Describable Nuclei

Negative Translations and

Extension Stability

Proof Theory/Logic Online Seminar

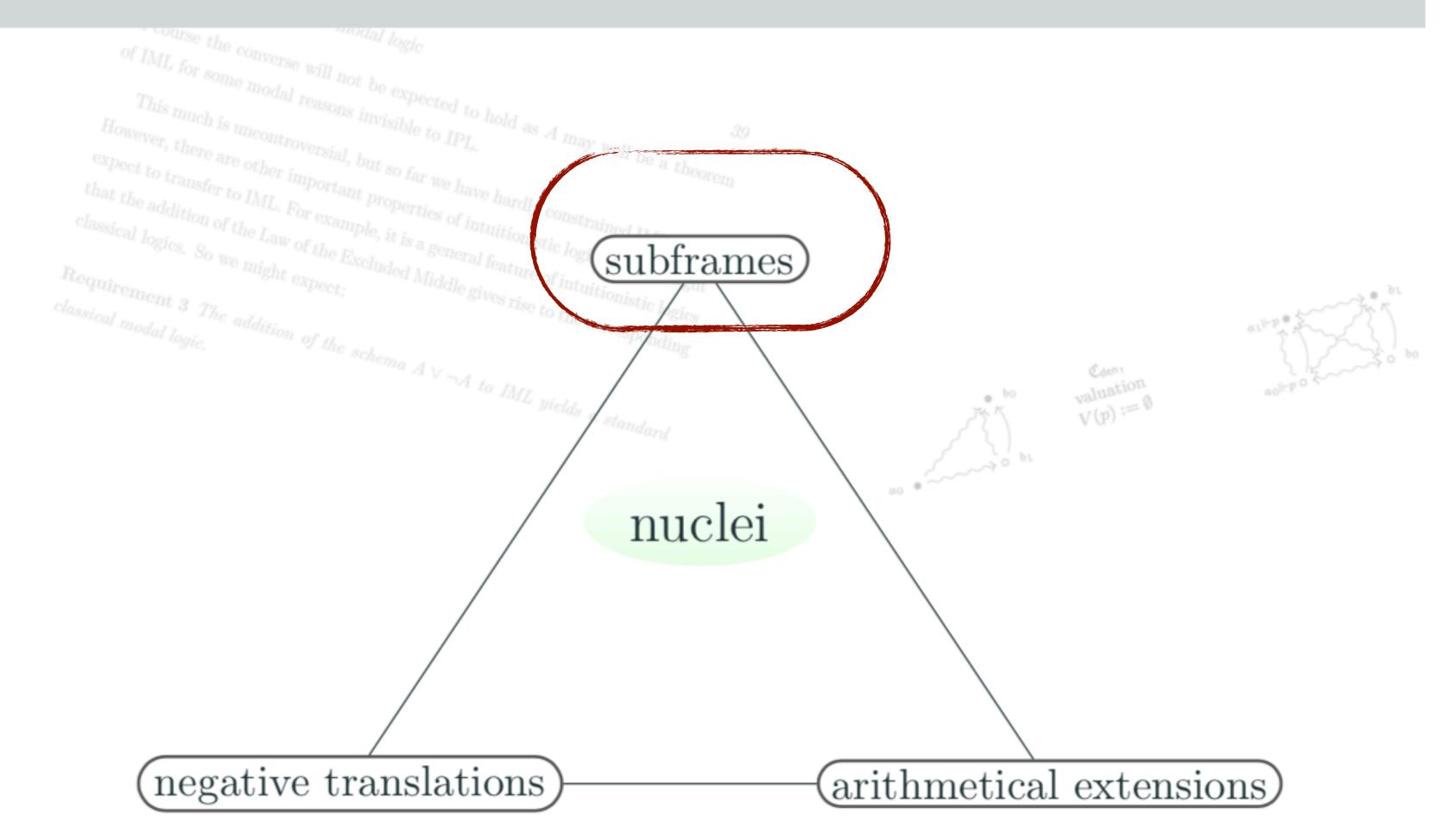
Nov 30, 2020

Tadeusz Litak with the help of

Albert Visser

Miriam Polzer

stability of a logic under ...

