On operators on Hilbert C^* -modules

Stefan Ivkovic

The Mathematical Institute of the Serbian Academy of Sciences and Arts

November 23, 2020

Semi-A-Fredholm operators on H_A

In this presentation we let \mathcal{A} be a unital C^* -algebra, $H_{\mathcal{A}}$ be the standard module over \mathcal{A} (this is $H_{\mathcal{A}} = l_2(\mathcal{A})$) and $B^a(H_{\mathcal{A}})$ be the set of all \mathcal{A} -linear, bounded adjointable operators on $H_{\mathcal{A}}$. Inspired by definition of \mathcal{A} -Fredholm operator given in [MF], we give now the following definition.

Definition

Let $F \in B^a(\mathcal{H}_A)$. We say that F is an upper semi-A-Fredholm operator if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}\right],$$

where F_1 is an isomorphism M_1, M_2, N_1, N_2 are closed submodules of H_A and N_1 is finitely generated. Similarly, we say that F is a lower semi-A-Fredholm operator if all the above conditions hold except that in this case we assume that N_2 (and not N_1) is finitely generated.

Set

$$\mathcal{M}\Phi_+(H_{\mathcal{A}}) = \{ F \in \mathcal{B}^{a}(H_{\mathcal{A}}) \mid F \text{ is upper semi-}\mathcal{A}\text{-Fredholm } \},$$

$$\mathcal{M}\Phi_-(H_{\mathcal{A}}) = \{ F \in \mathcal{B}^{a}(H_{\mathcal{A}}) \mid F \text{ is lower semi-}\mathcal{A}\text{-Fredholm } \},$$

 $\mathcal{M}\Phi(H_{\mathcal{A}})=\{F\in B^a(H_{\mathcal{A}})\mid F \text{ is } \mathcal{A}\text{-Fredholm operator on } H_{\mathcal{A}}\}.$ Then obviously $\mathcal{M}\Phi(H_{\mathcal{A}})\subseteq \mathcal{M}\Phi_+(H_{\mathcal{A}})\cap \mathcal{M}\Phi_-(H_{\mathcal{A}})$. We are going to show later in this section that actually "=" holds.

Notice that if M,N are two arbitrary Hilbert modules C^* -modules, the definition above could be generalized to the classes $\mathcal{M}\Phi_+(M,N)$ and $\mathcal{M}\Phi_-(M,N)$.

We let now $K^*(H_A)$ denote the closed, two sided ideal of adjointable compact operators in $B^a(H_A)$, see [MT].

Theorem

Let $F \in B^a(\mathcal{H}_A)$. The following statements are equivalent

- 1) $F \in \mathcal{M}\Phi_+(H_A)$
- 2) There exists $D \in B^a(H_A)$ such that DF = I + K for some $K \in K^*(H_A)$

Theorem

Let $D \in B^a(\mathcal{H}_A)$. Then the following statements are equivalent:

- 1) $D \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}})$
- 2) There exist $F \in B^a(H_A)$, $K \in K^*(H_A)$ s.t. DF = I + K

Corollary

$$\mathcal{M}\Phi(H_{\mathcal{A}})=\mathcal{M}\Phi_{+}(H_{\mathcal{A}})\cap\mathcal{M}\Phi_{-}(H_{\mathcal{A}})$$

Corollary

 $\mathcal{M}\Phi_+(H_{\mathcal{A}})$ and $\mathcal{M}\Phi_-(H_{\mathcal{A}})$ are semigroups under multiplication.

Corollary

Let $F \in B^a(M,N)$. Then $F \in \mathcal{M}\Phi_+(M,N)$ if and only if $F^* \in \mathcal{M}\Phi_-(N,M)$. Moreover, if $F \in \mathcal{M}\Phi(H_\mathcal{A})$, then $F^* \in \mathcal{M}\Phi(H_\mathcal{A})$ and $\mathrm{index} F = -\mathrm{index} F^*$.

Let M be a closed submodule of $H_{\mathcal{A}}$ s.t. $H_{\mathcal{A}} = M \widetilde{\oplus} N$ for some finitely generated submodule N. Let $F \in \mathcal{B}^a(H_{\mathcal{A}})$, J_M be the inclusion map from M into $H_{\mathcal{A}}$ and suppose that $FJ_M \in \mathcal{M}\Phi_+(M,H_{\mathcal{A}})$. Then $F \in \mathcal{M}\Phi_+(H_{\mathcal{A}})$.

