

En route to a self-consistent AdS/QCD model in a magnetic background

DAVID DUDAL

KU Leuven-Kulak, Belgium

Talk during "Frontiers of holographic duality-2" (Steklov Mathematical Institute, online, Moscow), 27/10/2020

Based on

- ► H. Bohra, D. Dudal, A. Hajilou and S. Mahapatra, Phys.Lett.B 801 (2020) 135184
- ► H. Bohra, D. Dudal, A. Hajilou and S. Mahapatra, [arXiv:2010.04578 [hep-th]].
- ▶ Work in progress.

Overview

A few words on QCD

Motivation for this work

Holographic QCD in a magnetic field: model setup

Holographic QCD in a magnetic field: deconfinement and string tensions

Holographic QCD in a magnetic field: chiral sector

Quantum chromodynamics (at zero temperature)

2 crucial "effects"

 confinement: no free color charges (quarks/gluons), but only color-neutral states (mesons, baryons including proton and neutron, glueballs, hybrids)

- issue of chiral symmetry breaking: QCD action has chiral symmetry (very light quarks)
 - ⇒ dynamically this symmetry gets broken
 - \Rightarrow quarks get large effective masses, which in return "feed" the mass of the hadrons.
- ▶ Why so difficult: inherently nonperturbative problems: effects in e^{-1/g^2}

Quantum chromodynamics

2 crucial strong coupling effects

- ► These are in fact "old problems", but still not fully understood, let stand alone formally proven!
- What happens at (very) high temperature, relevant for quarkgluon plasma (QGP)(RHIC or ALICE heavy ion collision, early universe)?
 - With high, we mean $T\sim 200$ MeV $\sim 10^{12}$ K $\sim 100000\times$ the temperature in the Sun's core.
- Thermal energy can (and does) destroy confinement bonds.
- Nonetheless, $g^2(T) \gg 1$, thus still strongly coupled physics at phase transition.
- Similar comments for high density QCD, also relevant for compact stellar objects.

Computation in QCD

How to extract physical information from QCD?

- QCD = strongly coupled/nonperturbative physics is important
- hard to handle analytically
- several options:
 - 1. model building I: e.g. AdS/QCD aka Holographic QCD.
 - 2. model building II: e.g. effective models like NJL models, ...
 - 3. computer simulations: lattice QCD
 - 4. quantize the theory and try to get as good information as possible by variety of techniques (e.g. Dyson-Schwinger)

Computation in QCD

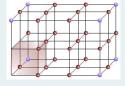
How to extract physical information from QCD?

- QCD = strongly coupled/nonperturbative physics is important
- hard to handle analytically
- several options:
 - model building I: e.g. AdS/QCD aka Holographic QCD = this talk's method
 - 2. model building II: e.g. effective models like NJL models, ...
 - 3. computer simulations: lattice QCD
 - 4. quantize the theory and try to get as good information as possible by variety of techniques (e.g. Dyson-Schwinger)
 - compare with experiment and/or lattice data the intermediate and final results

Computation in QCD

Lattice simulations

 Lattice QCD: gauge invariant expectation values can be computed without gauge fixing (space-time is discretized).



- ► Use Monte Carlo simulations with partition function $\int [dA]e^{-S_{YM}}$
- ► The numerical estimates are in good agreement with experimental data
- Comment: Real-life QCD (with massless/massive dynamical quarks) is however not that easy to simulate...
- Also difficult for real-time applications (transport properties, decays etc) or at finite density: sign (oscillatory) problem!

Overview

A few words on QCD

Motivation for this work

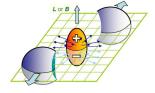
Holographic QCD in a magnetic field: model setup

Holographic QCD in a magnetic field: deconfinement and string tensions

Holographic QCD in a magnetic field: chiral sector

Why study strong magnetic fields?

Experimental relevance: appearance in QGP after a (non-central) heavy ion collision (order $eB \sim 1-15 m_\pi^2$) (Skokov, Tuchin, Kharzeev, McLerran, Deng, Huang ...)