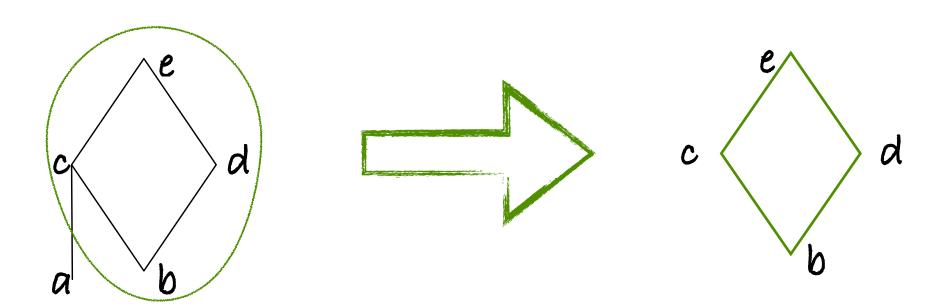


Reminder of subframe logics I:

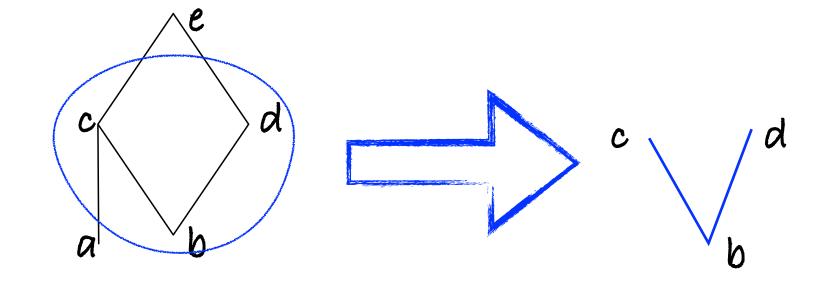
how trivial nuclei seem over CPC

Subframes & subcoalgebras classically

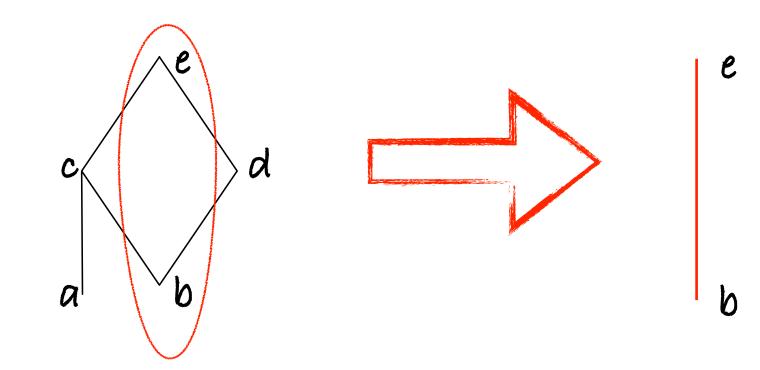
• Generated subframes = Kripke subcoalgebras preserve validity of all modal formulas



Arbitrary subframes
 (submodels? substructures?)
 preserve much less



Intermediate notions, like
 (transitive) cofinal subframes
 (in the set-theoretic sense of cofinality)



- Given a (modal Kripke) frame $\mathfrak{F} = \langle W, R \rangle$, and $U \subseteq W$, the subframe induced by U is $\mathfrak{F}_U = \langle U, R \upharpoonright_U \rangle$, where $R \upharpoonright_U = R \cap (U \times U)$
- \mathfrak{F}_U is a generated subframe (or a subcoalgebra) if $\forall uw. u \in U \& uR^*w \implies w \in U$ in modal notation: $U \subseteq \square_R U$
- Under an additional assumption that R is transitive, $\forall X. \square_R X \subseteq \square_R \square_R X$ \mathfrak{F}_U is a co(n)final subframe if $\forall uw. u \in U \& uR^* w \implies \exists z. wR^*z \& z \in U$ $U \subseteq \square_R (U \vee \lozenge_R U)$

Subframe logics, Kripke-style

- Provisional definition, applying only to Kripke-complete logics:
 A logic is (Kripke-)subframe if determined by a class of frames closed under subframes
- ullet The logic of transitive frames K4 given by $\square \, arphi
 ightarrow \square \, \square \, arphi$ is subframe
- ullet Not the case with the opposite density axiom C4 $\ \square \ \square \ \phi \to \ \square \ \phi$
- Basic model theory explains why:
 - * transitivity definable by an universal sentence: $\forall xyz$. $(xRy \& yRz) \Rightarrow xRz$
 - * not so with density:

$$\forall xz \exists y . xRz \Rightarrow (xRy \& yRz)$$

• the logic of confluent quasiorders is cofinal: S4 together with $\Diamond \Box \varphi \rightarrow \Box \Diamond \varphi$ $\forall xyy'. (xRy \& xRy') \Rightarrow \exists z. (yRz \& y'Rz)$

But why people cared at all?