Lemma

Suppose that $D, F \in B^a(H_A)$ $DF \in \mathcal{M}\Phi_+(H_A)$ and $\mathrm{Im}F$ is closed. Then $DJ_{\mathrm{Im}F} \in \mathcal{M}\Phi_+(\mathrm{Im}F, H_A)$.

Let $F \in \mathcal{M}\Phi(H_{\mathcal{A}})$ and suppose that there are two decompositions

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \xrightarrow{F} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \xrightarrow{F} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}}$$

with respect to which F has matrices

$$\left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}\right], \left[\begin{array}{cc} F_1' & 0 \\ 0 & F_4' \end{array}\right],$$

respectively, where F_1 , F_1' are isomorphisms, N_1 , N_1' , N_2 are closed, finitely generated and N_2' is just closed. Then N_2' is finitely generated also.

Let $F \in \mathcal{M}\Phi(H_{\mathcal{A}})$ and let

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

be a decomposition with respect to which F has the matrix

$$\left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}\right],$$

where F_1 is an isomorphism, N_2 is finitely generated and N_1 is just closed. Then N_1 is finitely generated.

Let $F \in \mathcal{M}\Phi_+(\mathcal{H}_\mathcal{A})$ and suppose that $\mathrm{Im} F$ is closed. If

$$H_{\mathcal{A}} = M_1 \tilde \oplus N_1 \stackrel{F}{\longrightarrow} M_2 \tilde \oplus N_2 = H_{\mathcal{A}}$$

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \xrightarrow{F} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}}$$

are two $\mathcal{M}\Phi_+$ decomposition for F then $F(N_1), F(N_1')$ are closed finitely generated projective modules and

$$[N_1] - [F(N_1)] = [N_1'] - [F(N_1')]$$

in K(A).

Let $F \in \mathcal{M}\Phi_+(H_{\mathcal{A}})$. Then there is no sequence of unit vectors $\{x_n\}$ in $H_{\mathcal{A}}$ such that $\varphi(x_n) \to 0$ in \mathcal{A} for all $\varphi \in H'_{\mathcal{A}}$ and $\lim_{n \to \infty} \|Fx_n\| = 0$.

Generalized Schechter characterization of $\mathcal{M}\Phi_+$ operators on $\mathcal{H}_{\mathcal{A}}$

Lemma

Let $F \in B^a(M,N)$ Then $F \in \mathcal{M}\Phi_+(M,N)$ if and only if there exists a closed, orthogonally complementable submodule $M' \subseteq M$ such that $F_{|_{M'}}$ is bounded below and ${M'}^\perp$ is finitely generated.

Lemma

Let $F \in B^a(H_A) \setminus \mathcal{M}\Phi_+(H_A)$. Then there exists a sequence $\{x_k\} \subseteq H_A$ and an increasing sequence $\{n_k\} \subseteq \mathbb{N}$ s.t.

$$x_k \in L_{n_k} \setminus L_{n_{k-1}}$$
 for all $k \in \mathbb{N}, \parallel x_k \parallel \leq 1$ for all $k \in \mathbb{N}$

and

$$||Fx_k|| \le 2^{1-2k}$$
 for all $k \in \mathbb{N}$.

Openness of the set of semi-A-Fredholm operators on H_A

Theorem

The sets $\mathcal{M}\Phi_+(H_A)\setminus \mathcal{M}\Phi(H_A)$ and $\mathcal{M}\Phi_-(H_A)\setminus \mathcal{M}\Phi(H_A)$ are open in $B^a(H_A)$, where $B^a(H_A)$ is equipped with the norm topology.

Corollary

If $F \in B^a(H_A)$ belongs to the boundary of $\mathcal{M}\Phi(H_A)$ in $B^a(H_A)$ then $F \notin \mathcal{M}\Phi_{\pm}(H_A)$.