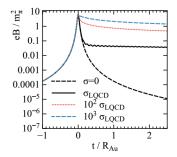
B+ its anisotropy \Rightarrow unexpected experimental features?

- ► Interesting new anomalous (transport) effects (chiral magnetic effect CME, chiral magnetic wave CMW), with analogues in condensed matter physics.
- ▶ no sign problem for finite *B* simulations!

Why study strong magnetic fields?

Lifetime $_{\rm constant~\it B}\sim 10~\rm fm$ McLerran, Skokov, NPA929 (2014); Tuchin, PRC88 (2013) .

Lifetime $_{QGP}\sim 1-10$ fm \rightarrow incentive to take $\vec{B}=\vec{Be_z}$ constant (ignoring "spatial decay" as well!) $B_{LHC}\sim 0.2-0.3$ GeV²



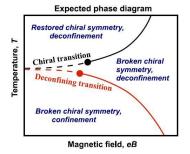
 eF/m_{π}^{2} 0.1 0.001 10^{-5} 10^{-7} 2 4 6 8 10 t(fm)

Figure: McLerran, Skokov, NPA929 (2014)

Figure: Tuchin PRC88 (2013)

Phase transitions in a magnetic field: magnetic catalysis?

Deconfinement transition T_{crit} and/or chiral transition T_{chiral} depending on B? If so, how?



Expected (chiral) behaviour: strong $\vec{B} \Rightarrow$ dynamics squeezed along \vec{B} , \sim effectively a 2D theory, known to exhibit magnetic catalysis (Miransky et al).

Lattice QCD (our experiment under these circumstances): *inverse* magnetic catalysis

Unquenched lattice data: $T_{chiral}(eB) = T_{crit}(eB) \equiv T(eB)$ goes down.)

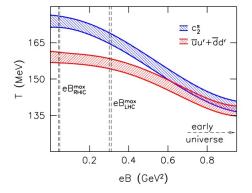


Figure: Bali et al, JHEP 1202 (2012); PRD86 (2012).

Any (in)direct experimental evidence for \vec{B} in QGP?

- ightharpoonup no direct evidence of \vec{B} .
- CME/CMW: possibly, but signal still consistent with zero, albeit with large errors. See Zhao and Wang, Prog. Part. Nucl. Phys. 107 (2019). Also "theoretical doubts", see Rybalka, Gorbar, Shovkovy, Phys. Rev. D 99 (2019) (overdampening effect in the quark-gluon plasma destroys CME/CMW).
- Relation to anisotropy in direct photon production? (elliptic flow) [PHENIX Collaboration], Nucl. Phys. A 931 (2014) 1189; [ALICE Collaboration], J. Phys. Conf. Ser. 446 (2013) 012028.
- ► Relation to hyperon polarization? [STAR], Phys. Rev. C 98, 014910 (2018)

(De)confinement order parameter in Euclidean space

Theoretical (formal) view on (de)confinement: VEV of Polyakov loop (breaking or not of \mathbb{Z}_N center "symmetry").

$$\langle P
angle = \langle \mathscr{P} e^{\int_0^\beta dt \mathsf{A}_0}
angle \sim e^{-\mathsf{F}_q \mathsf{T}}$$

- \triangleright β = inverse temperature, F_q = free energy of a quark.
- ▶ Center transformation = gauge transformation that is periodic-in-t up to a center transformation z_n . Leaves QCD action invariant in absence of quarks, but $\langle P \rangle \rightarrow z \langle P \rangle$
- ▶ Preserved symmetry iff $\langle P \rangle = 0$, that is, if $F_q = \infty$, that is, one cannot create a free quark: confinement!
- ▶ Deconfinement phase transition at T_c where $\langle P \rangle \neq 0$.
- ▶ In presence of quarks, only pseudo-order parameter (cross-over).
 So study of ⟨P⟩ still viable, also accessible via lattice.
- $ightharpoonup \langle P \rangle$ is experimentally not so useful to "measure" onset of deconfinement.

