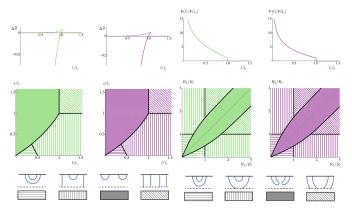


By defining the holographic confinement as linear potential



we can investigate whether entanglement measures can distinguish the two.

 No entanglement measure cannot distinguish confining theory from non-confining



• Entanglement is instead sensitive to mass gap:

EE transition \leftrightarrow *finite correlation length* ξ

2. Connecting boundary with bulk

Bulk reconstruction

- This is applied AdS/CFT in reverse
- Idea: take boundary measurements and attempt to "guess" what is bulk
- All examples of duality involve strongly coupled gauge field theories
- Need either lattice simulations or experimental measurements
 - they are noisy
 - ⇒ one cannot find precise dual geometry
- How to deal with inherently noisy data?

[NJ-Pönni 2007.00010]

- Make as little assumptions on bulk as possible: use RT
 can only reconstruct some components of the bulk metric
- Important point: data for $dS_{EE}/d\ell$ available from lattice
- Can be shown, for a given metric that:

$$\frac{dS_{RT}}{d\ell} = f(r_*) \; , \; r_* = {\sf tip} \; {\sf of} \; {\sf RT} \; {\sf surface}$$

- Naive approach would then to fit $f(r_*)$ and hence try to get the "best" metric
- A more sophisticated approach is to appreciate that the data is noisy:

$$\left\{ \left(\frac{1}{V}\frac{dS}{d\ell}\right)_{i}, \ell_{i}, \sigma_{i} \right\}, i \in 1, \dots, N$$

• For simplicity, consider 5d bulk:

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(-\frac{b(z)}{a(z)^{2}} dt^{2} + \frac{a(z)^{2}}{b(z)} dz^{2} + d\vec{x}^{2} \right) , \ b(z) = 1 - \left(\frac{z}{z_{h}} \right)^{4}$$

$$a(z) = 1 + \sum_{i=1}^{N_{basis}} a_{i} f_{i}(z) , \ f_{i}(1) = f_{i}(0) = 0 .$$

Key point, by use of chain rule

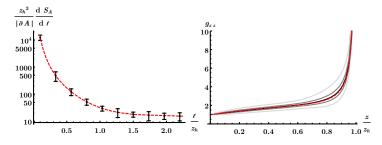
$$\frac{4G_N}{R^3} \frac{1}{V} \frac{dS_{RT}}{d\ell} = \frac{1}{z_*^3}$$

implies that the noisy data of $\partial_\ell S$ is really noisy data of $1/z_*^3$

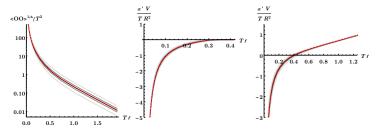
Use Hamiltonian Monte Carlo sampling to obtain posterior distributions

$$\left\{a_{1,\ldots,N_{basis}},\frac{R^3}{4G_N}\right\}$$

• Test scenario by synthetic data



Application to obtain predictions via AdS/CFT



- The method works for any d
- Can be used for bulk reconstruction given any finite data
 - Entanglement entropy, mutual information, purification, ...
 - Wilson etc loops
 - Two-point functions
 - :
- Enjoys other straightforward generalizations
 - UV can be changed e.g. to Dp asymptotics
 - IR horizon asymptotics can be replaced
- Code available at https://github.com/arpn/hee_hmc
- Need real data!