Corollary

Let $f:[0,1] \to B^a(H_\mathcal{A})$ be continuous and assume that $f([0,1]) \subseteq \mathcal{M}\Phi_\pm(H_\mathcal{A})$. Then the following statments hold: 1) If $f(0) \in \mathcal{M}\Phi_+(H_\mathcal{A}) \setminus \mathcal{M}\Phi(H_\mathcal{A})$, then $f(1) \in \mathcal{M}\Phi_+(H_\mathcal{A}) \setminus \mathcal{M}\Phi(H_\mathcal{A})$ 2) If $f(0) \in \mathcal{M}\Phi_-(H_\mathcal{A}) \setminus \mathcal{M}\Phi(H_\mathcal{A})$, then $f(1) \in \mathcal{M}\Phi_-(H_\mathcal{A}) \setminus \mathcal{M}\Phi(H_\mathcal{A})$ 3) If $f(0) \in \mathcal{M}\Phi(H_\mathcal{A})$, then $f(1) \in \mathcal{M}\Phi(H_\mathcal{A})$ and $\mathrm{index} f(0) = \mathrm{index} f(1)$.

$\mathcal{M}\Phi_{+}^{-}$ and $\mathcal{M}\Phi_{-}^{+}$ operators on $\mathcal{H}_{\mathcal{A}}$

Definition

Let $F \in \mathcal{M}\Phi(H_A)$. We say that $F \in \tilde{\mathcal{M}}\Phi_+^-(H_A)$ if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}\right],$$

where F_1 is an isomorphism, N_1, N_2 are closed, finitely generated and $N_1 \preceq N_2$, that is N_1 is isomorphic to a closed submodule of N_2 . We define similarly the class $\tilde{\mathcal{M}}\Phi_-^+(H_{\mathcal{A}})$, the only difference in this case is that $N_2 \preceq N_1$. Then we set

$$\mathcal{M}\Phi_{+}^{-}(H_{\mathcal{A}}) = (\tilde{\mathcal{M}}\Phi_{+}^{-}(H_{\mathcal{A}})) \cup (\mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}}))$$

and

$$\mathcal{M}\Phi_{-}^{+}(H_{\mathcal{A}}) = (\tilde{\mathcal{M}}\Phi_{-}^{+}(H_{\mathcal{A}})) \cup (\mathcal{M}\Phi_{-}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}}))$$

Further, we define $\mathcal{M}\Phi_0(H_A)$ to be the set of all $F \in \mathcal{M}\Phi(H_A)$ for which there exists an $\mathcal{M}\Phi$ -decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}},$$

where $N_1 \cong N_2$.

Lemma

Suppose that K(A) satisfies "the cancellation property". If $F \in \tilde{\mathcal{M}}\Phi_+^-(H_A)$, then for any decomposition

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \stackrel{F}{\longrightarrow} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc} F_1' & 0 \\ 0 & F_4' \end{array}\right],$$

where F_1' is an isomorphism, N_1', N_2' are finitely generated, we have $N_1' \leq N_2'$. Similarly $N_1' \leq N_2'$ if $F \in \tilde{\mathcal{M}}\Phi_-^+(H_{\mathcal{A}})$.

 $\tilde{\mathcal{M}}\Phi_+^-(H_{\mathcal{A}})$ and $\tilde{\mathcal{M}}\Phi_-^+(H_{\mathcal{A}})$ are semigroups under multiplication.

Lemma

 $\mathcal{M}\Phi_+^-(H_{\mathcal{A}})$ and $\mathcal{M}\Phi_-^+(H_{\mathcal{A}})$ are semigroups under multiplication.

Lemma

 $\tilde{\mathcal{M}}\Phi_+^-(H_{\mathcal{A}})$ and $\tilde{\mathcal{M}}\Phi_-^+(H_{\mathcal{A}})$ are open.

Definition

Let $F \in \mathcal{M}\Phi_+(H_A)$. We say that $F \in \mathcal{M}\Phi_+^{-\prime}(H_A)$ if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which

$$F = \left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array} \right],$$

where F_1 is an isomorphism, N_1 is closed, finitely generated and $N_1 \preceq N_2$. Similarly, we define the class $\mathcal{M}\Phi_-^{+}(H_{\mathcal{A}})$, only in this case $F \in \mathcal{M}\Phi_-(H_{\mathcal{A}})$, N_2 is finitely generated and $N_2 \preceq N_1$.