D. Dudal B-AdS/QCD 14 / 4

Polyakov loop from lattice QCD

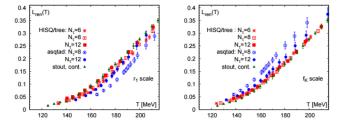


Figure: Bazavov et al, PRD85 (2012). T_c is inferred from the inflection point.

A complementary view

(Matsui/Satz PLB178 (1986))

- Phenomenological view on deconfinement: QCD bound states are "melted away".
- Prototypical example: charm bound state, J/ψ . Its suppression known to be a good signal for the plasma phase

Known to only melt "beyond deconfinement"; lattice spectral function analysis Asakawa/Hatsuda PRL92 (2004)

One can investigate how B influences the J/Ψ melting! See e.g. Braga's talk

A complementary view

- An important ingredient in the J/Ψ phenomenology is the linear potential (string tension) between the heavy constituents. Confining potential becomes B-dependent, elements of anisotropy \rightarrow backlash on quarkonia properties!
- ► Various studies on the market on quarkonia in *B*-field Bonati et al, Dudal & Mertens, Strickland et al, Braga et al....

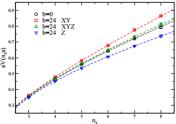


Figure: D'Elia et al, PRD89 (2014), PRD94 (2016) (lattice) + Chernodub, Mod.Phys.Lett.A 29 (2014) (pheno): static quark potential stronger in \bot direction than in \parallel one

So what will we be interesting in during this talk and how we'll look into these issues?

- String tension between heavy quarks in terms of \vec{B} (see also Slepov's talk).
- Deconfinement and chiral transition.
- → Via self-consistent holographic (AdS/QCD) model.
- ▶ Long(er) term goals: a full holographic study of elliptic flow, or the lifetime of the magnetic field, or ..., is not feasible/realistic. But certain (crucial) ingredients for such other studies are e.g. the EM conductivity, the heavy quark diffusion rates, the magnetization, etc. These are inherently non-perturbative QCD quantities, sometimes hard to access with lattice tools, but accessible (to some extent) by AdS/QCD.

Let us first try to construct a reliable dual background, inspired by lattice QCD input in circumstances where the latter is available.

Overview

A few words on QCD

Motivation for this work

Holographic QCD in a magnetic field: model setup

Holographic QCD in a magnetic field: deconfinement and string tensions

Holographic QCD in a magnetic field: chiral sector

How to make magnetic predictions in holographic QCD models?

- Confinement is modeled in/described by background metric (e.g. AdS with a cut-off)
 - Cut-off scale is needed to break conformal invariance, to provide a QCD scale.
- Quark physics is mostly modeled in via probe branes/effective (DBI) actions (→ "quenched QCD": no dynamical quarks) (exception is V-QCD, Jarvinen et al, JHEP 03 (2012) and follow-up works.)
- problematic to capture all magnetic field effects: B can only couple to neutral glue/geometric background if charged quark dynamics is taken into account!
- ▶ In general: deconfinement transition ↔ interpreted as Hawking-Page transition in dual picture [free energy comparison]. Checks with Polyakov loop.

Dudal B-AdS/QCD 19 / 47

(original) Soft wall model

Karch, Katz, Son, Stephanov, PRD74 (2006)

low T confined phase

$$ds^2 = \frac{L^2}{r^2} \left(-dt^2 + d\mathbf{x}^2 + dr^2 \right), \qquad e^{-\Phi} = e^{-cr^2},$$

r = 0 (the QCD boundary) ... ∞ .

high T deconfined phase (black hole)

$$ds^2 = \frac{L^2}{r^2} \left(-f(r)dt^2 + d\mathbf{x}^2 + \frac{dr^2}{f(r)} \right), \qquad e^{-\Phi} = e^{-cr^2}$$

 $f(r) = 1 - r^4/r_h^4. \ r = 0 \dots r_h; \ T = \frac{1}{\pi r_h}.$

(original) Wall metric

Erlich, Katz, Son, Stephanov PRL95 (2005)

Soft wall action

$$S \propto \int d^5 x \sqrt{-g} e^{-\Phi} \text{tr} \left[F_{L,\mu\nu}^2 + F_{R,\mu\nu}^2 + |DX|^2 - m_5^2 |X|^2 \right]$$

(Einstein-Hilbert + Gibbons-Hawking boundary part not written)

Hard wall

dilaton $\Phi = 0$, but AdS cut hardly at $z = z_c$. The rest is the same.