- Nice marriage of model-theoretic methods with modal-theoretic ones (selection-of-points type of arguments)
- Covers logics not covered by typical Sahlqvist-style techniques (e.g., the combination of transitivity & Noetherianity)
- And subframe logics do have some nice properties
- E.g. all (weakly) transitive (cofinal) subframe logic have the fmp (finite model property): determined by a class of finite frames

- Some other results and observations taken from Wolter's 1993 PhD:
- A Kripke-subframe logic is complete wrt countable frames
- TFAE for a Kripke-subframe logic:
 - * being determined by an universal class of frames
 - * being determined by an elementary class of frames
 - * being canonical (and a few other related properties)
- An universal class of frames is modal axiomatic iff closed under bounded morphic images and disjoint unions

But ...

- Our initial restriction to Kripke-complete logics cripples such results
- E.g., the fmp of transitive subframe logics can be stated w/o such an explicit assumption
- And how to generalize even to logics over CPC with different semantics? (topological, neighbourhood, conditional, probabilistic etc. coalgebraic ... or the interpretability logic of Peano Arithmetic with its Veltman semantics)
- Furthermore, how to move to other propositional bases?
- Algebra & duality to the rescue!

¿ Dually ...

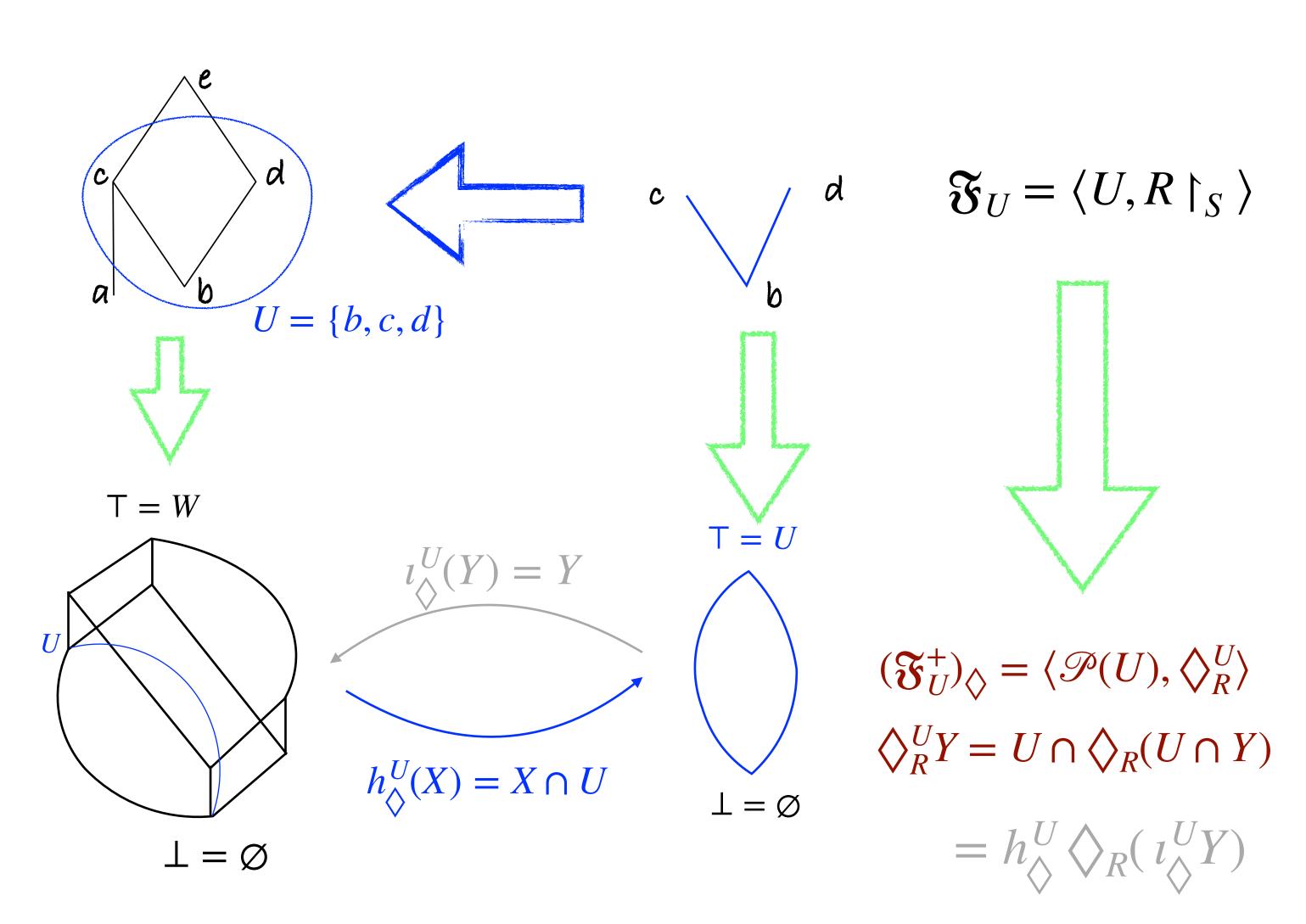
$$W = \{a, b, c, d, e\}$$

Modal frames

$$\mathfrak{F} = \langle W, R \rangle$$

Dual modal algebras

$$(\mathfrak{F}^+)_{\Diamond} = \langle \mathscr{P}(W), \Diamond_R \rangle$$

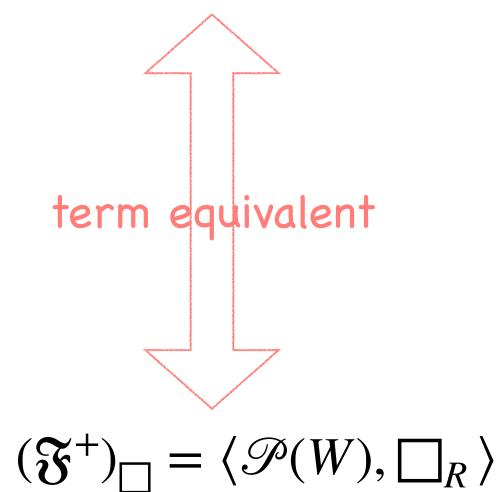


 ι^U_\lozenge not a Boolean morphism and h^U_\lozenge in general not a \lozenge -morphism: pick $Y=\{e\}$ to get $h^U_\lozenge(\lozenge_R Y) \neq \lozenge_R^U(h^U_\lozenge Y)$

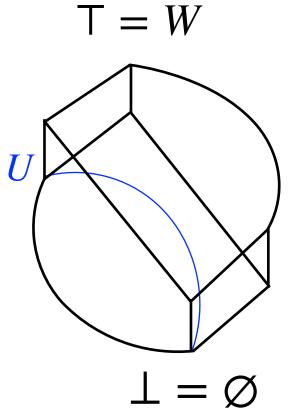
... or maybe?

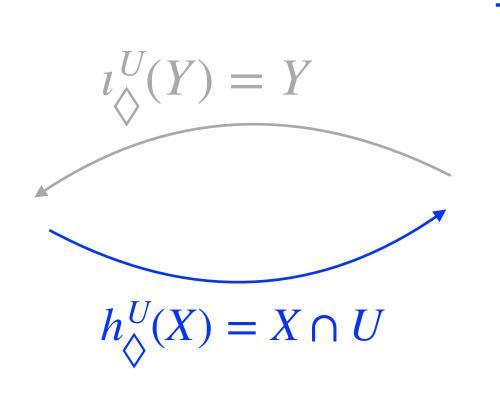
Dual modal algebras

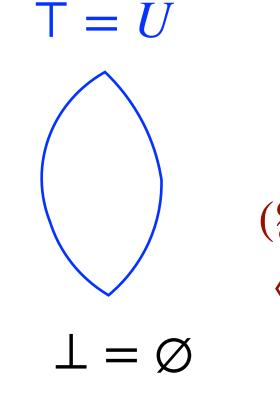
$$(\mathfrak{F}^+)_{\Diamond} = \langle \mathscr{P}(W), \Diamond_R \rangle$$