Proposition

$$\tilde{\mathcal{M}}\Phi_+^-(H_{\mathcal{A}}) = \mathcal{M}\Phi_+^{-\prime}(H_{\mathcal{A}}) \cap \mathcal{M}\Phi(H_{\mathcal{A}}), \tilde{\mathcal{M}}\Phi_-^+(H_{\mathcal{A}}) = \mathcal{M}\Phi_-^{+\prime}(H_{\mathcal{A}}) \cap \mathcal{M}\Phi(H_{\mathcal{A}})$$

The sets $\mathcal{M}\Phi_{-}^{+'}(H_{\mathcal{A}})$ and $\mathcal{M}\Phi_{+}^{-'}(H_{\mathcal{A}})$ are open. Moreover, if $F \in \mathcal{M}\Phi_{+}^{-'}(H_{\mathcal{A}})$ and $K \in K^*(H_{\mathcal{A}})$, then

$$(F+K)\in \mathcal{M}\Phi_{+}^{-\prime}(H_{\mathcal{A}}).$$

If $F \in \mathcal{M}\Phi_{-}^{+}{}'(H_{\mathcal{A}})$ and $K \in K^{*}(H_{\mathcal{A}})$, then

$$(F+K)\in \mathcal{M}\Phi_{-}^{+\prime}(H_{\mathcal{A}}).$$

Lemma

The sets $\mathcal{M}\Phi_+(H_{\mathcal{A}})\setminus \mathcal{M}\Phi_+^{-\prime}(H_{\mathcal{A}})$, $\mathcal{M}\Phi_-(H_{\mathcal{A}})\setminus \mathcal{M}\Phi_-^{+\prime}(H_{\mathcal{A}})$ and $\mathcal{M}\Phi(H_{\mathcal{A}})\setminus \mathcal{M}\Phi_0(H_{\mathcal{A}})$ are open.

Theorem

Let $F \in B^a(H_A)$. The following statements are equivalent

- 1) $F \in \mathcal{M}\Phi_+^{-\prime}(H_A)$
- 2) There exist $D \in B^a(H_A)$, $K \in K^*(H_A)$ such that D is bounded below and F = D + K

Proposition

$$1)F \in \mathcal{M}\Phi_{+}^{-\prime}(H_{\mathcal{A}}) \Leftrightarrow F^{*} \in \mathcal{M}\Phi_{-}^{+\prime}(H_{\mathcal{A}})$$

2)
$$F \in \mathcal{M}\Phi_{+}^{-}(H_{\mathcal{A}}) \Leftrightarrow F^{*} \in \mathcal{M}\Phi_{-}^{+}(H_{\mathcal{A}})$$

3)
$$F \in \mathcal{M}\Phi_{+}^{+}(H_{\mathcal{A}}) \Leftrightarrow F^{*} \in \mathcal{M}\Phi_{-}^{+}(H_{\mathcal{A}})$$

Definition

We set $M^a(H_A) = \{ F \in B^a(H_A) \mid F \text{ is bounded below} \}$ and $Q^a(H_A) = \{ D \in B^a(H_A) \mid D \text{ is surjective } \}.$

Let $B^a(H_A)$. Then $F \in M^a(H_A)$ if and only if $F^* \in Q^a(H_A)$.

Corollary

Let $D \in B^a(\mathcal{H}_A)$. The following statements are equivalent:

- 1) $D \in \mathcal{M}\Phi_{-}^{+\prime}(H_{\mathcal{A}})$
- 2) There exist $Q \in Q^a(H_A)$, $K \in K^*(H_A)$ s.t. D = Q + K.

Theorem

Let $B^a(\mathcal{H}_A)$. Then the following statements are equivalent:

- 1) $F \in \mathcal{M}\Phi_0(H_A)$
- 2) There exist an invertible $D \in B^a(H_A)$ and $K \in K^*(H_A)$ such that F = D + K.

On non-adjointable semi-Fredholm operators over a C^* -algebra

Non adjointable semi-A-Fredholm operators on H_A

Definition

Let $F \in B(\mathcal{H}_{\mathcal{A}})$, where $B(\mathcal{H}_{\mathcal{A}})$ is the set of all bounded, (not necessarily adjointable) \mathcal{A} -linear operators on $\mathcal{H}_{\mathcal{A}}$. We say that F is an upper semi- \mathcal{A} -Fredholm operator if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}\right],$$

where F_1 is an isomorphism M_1, M_2, N_1, N_2 are closed submodules of H_A and N_1 is finitely generated. Similarly, we say that F is a lower semi-A-Fredholm operator if all the above conditions hold except that in this case we assume that N_2 (and not N_1) is finitely generated.