A few (well known) properties

Field content, chiral dynamics, deconfinement

- ► A~ (gauge invariant) operators on the boundary (mesons)
- ightharpoonup X =bifundamental, $X \sim \langle \overline{q}q \rangle$.
- String tension $\sigma_{QCD} \propto 1/r_0$ in hard wall. (No area law in this simple soft wall!)
- Linear behaviour $m_n \sim n$ in soft wall. Not in hard wall!
- Few parameters fixed by matching on QCD states at $T = 0 \Rightarrow$ decent results also for other states.
- QCD-desired chiral behaviour (GMOR relation etc).
- ▶ Deconfinement phase transition: $T_c \sim$ 122 MeV (hard) or $T_c \sim$ 191 MeV (soft) (Herzog, PRL98 (2007)).
- ► Neither hard or soft wall solve the bulk Einstein EOMs. (though, more involved AdS/QCD models do, evidently at the cost of complication, already for B = 0. but then also linear confining potential etc possible.)

Step 1: Einstein-Maxwell-Dilaton action

$$S_{EM} = -\frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \, \left[R - \frac{f_1(\phi)}{4} F_{(1)MN} F^{MN} - \frac{f_2(\phi)}{4} F_{(2)MN} F^{MN} - \frac{1}{2} \partial_M \phi \partial^M \phi - V(\phi) \right].$$

▶ We use $U(1) \times U(1)$, dual to baryon number current and to EM current.

[Simplification of course, we are currently generalizing to QCD appropriate $U_b(1) \times SU_V(2) \times SU_A(2)$]

- [In theory: magnetic field can couple to mesons, but in U(1) setting no charged mesons. Using the (unbroken) U(1)'s in $U_b(1) \times SU_V(2) \times SU_A(2)$ to introduce appropriate vector potential and charged mesons. But this is not yet finished.]
- We use 1 U(1) to couple a constant B-field to the theory, the other one to describe meson fluctuations.
- ► $B_{phys} \propto \frac{B}{I}$; we will keep using B.

Step 2: potential reconstruction method

- ▶ Dilaton potential $V(\phi)$ not yet fixed.
- We will parameterize the metric, introduce a few Ansätze and construct the (on-shell) potential corresponding V(z) to the choices.
 This is a potential reconstruction approach, see also Alanen et al, Phys. Rev. D 80, 126008 (2009); Aref'eva, Slepov et al.
- ► A posteriori, we will check if that potential meets some physical requirements.

D. Dudal B-AdS/QCD 24 / 47

Step 3: the Ansätze

$$ds^{2} = \frac{L^{2}S(z)}{z^{2}} \left[-g(z)dt^{2} + \frac{dz^{2}}{g(z)} + dy_{1}^{2} + e^{B^{2}z^{2}} \left(dy_{2}^{2} + dy_{3}^{2} \right) \right],$$

$$\phi = \phi(z), \ A_{(1)M} = A_{t}(z)\delta_{M}^{t}, \ F_{(2)MN} = Bdy_{2} \wedge dy_{3}.$$

We set

$$f_1(z) = \frac{e^{-cz^2 - B^2z^2}}{\sqrt{S(z)}}.$$

then vector meson spectra on linear Regge trajectories for B=0, with $m_n^2=4cn$. $c=1.16~{\rm GeV}^2$ by matching with lowest lying heavy meson states J/Ψ and Ψ' .

$$S(z) = e^{2A(z)}$$

A common choice is $A(z)=-az^2$ (see also original wall model or Andreev, Phys.Rev.D 73 (2006) with $a=0.15~{\rm GeV}^2$ to match deconfinement temperature $T_{crit}\approx 0.27~{\rm GeV}$ with $N\to\infty$ lattice extrapolation

Step 4: solving the Einstein, ϕ and A_t -EOMs

with boundary conditions

$$g(0)=1$$
 and $g(z_h)=0$ (black hole) or $g(z)\equiv 1$ (thermal AdS), $A_t(0)=\mu$ and $A_t(z_h)=0$, $S(0)=1$, $\phi(0)=0$.