3. Boundary story

Existing results in the literature

Desire to have Yang-Mills lattice simulations to extract EE

- Relation of EE to free energy / path integral [Calabrese-Cardy'04&'05]
- Prescription for free energy measurements
 [Fodor'07,Endrödi-Fodor-Katz-Szabo'07]
- Pure glue SU(2) in 4d

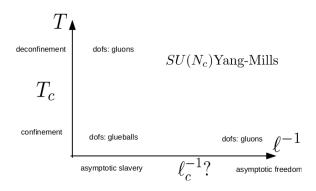
[Buividovich-Polikarpov'08]

- Pure glue SU(3) in 4d [Nakagawa-Nakamura-Motoki-Zakharov'09,Itou-Nagata-Nakagawa-Nakamura-Zakharov'11&'15]
- Pure glue SU(2,3,4) in 4d
 [Rabenstein-Bodendorfer-Buividovich-Schäfer'18]
- Pure glue $SU(N_c)$ both in 3d and 4d

[this work]

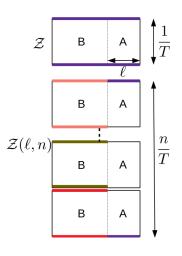
Simulating Yang-Mills theory

• Expected phase diagram for pure glue



 \bullet Can simulate any d or N_c , in practice [NJ-Pönni-Rindlischbacher-Rummukainen-Salami work in progress] $3d \quad \text{and} \quad 4d \quad , \qquad N_c \ll \infty$

Replica method



Entanglement entropy

$$S_{A} = -\lim_{n \to 1} \partial_{n} \log \operatorname{Tr}_{A} \rho_{A}^{n}$$
$$= -\lim_{n \to 1} \partial_{n} \log \frac{\mathcal{Z}(\ell, n)}{\mathcal{Z}^{n}}$$

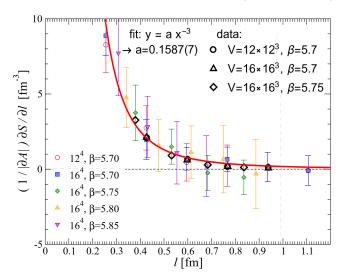
Our interest

$$\partial_{\ell}S_{A} = \lim_{n \to 1} \partial_{\ell}\partial_{n}F(\ell, n)$$

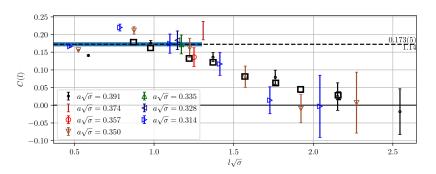
$$\approx \frac{F(\ell + a, 2) - F(\ell, 2)}{a}$$

$SU(N_c = 3)$, 4d

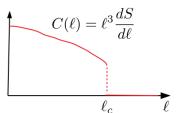
- Compares well with previous results in the literature [here shown Nakagawa-Nakamura-Motoki-Zakharov 1104.1011]
- Our statistical errors are invisible to eye (black markers).



$SU(N_c = 3)$, 4d



vs. holography
$$S_A = \frac{N_c^2}{a^2} - \frac{N_c^2}{\ell^2} \left(1 + \log(\ell/a)?\right) + \dots$$
 [Ryu-Takayanagi hep-th/0605073]



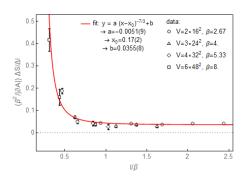
Simulating Yang-Mills theory

Points of interest

- $\ell_c \sim 0.8 \mathrm{fm} \sim \Lambda_{\mathrm{QCD}}^{-1}$?
- finite-T: does $dS_A/d\ell \to S_{BH}$ as $\ell \to \infty$?
- Does the C-function scale as $N_c^2 1$?
 - replica number dependence
- •
- shape dependence
- more cuts (mutual info), corners (cusp anomalous dimension)
- putting in fermions, or susy, is expensive, but other holographic tests can be done

$SU(N_c = 2)$, 3d

• New results for $SU(N_c)$ in 3d



- Aim to make a more direct comparison to D2-brane background
 - at UV (small ℓ) $dS/d\ell \sim \ell^{-7/3}$
 - at IR (large ℓ) $dS/d\ell \sim {\rm const.} = {\rm S_{BH}}?$

Summary

- Holo-entanglement does not probe confinement, but mass gap
- Lattice data for EE or Wilson loops can be generated $N_c \ll \infty$
- This data can be used to reconstruct the dual geometry
- Allows new predictions in same QFT w/ confidence intervals
- New era has begun

Precision holography!

Thank you!