Also dual modal algebras



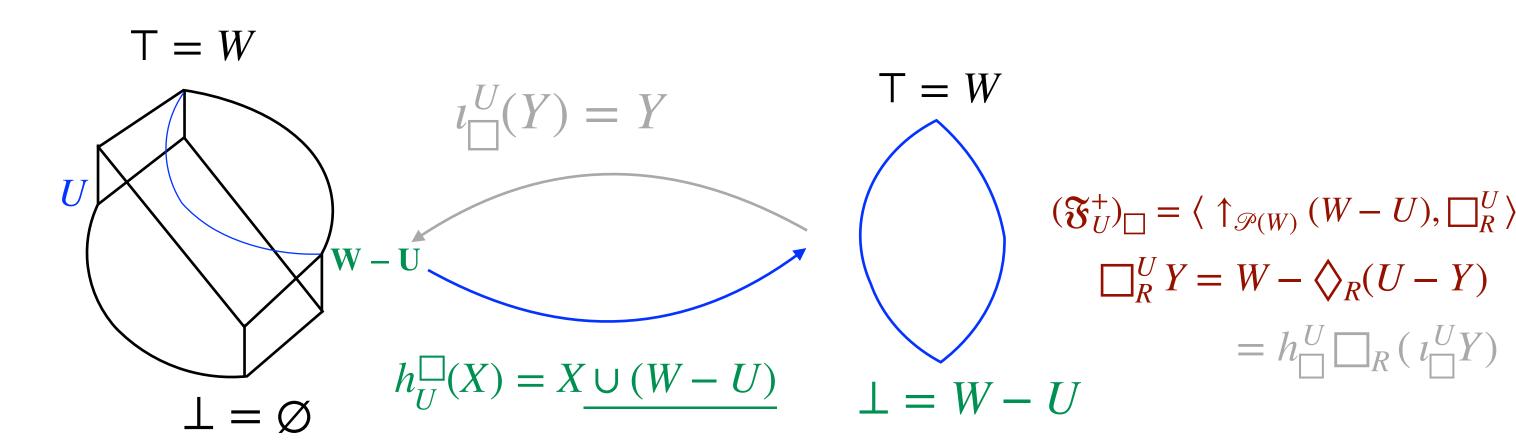




$$(\mathfrak{F}_{U}^{+})_{\Diamond} = \langle \mathscr{P}(U), \Diamond_{R}^{U} \rangle$$

$$\Diamond_{R}^{U}Y = U \cap \Diamond_{R}(U \cap Y)$$

$$= h_{\Diamond}^{U} \Diamond_{R}(\iota_{\Diamond}^{U}Y)$$

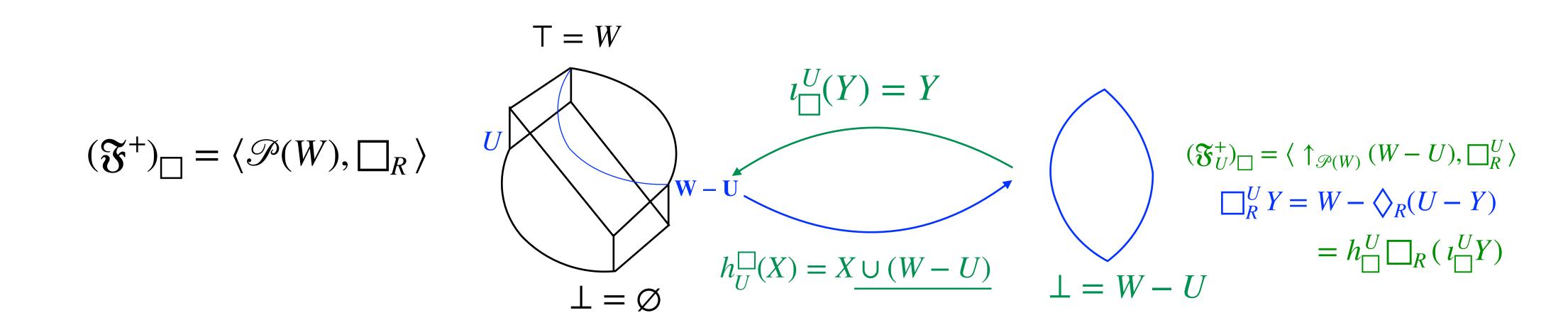


 h_\lozenge^U and h_\square^U restrict to mutually inverse Boolean isomorphisms between $(\mathfrak{F}_U^+)_\lozenge$ and $(\mathfrak{F}_U^+)_\square$