The dilaton in particular:

$$\begin{split} \varphi(z) &= \frac{\left(9a - B^2\right)\log\left(\sqrt{6a^2 - B^4}\sqrt{6a^2z^2 + 9a - B^4z^2 - B^2} + 6a^2z - B^4z\right)}{\sqrt{6a^2 - B^4}} \\ &+ z\sqrt{6a^2z^2 + 9a - B^2\left(B^2z^2 + 1\right)} - \frac{\left(9a - B^2\right)\log\left(\sqrt{9a - B^2}\sqrt{6a^2 - B^4}\right)}{\sqrt{6a^2 - B^4}} \,. \end{split}$$

 \rightarrow $B^4 < 6a^2$ to ensure $\phi \in \mathbb{R}$.

D. Dudal B-AdS/QCD 26 / 47

Physicalness of the potential

- $ightharpoonup \phi
 ightarrow 0$ for z
 ightharpoonup 0 (so conformal limit in the UV)
- ► $V(\phi) = -\frac{12}{L^2} + \frac{\Delta(\Delta 4)}{2}\phi^2 + ..., 2 < \Delta < 4$ (so expected AdS limit for $\phi \to 0$ and BF bound is OK)
- ▶ $V(z) \le V(0)$ (so Gubser stability criterion is also met)
- $V(\phi)$ is (almost) a genuine function of just ϕ , in that sense there is (almost) no dependence on T (or z_h), μ or B. This can be inferred from the following figures.

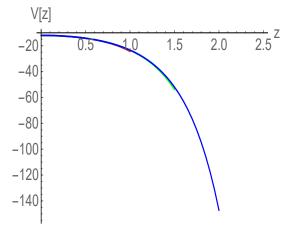


Figure: The variation of potential as a function of z for different z_h . Here $\mu=0$ and B=0 are considered. Here red, green and blue curves correspond to $z_h=1$, $z_h=1.5$ and $z_h=2$ respectively.

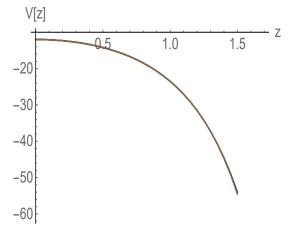


Figure: The variation of potential with different values of μ . Here B=0 and $z_h=1.5$ are considered. Red, green, blue and brown curves correspond to $\mu=0,0.2,0.4$ and 0.6 respectively.

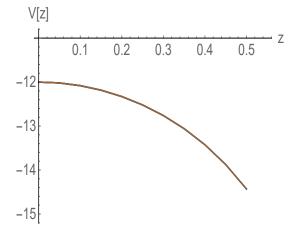


Figure: The variation of potential with different values of μ . Here B=0 and $z_h=0.5$ are considered. Red, green, blue and brown curves correspond to $\mu=0,0.2,0.4$ and 0.6 respectively.

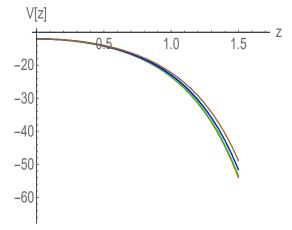


Figure: The variation of potential with different values of B. Here $\mu=0$ and $z_h=1.5$ are considered. Red, green, blue and brown curves correspond to $B=0,\,0.1,\,0.2$ and 0.3 respectively.

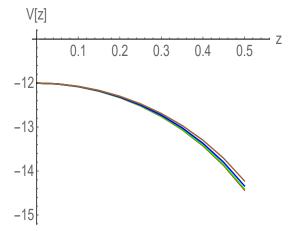


Figure: The variation of potential with different values of B. Here $\mu=0$ and $z_h=1.5$ are considered. Red, green, blue and brown curves correspond to $B=0,\,0.1,\,0.2$ and 0.3 respectively.