Set

$$\begin{split} \widehat{\mathcal{M}} \Phi_I(H_{\mathcal{A}}) &= \{ F \in \mathcal{B}(H_{\mathcal{A}}) \mid F \text{ is upper semi-} \mathcal{A}\text{-Fredholm } \}, \\ \widehat{\mathcal{M}} \Phi_r(H_{\mathcal{A}}) &= \{ F \in \mathcal{B}(H_{\mathcal{A}}) \mid F \text{ is lower semi-} \mathcal{A}\text{-Fredholm } \}, \end{split}$$

 $\widehat{\mathcal{M}}\Phi(H_{\mathcal{A}})=\{F\in \mathcal{B}(H_{\mathcal{A}})\mid F \text{ is } \mathcal{A}\text{-Fredholm operator on } H_{\mathcal{A}}\}.$ Then, by definition we have

$$\mathcal{M}\Phi_{+}(H_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi_{I}(H_{\mathcal{A}}) \cap B^{a}(H_{\mathcal{A}}),$$

 $\mathcal{M}\Phi_{-}(H_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi_{r}(H_{\mathcal{A}}) \cap B^{a}(H_{\mathcal{A}})$

and

$$\mathcal{M}\Phi(H_{\mathcal{A}})=\widehat{\mathcal{M}}\Phi(H_{\mathcal{A}})\cap B^{a}(H_{\mathcal{A}}).$$

Definition

[IM] An A-operator $K: H_A \to H_A$ is called a finitely generated A-operator if it can be represented as a composition of bounded A-operators f_1 and f_2 :

$$K: \mathcal{H}_{\mathcal{A}} \xrightarrow{f_1} \mathcal{M} \xrightarrow{f_2} \mathcal{H}_{\mathcal{A}},$$

where M is a finitely generated Hilbert C^* -module. The set $FG(\mathcal{A}) \subset B(H_{\mathcal{A}})$ of all finitely generated \mathcal{A} -operators forms a two sided ideal. By definition, an \mathcal{A} -operator K is called compact if it belongs to the closure

$$K(H_A) = \overline{FG(A)} \subset B(H_A),$$

which also forms two sided ideal.

Clearly, any operator $F \in \widehat{\mathcal{M}\Phi}_I(H_{\mathcal{A}})$ is also left invertible in $B(H_{\mathcal{A}})/K(H_{\mathcal{A}})$, whereas any operator $G \in \widehat{\mathcal{M}\Phi}_r(H_{\mathcal{A}})$ is right invertible $B(H_{\mathcal{A}})/K(H_{\mathcal{A}})$. The converse also holds:

Proposition

If F is left invertible in $B(H_{\mathcal{A}})/K(H_{\mathcal{A}})$, then $F \in \widehat{\mathcal{M}}\Phi_I(H_{\mathcal{A}})$. If F is right invertible in $B(H_{\mathcal{A}})/K(H_{\mathcal{A}})$, then $F \in \widehat{\mathcal{M}}\Phi_r(H_{\mathcal{A}})$.

Corollary

The sets $\widehat{\mathcal{M}}\Phi_I(H_A)$ and $\widehat{\mathcal{M}}\Phi_r(H_A)$ are closed under multiplication.

Inspired by definition of externel (Noether) decomposition given in [IM], we give the following definition.

Definition

We say that F has an upper external (Noether) decomposition if there exist two closed C^* -modules X_1, X_2 and two bounded \mathcal{A} -operators E_2, E_3 , where X_2 finitely generated, the operator F_0 given by the operator matrix $\begin{pmatrix} F & E_2 \\ E_3 & 0 \end{pmatrix}$ with respect to the decomposition $H_{\mathcal{A}} \oplus X_1 \xrightarrow{F_0} H_{\mathcal{A}} \oplus X_2$ is invertible and ImE_2 is complementable in $H_{\mathcal{A}}$. Similarly, we say that F has a lower external (Noether) decomposition if the above decomposition exists and F_0 is invertible, only in this case we assume that X_1 is finitely generated and that $\ker E_3$ is complementable in $H_{\mathcal{A}}$.