Our first encounter with nuclei

- Given any Boolean (Heyting, distributive ...) algebra $\mathfrak A$ and $a \in A$, $J_a:A \to A$ defined as $J_a(x)=x\vee a$ is a nucleus which we can also call a strong monad on a poset category which we can also call a multiplicative closure operator which we can also call a lax modality
- Axioms: $x \le j(x)$, j(x) = j(j(x)) and $j(x \land y) = j(x) \land j(y)$
- Boolean algebras are a Kindergarten setting for nuclei: any nucleus on a Boolean algebra $\mathfrak A$ is of the form J_a for some $a\in A$ In Fourman-Scott terminology, any Boolean nucleic quotient is closed Note that we could use also the open quotient $J^a:A\to A$ defined as $J^a(x)=a\to x$

- For any $\mathfrak A$ and any nucleus $j:A\to A$, we can define $A_j=\{a\in A\mid j(a)=a\}$ (the collection of fixpoints of j)
- Any n-ary operation $\mathbf{V}:A^n\to A$ can be turned into $\mathbf{V}_j:A_j^n\to A_j$ by $\mathbf{V}_j(c_1,\ldots,c_n)=j(\mathbf{V}(c_1,\ldots,c_n))$ (or, strictly speaking, $\mathbf{V}_j(c_1,\ldots,c_n)=j(\mathbf{V}(\iota_j(c_1),\ldots,\iota_j(c_n)))$ if the identity embedding $\iota_j:A_j\to A$ made visible)
- ullet We can call \mathfrak{A}_{j} the nucleic quotient of \mathfrak{A} via j



Subframe logics, for real

- ullet We think of unary modal logic, with igsquare as the basic modal primitive
- Abstract algebraic logic (AAL) perspective: a logic Λ as a set of theorems \iff an equational theory $Var(\Lambda)$
- Def: Λ is a subframe logic if $Var(\Lambda)$ is closed under nucleic quotients That is, for any $\mathfrak{A} \in Var(\Lambda)$ and any nucleus $j: A \to A$, $\mathfrak{A}_j \in Var(\Lambda)$ (this definition follows G. Bezhanishvili & S. Ghilardi rather than Wolter)
- Theorem: Kripke-subframe logics are subframe in this sense. (Wolter, I guess) For transitive normal modal logics, the converse holds as well. (essentially Fine) (G. Bezhanishvili & S. Ghilardi & M. Jibladze: still holds for weak transitivity, F. Wolter: ... but not for 2-transitivity)
- This definition can be re-used in a non-Boolean setting ...

Reminder of subframe logics II:

over IPC, nuclei interesting even w/o modalities

- Syntactically, the intutionistic propositional calculus (IPC) can be seen as the __-fragment of S4: the modal logic of quasi-orders (via the Gödel-McKinsey-Tarski translation)
- An easy Kripke semantics in terms of upsets of partial orders (upsets do not distinguish quasi-orders and partial orders)
- Under this interpretation, e.g., the cofinal condition of confluence defined by $\neg \phi \lor \neg \neg \phi$ (the weak law of excluded middle)

- However, again, the most general semantics is algebraic
- Heyting algebras: bounded lattices where \land has right adjoint \rightarrow (hence distributive)
- G. Bezhanishvili & Ghilardi 2007: nuclei on Heyting algebras capture descriptive/Priestley/Esakia subframe constructions