Overview

A few words on QCD

Motivation for this work

Holographic QCD in a magnetic field: model setup

Holographic QCD in a magnetic field: deconfinement and string tensions

Holographic QCD in a magnetic field: chiral sector

Thermodynamics and deconfinement transition

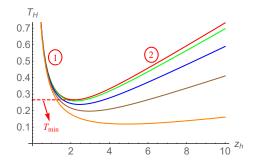


Figure: Temperature T as a function of horizon radius z_h for various values of the magnetic field B and $\mu=0$. Here red, green, blue, brown and orange curves correspond to B=0, 0.15, 0.30, 0.45 and 0.6 respectively. In units GeV. 1 is a stable, "large" black hole, 2 is an unstable, "small" black hole phase. Below T_{min} , there is no black hole. But there is a Hawking-Page transition from thermal AdS to 1 for $T>T_{HP}>T_{min}$.

Thermodynamics and deconfinement transition

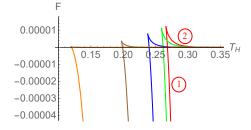
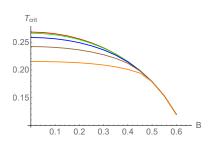


Figure: Free energy F as a function of temperature T for various values of the magnetic field B and $\mu=0$. Here red, green, blue, brown and orange curves correspond to $B=0,\,0.15,\,0.30,\,0.45$ and 0.6 respectively. In units GeV. 1 is a stable, "large" black hole, 2 is an unstable, "small" black hole phase.

Deconfinement transition and inverse magnetic catalysis



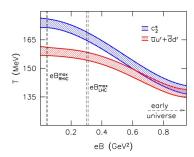


Figure: The variation of thermal AdS–black hole phase transition critical temperature T_{crit} with magnetic field B for various values of chemical potential μ . Here red, green, blue, brown and orange curves corresponds to $\mu=0.0,\,0.3,\,0.6,\,0.9$ and 1.2 respectively. In units GeV. Qualitatively consistent with lattice data. We do not have the inflection point). Remember, we are **mimicking** magnetized QCD: no (dynamical) fermions to "explain" B-dependent metric.

D. Dudal B-AdS/QCD 35 / 47

Wilson loop and string tension

$$\mathcal{F}(\ell,T) = TS_{NG}^{on-shell}(\ell,T)$$

where

$$S_{NG} = rac{1}{2\pi\ell_s^2} \int d au d\sigma \sqrt{-\det G_s}$$

$$T_s = \frac{1}{2\pi\ell_s^2}$$
; $G_s = \text{induced metric}$

- ▶ The dual of the Wilson loop (rectangle $R \times T$) VEV comes from the free energy (via Nambu-Goto action) of an open string connecting the quark q with antiquark \bar{q} , with separation $R \equiv \ell$ Maldacena, PRL (1998), Brandhuber et al, PLB (1998).
- lacksquare String frame: $(g_s)_{MN}=e^{\sqrt{\frac{2}{3}}\phi}g_{MN}$ and $A_s(z)=A(z)+\frac{1}{\sqrt{6}}\phi(z)$.
- ▶ Regularization/renormalization around $z = \varepsilon$, minimal subtraction of divergences, following Ewerz et al, JHEP **1803**, 088 (2018).

Wilson loop and string tension: parallel case

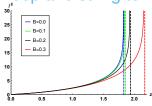


Figure: ℓ^{\parallel} as a function of z^{\parallel}_* in the thermal AdS background for different (small) magnetic fields and $\mu=0$. In units GeV. There is a kind of "dynamical wall" disallowing deeper penetration into the bulk (related to $A_{\mathcal{S}}(z)$ having a minimum)

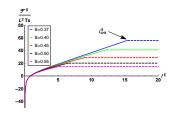


Figure: \mathcal{F}^{\parallel} as a function of ℓ^{\parallel} in the thermal AdS background for different (large) magnetic fields and $\mu=0$. In units GeV.

- ▶ q, \bar{q} pair parallel/orthogonal to \bar{B} .