Proposition

A bounded \mathcal{A} -linear operator $F: \mathcal{H}_{\mathcal{A}} \longrightarrow \mathcal{H}_{\mathcal{A}}$ belongs to $\widehat{\mathcal{M}\Phi}_{l}(\mathcal{H}_{\mathcal{A}})$ if and only if it admits an upper external (Noether) decomposition. Similarly, F belongs to $\widehat{\mathcal{M}\Phi}_{r}(\mathcal{H}_{\mathcal{A}})$ if and only if F admits a lower external (Noether) decomposition.

Let $F,G\in B(H_A)$ and suppose that $GF\in \widehat{\mathcal{M}\Phi}(H_A)$. Then there exist decompositions

$$H_{\mathcal{A}} = M_1 \oplus N_1 \stackrel{F}{\longrightarrow} H_{\mathcal{A}} = M_3 \oplus N_3 \stackrel{G}{\longrightarrow} H_{\mathcal{A}} = M_2 \oplus N_2$$

with respect to which F, G have matrices $\begin{pmatrix} F_1 & 0 \\ 0 & F_4 \end{pmatrix}$, $\begin{pmatrix} G_1 & G_2 \\ 0 & G_4 \end{pmatrix}$, respectively, where F_1 , G_1 are isomorphisms and N_1 , N_2 are finitely generated.

Lemma

Let V be a finitely generated Hilbert submodule of $H_{\mathcal{A}}$, $F \in B(H_{\mathcal{A}})$ and suppose that $P_{V^{\perp}}F \in \widehat{\mathcal{M}}\Phi(H_{\mathcal{A}},V^{\perp})$, where $P_{V^{\perp}}$ denotes the orthogonal projection onto V^{\perp} along V. Then $F \in \widehat{\mathcal{M}}\Phi_r(H_{\mathcal{A}})$.

Lemma

Let $G, F \in B(H_A)$, suppose that ImG is closed. Assume in addition that $\ker G$ and ImG are complementable in H_A . If $GF \in \widehat{\mathcal{M}}\Phi_r(H_A)$, then

$$\sqcap F \in \widehat{\mathcal{M}}\Phi_r(H_{\mathcal{A}}, N),$$

where $\ker G \widetilde{\oplus} N = H_{\mathcal{A}}$ and \sqcap denotes the projection onto N along $\ker G$

Let $F \in \widehat{\mathcal{M}\Phi}(H_{\mathcal{A}})$ and suppose that

$$H_{\mathcal{A}}=M_{1}^{\prime}\tilde{\oplus}N_{1}^{\prime}\stackrel{F}{\longrightarrow}M_{2}^{\prime}\tilde{\oplus}N_{2}^{\prime}=H_{\mathcal{A}}$$

is a decomposition with respect to which F has the matrix $\begin{bmatrix} F_1' & 0 \\ 0 & F_4' \end{bmatrix}$, where F_1' is an isomorphism, N_2' is finitely generated and N_1' is just closed. Then N_1' is finitely generated.

Lemma

Let $F \in B(H_A)$. Then F admits an upper external (Noether) decomposition with the property that $X_2 \preceq X_1$ if and only if $F \in \mathcal{M}\Phi_+^{-\prime}(H_A)$. Similarly, F admits a lower external (Noether) decomposition with the property that $X_1 \preceq X_2$ if and only if $F \in \mathcal{M}\Phi_+^{-\prime}(H_A)$.

Recall now the definition of the closses $\mathcal{M}\Phi_{+}^{-\prime}(H_{\mathcal{A}})$ and $\mathcal{M}\Phi_{-}^{+\prime}(H_{\mathcal{A}})$. We are going to keep this notion in the next results, but without assuming the adjointability of operators.

Lemma

Let $F \in \mathcal{M}\Phi^{+\prime}_{-}(H_{\mathcal{A}})$. Then $F + K \in \mathcal{M}\Phi^{+\prime}_{-}(H_{\mathcal{A}})$ for all $K \in K(H_{\mathcal{A}})$.

Lemma

Let $F \in B(H_A)$ and suppose that

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

is a decomposition w.r.t. which F has the matrix $\begin{bmatrix} F_1 & 0 \\ 0 & F_4 \end{bmatrix}$, where F_1 is an isomorphism. Then $N_1 = F^{-1}(N_2)$.