- Recall the construction of \mathfrak{A}_j , i.e., the nucleic quotient of \mathfrak{A} via j: For any \mathfrak{A} and any nucleus $j:A\to A$, we can define $A_j=\{a\in A\mid j(a)=a\}$ (the collection of fixpoints of j)
- Any n-ary operation $\heartsuit: A^n \to A$ is turned into $\heartsuit_j: A_j^n \to A_j$ by $\heartsuit_j(c_1, ..., c_n) = j(\heartsuit(c_1, ..., c_n))$ (or, strictly speaking, $\heartsuit_j(c_1, ..., c_n) = j(\heartsuit(\iota_j(c_1), ..., \iota_j(c_n)))$ if the identity embedding $\iota_j: A_j \to A$ made visible
- The only difference now is that we explicitly see the "extensional" connectives $(\wedge,\vee,\to,\top,\bot)$ of \mathfrak{A}_i as obtained in the same way, but ...
- As $j(\top) = \top$, $j(j(a) \land j(b)) = j(a) \land j(b)$ and $j(j(a) \rightarrow j(b)) = j(a) \rightarrow j(b)$, \mathfrak{A}_j is an implicative subsemilattice of \mathfrak{A} : we only need to prefix j in front of \vee and \bot
- Furthermore, \mathfrak{A}_j obtained this way is a Heyting algebra in its own right! But not necessarily satisfying the same equational axioms as the original \mathfrak{A} : the subframe ones are precisely the safe ones

- Also, as for preservation of \bot : nuclei satisfying $j(\bot) = \bot$ are called dense
- G. Bezhanishvili & S. Ghilardi show that the (pre-existing) notion of (superintuitionistic) cofinal subframe logics corresponds to preservation by dense nuclei
- Furthermore, this is in turn equivalent to a seemingly stronger property: preservation by locally dense nuclei: those satisfying $j(\neg j(\bot)) = \top$ (correspond to strict lax modalities of Aczel 2001)

Pleasant results in the pure Heyting signature

- Theorem (Fine, Zakharyaschev):
 - * A (locally dense) nuclear superintuitionistic logic/variety has the finite frame/algebra property (in the modal setting, true only in the presence of wK4!)
 - * A logic/variety is nuclear iff it is axiomatized by (\land, \rightarrow) -formulas/identities
 - * A logic/variety is (locally) dense nuclear iff it is axiomatized by (\wedge , \rightarrow , \bot)-formulas/identities
- Theorem (quite a few good people): TFAE for a superintuitionistic logic Λ :
 - * $Var(\Lambda)$ is nuclear
 - * Λ is axiomatized by NNIL formulas (No Nesting of Implication to the Left) "NNIL" is pronounced as "NIL", where the first "N" is pronounced with some slight hesitation Visser et al. 1995
 - * Λ is axiomatized by formulas preserved by submodels of Kripke models

But we also begin to see first problems

- Nucleic quotient of a perfect BAO (\mathcal{CAV} -BAO or simply a Kripke algebra) is again the dual of a Kripke frame
- This does not hold anymore in the Heyting setting!
- More issues to follow ...

What happens when more connectives present?

- Intuitionistic modal logics: with box only ...? With diamond(s) too?
- Preservativity in Heyting Arithmetic and its extension?
 (generalized Veltman semantics)
- More broadly: constructive strict implication/Lewis arrow?
 (includes, e.g., the logic of type inhabitation of Haskell arrows?)
- Still more broadly: extensions of Weiss's ICK? (Basic Intutionistic Conditional Logic, JPL 2019: Chellas-Weiss semantics or generalized Routley-Meyer semantics)
- The logic of bunched implications BI? (variants of partial monoid semantics, also topological ones)

Problems even in the pure Heyting signature

- The lattice of nuclei on a Heyting algebra is quite complex
- Let us look at several standard examples of nuclei, taken from
 - * "Sheaves and Logic", Fourman and Scott 1977
 - * "Modal operators on Heyting algebras", Macnab 1981

• $J_a \varphi = a \vee \varphi$ (Macnab writes u_a): the closed quotient, dense (identity) for $a = \bot$.

• $J^a \varphi = a \to \varphi$ (Macnab writes v_a): the open quotient, dense (identity) for $a = \top$.

- $B_a \varphi = (\varphi \to a) \to a$ (Macnab writes w_a): the boolean quotient, dense for $a = \bot$; even then identity not a special case. Denote the dense case as $B_\perp \varphi = \neg \neg \varphi$ (w_\perp): the double-negation quotient.
- $(J_a \wedge J^b) \varphi = (a \vee \varphi) \wedge (b \rightarrow \varphi)$: the forcing quotient, dense (identity) for $a = \bot$.
- $(B_a \wedge J^a)\phi = (\phi \rightarrow a) \rightarrow \phi$: a mixed quotient; identity a special case.