 Two possible string-configurations: \cup hanging down until $z = \ell^*$ (connected) and 2 straight lines (disconnected).
- ▶ Depending on *B*, the connected or disconnected configuration has lower energy.

D. Dudal B-AdS/QCD 37 / 47

Wilson loop and string tension: discussion

- very similar results for the perpendicular orientation (I'll skip here for now).
- Peculiarity: we are mimicking QCD all too well: for larger B, there is a string breaking (disconnected config wins). But we do not have dynamical (light) quarks to make this possible.
- This can be averted by slightly adapting the form factor $A(z) = -az^2 dB^2z^5$

Then

$$\mathcal{F}_{discon} = \frac{L^2}{\pi \ell_s^2} \int_{\epsilon}^{\infty} dz \left[z^4 + \frac{2B^2 z^3}{15d} + \ldots \right] = +\infty \text{ whilst } \mathcal{F}_{con} < +\infty$$

Deconfinement with new form factor $A(z) = -az^2 - dB^2z^5$

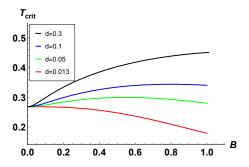
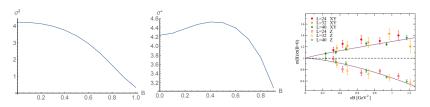


Figure: Deconfinement transition temperature in terms of magnetic field for the case $A(z) = -az^2 - dB^2z^5$. Here we set $\mu = 0$. In units GeV.

- ▶ Depending on value of *d*, (inverse) magnetic catalysis.
- ▶ We took $d \approx 0.013 \text{ GeV}^2$, to have largest $B_{max} = 1.02 \text{ GeV}$ and inverse catalysis.

String tensions with new form factor $A(z) = -az^2 - dB^2z^5$



Both cases can be fitted perfectly well with a Cornell potential

$$\frac{\mathcal{F}_{con}^{\parallel,\perp}}{L^2T_s} = -\frac{\kappa^{\parallel,\perp}}{\ell^{\parallel,\perp}} + \sigma_s^{\parallel,\perp}\ell^{\parallel,\perp} + C^{\parallel,\perp}$$

We saw that the Coulomb strength $\kappa^{\parallel,\perp}(B) \approx \kappa(B=0)$, consistent with lattice data of D'Elia et al., Phys.Rev.D 89 (2014).

► For small *B* qualitatively OK with lattice ("less/more confinement" in parallel/perpendicular direction). For larger *B*, it remains to be seen what happens.

Overview

A few words on QCD

Motivation for this work

Holographic QCD in a magnetic field: model setup

Holographic QCD in a magnetic field: deconfinement and string tensions

Holographic QCD in a magnetic field: chiral sector

Dudal B-AdS/QCD 40 / 47

Adding flavour in probe brane approximation

Inspired by Colangelo et al, Eur. Phys. J.C 72 (2012), we add

$$S_{chiral} = \frac{N_c}{16\pi^2} \int \mathrm{d}^5 x \sqrt{-g} \operatorname{Tr}\left[|DX|^2 - m_5^2|X|^2\right].$$

- ► X is a $N_f \times N_f$ matrix-valued complex field in the bifundamental representation of $SU(N_f)_L \times SU(N_f)_R$, dual to $\langle \bar{\psi}^{\alpha} \psi^{\beta} \rangle$; $m_5^2 L^2 = -3$; $D_{\mu} X = \partial_{\mu} X i A_{L,\mu} X + i X A_{R,\mu}$ $SU(N_f)_L \times SU(N_f)_R$ invariance.
- Consider degenerate flavours by $X(z, x^{\mu}) = X_0(z) \mathbf{1}_{N_f} e^{i\pi(z, x^{\mu})}$. In this approximation, the condensate can be extracted by solving the *X*-field equation of motion.
- Important difference: we do not need to add "phenomenological" $e^{-\phi}$ to implement confinement (already part of the metric).