Lemma

Let $F \in \mathcal{M}\Phi_+^{-\prime}(H_{\mathcal{A}})$ and $K \in K(H_{\mathcal{A}})$. Then $F + K \in \mathcal{M}\Phi_+^{-\prime}(H_{\mathcal{A}})$.

Semi-Fredholm operators over W^* -algebras

Proposition

Let $F \in \widehat{\mathcal{M}}\Phi_I(H_A)$ or $F \in \mathcal{M}\Phi_+(H_A)$. Then there exists a decomposition.

$$H_{\mathcal{A}} = M_0 \tilde{\oplus} M_1' \tilde{\oplus} \ker F \stackrel{F}{\longrightarrow} N_0 \tilde{\oplus} N_1' \tilde{\oplus} {N_1'}' = H_{\mathcal{A}}$$

w.r.t. which F has the matrix

$$\left[\begin{array}{ccc} F_0 & 0 & 0 \\ 0 & F_1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

where F_0 is an isomorphism, M_1' and $\ker F$ are finitely generated. Moreover $M_1'\cong N_1'$ If $F\in\widehat{\mathcal{M}\Phi_l}(\mathcal{H}_\mathcal{A})$ and ImF is closed, then ImF is complementable in $\mathcal{H}_\mathcal{A}$.

In this case F has the matrix $\begin{bmatrix} F_1 & 0 \\ 0 & 0 \end{bmatrix}$, w.r.t. the decomposition

$$H_{\mathcal{A}} = \ker F^0 \widetilde{\oplus} \ker F \xrightarrow{F} ImF \widetilde{\oplus} ImF^0 = H_{\mathcal{A}}$$

where F_1 is an isomorphism and ker F^0 , ImF^0 denote the complements of ker F, ImF respectively.

Proposition

If $D \in \mathcal{M}\tilde{\Phi}_r(H_{\mathcal{A}})$ and ImD is closed and complementable in $H_{\mathcal{A}}$, then the decomposition given above exists for the operator D. In this case, instead of ker D, we have that N_1'' is finitely generated and N_1'' is the complement of ImD.

If $F \in \widehat{\mathcal{M}}\Phi_r(H_{\mathcal{A}}) \setminus \widehat{\mathcal{M}}\Phi(H_{\mathcal{A}})$, ImF is closed and complementable, then the complement of ImF is not finitely generated.

Theorem

Let $F \in B^a(H_A)$. Then $F \in \mathcal{M}\Phi_+(H_A)$ if and only if $\ker(F - K)$ is finitely generated for all $K \in K^*(H_A)$.

Moreover, $F \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}})$ if and only if $Im(F - K)^{\perp}$ is finitely generated for all $K \in K^*(H_{\mathcal{A}})$.

Definition

Let $F \in B(H_A)$. We say that $F \in \widehat{\mathcal{M}}\Phi_+(H_A)$ if there exist a closed submodule M and a finitely generated submodule N s.t. $H_A = M \widetilde{\oplus} N$ and $F_{|_M}$ is bounded below.

Let $F \in \mathcal{B}(\mathcal{H}_{\mathcal{A}})$. Then $F \in \widehat{\mathcal{M}}\Phi_{+}(\mathcal{H}_{\mathcal{A}})$ iff $\ker(F - K)$ is finitely generated for all $K \in K^{*}(\mathcal{H}_{\mathcal{A}})$.

Set $\widehat{\mathcal{M}}\Phi_{-}(H_{\mathcal{A}})=\{G\in B(H_{\mathcal{A}}\mid \text{there exists closed submodules }M,N,M' \text{ of }H_{\mathcal{A}}\text{ s.t. }H_{\mathcal{A}}=M\widetilde{\oplus}N,\ N\text{ is finitely generated and }G_{|_{M'}},\text{ is an isomorphism onto }M\}.$

Proposition

Let $G \in \widehat{\mathcal{M}}\Phi_-(H_{\mathcal{A}})$. Then for every $K \in K(H_{\mathcal{A}})$ there exists an inner product equivalent to the initial one and such that the orthogonal complement of $\overline{Im(G+K)}$ w.r.t this new inner product is finitely generated.