The chiral condensate itself

We must solve (in black hole background)

$$X_0''(z) + X_0'(z) \left(-\frac{3}{z} + 2B^2z + \frac{g'(z)}{g(z)} + 3A'(z) \right) + \frac{3e^{2A(z)}X_0(z)}{z^2g(z)} = 0$$

with UV boundary expansion (cf. gauge-gravity dictionary, d=1 source m_q and d=3 chiral operator)

$$X(z) = m_q z + \sigma z^3 + m_q n z^3 \ln \sqrt{a} z + O(z^4)$$

- $ightharpoonup m_q$ is input (bare quark mass), σ is numerically computed (e.g. via shooting method).
- \blacktriangleright In most works, σ is used as an avatar for chiral condensate itself.

D. Dudal B-AdS/QCD 42 / 47

The chiral condensate itself

We will however be a bit more careful. Following Dudal et al, Phys.Rev.D 93 (2016), we find

$$\langle\bar{\psi}\psi\rangle_{B,T} - \langle\bar{\psi}\psi\rangle_{B=0,T=0} = \frac{N_c}{2\pi^2} \bigg[\sigma(B,T) - \sigma(B=0,T=0)\bigg] + \frac{N_c m_q}{8\pi^2} B^2$$

via the partition function Z and gauge-gravity duality:

$$\begin{split} \langle \bar{\psi}\psi \rangle &= \frac{1}{Z} \frac{dZ}{dm_q} &= -\frac{d}{dm_q} \left(\frac{N_c}{16\pi^2} \int d^5x \sqrt{-g} \left[\partial_\mu X \partial^\mu X + m_5^2 X^2 \right] \right) \\ &= \frac{N_c}{8\pi^2} \left(\frac{m_q}{\epsilon^2} + 4m_q n \log \sqrt{a} \epsilon + 4\sigma + B^2 m_q + 5m_q n - 3am_q \right) \end{split}$$

The subtraction renders a finite result, irrespective of B and/or T, completely analogous to lattice procedure to renormalize the chiral condensate. Including $e^{-\phi}$ destroys this property. We take $\langle \bar{\psi}\psi \rangle_{B=0,T=0}=0.0194~{\rm GeV}^3$ ($N_f=1$ lattice estimate from DeGrand, PoS LAT2006).

D. Dudal B-AdS/QCD 43 / 47

The chiral condensate itself

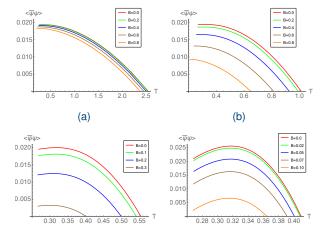


Figure: Quark condensate $\langle \bar{\psi} \psi \rangle$ as a function of temperature T for various values of the quark mass m_q . The upper left, upper right, lower left and lower right figures correspond to $m_q=0.01,\,0.1,\,1.0$ and 10.0 respectively. In units GeV.

Inverse magnetic catalysis

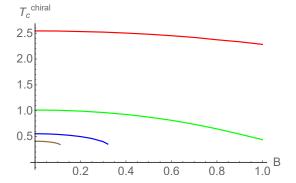


Figure: The variation of the chiral critical temperature with respect to magnetic field B for different quark masses. Here red, green, blue and brown curves correspond to $m_q=0.01,\,0.10,\,1.0$ and 10.0 respectively. In units GeV.

Unfortunate feature of these type of models

- ▶ σ basically regulates the condensate, but $\sigma \propto m_q$. This is QCD-unlike!
 - Situation handled in e.g. Gherghetta et al, Phys.Rev.D 79 (2009) by using a phenomenological Ansatz for $X_0(z)$ and a V(X)-potential, unfortunately still with a geometry not solving the Einstein-EOMs.
- ▶ We are now generalizing the potential reconstruction method to get a fully backreacted model, combining the phenomenological Ansatz for $X_0(z)$ with a corresponding potential V(X).

Further improvements and applications

- Quark-gluon plasma transport properties, bringing earlier results of Dudal and Mertens to the level of the self-consistent background model.
- Charmonia spectra in magnetic field, including anomalous mixing with η_c .
- Can we embed the improved charmonia modelling of Braga et al into a self-consistent gravity model?

The End.

Spasiba!