Lemma

$$\mathcal{M}\Phi_{+}(H_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi_{+}(H_{\mathcal{A}}) \cap B^{a}(H_{\mathcal{A}}),$$

$$\mathcal{M}\Phi_{-}(H_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi_{-}(H_{\mathcal{A}}) \cap B^{a}(H_{\mathcal{A}}).$$

Proposition

Let $F, G \in \mathcal{M}\tilde{\Phi}_l(H_{\mathcal{A}})$ with closed images and suppose that ImGF is closed. Then ImF, ImG and ImGF are complementable in $H_{\mathcal{A}}$. Moreover, if $ImF^0, ImG^0, ImGF^0$ denote the complements of ImF, ImG, ImGF, respectively, then

$$ImGF^0 \leq ImF^0 \oplus ImG^0$$
,
ker $GF \prec \ker G \oplus \ker F$.

If $F, G \in \widehat{\mathcal{M}}\Phi_r(H_{\mathcal{A}})$ and ImF, ImG, ImGF are closed, then the statement above holds under additional assumption that ImF, ImG, ImGF are complementable in $H_{\mathcal{A}}$.

Lemma

Let $F,D\in B^a(H_{\mathcal A})$ and suppose that ImF, ImD and ImDF are closed. Then

$$ImDF^{\perp} \preceq ImF^{\perp} \oplus ImD^{\perp}$$

ker $DF \prec \ker D \oplus \ker F$

Let $F \in \mathcal{M}\Phi(M)$ be such that ImF is closed, where M is a Hilbert W^* -module. Then there exists an $\epsilon > 0$ such that for every $D \in B^a(M)$ with $\parallel D \parallel < \epsilon$, we have

$$\ker(F+D) \preceq \ker F$$
, $Im(F+D)^{\perp} \preceq ImF^{\perp}$.

Definition

Let M be a countably generated Hilbert W^* - module. For $F \in \mathcal{M}\Phi(M)$, we say that F satisfies the condition (*) if the following holds:

- 1) ImF^n is closed for all n
- 2) $F(\bigcap_{n=1}^{\infty} Im(F^n)) = \bigcap_{n=1}^{\infty} Im(F^n)$

Theorem

Let $F \in \mathcal{M}\Phi(\tilde{M})$ where \tilde{M} is countably generated Hilbert \mathcal{A} -module and suppose that F satisfies (*). Then there exists an $\epsilon > 0$ such that, if $\alpha \in \mathcal{Z}(\mathcal{A}) \cap \mathcal{G}(\mathcal{A})$ and $\parallel \alpha \parallel < \epsilon$, then $[\ker(F - \alpha I)] + [N_1] = [\ker F]$ and $[\operatorname{Im}(F - \alpha I)^{\perp}] + [N_1] = [\operatorname{Im}(F)^{\perp}]$ for some fixed, finitely generated closed submodule N_1 .

Theorem

Let \tilde{M} be a Hilbert module over a C^* -algebra A , $\alpha \in \mathbb{C}$ and $F \in B^a(H_A)$. Suppose that $\alpha \in iso \ \sigma(F)$ and assume either that $R(F - \alpha I)$ is closed or that $R(P_0)$ is self dual and that A is a W^* -algebra, where P_0 denotes the spectral projection corresponding to α of the operator F. Then the following conditions are equivalent: a) $(F - \alpha I) \in \mathcal{M}\Phi_0(\tilde{M})$

$$(F - \alpha I) \in \mathcal{M}\Phi_0(\tilde{M})$$

b) There exist closed submodules $M, N \subseteq \tilde{M}$ such that. $(F - \alpha I)$ has the matrix

$$\begin{bmatrix} (F - \alpha I)_1 & 0 \\ 0 & (F - \alpha I)_4 \end{bmatrix}$$

w.r.t. the decomposition $\tilde{M} = M \oplus N \xrightarrow{F-\alpha I} M \oplus N = \tilde{M}$, where $(F - \alpha I)_1$ is an isomorphism and N is finitely generated. Moreover, if $(F - \alpha I)$ is not invertible in $B(\tilde{M})$, then $N(F - \alpha I) \neq \{0\}$.

On generalized A-Fredholm and A-Weyl operators

Definition

Let $F \in B^a(H_A)$.

- 1) We say that $F \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$ if ImF is closed and in addition $\ker F$ and ImF^{\perp} are self-dual.
- 2) We say that $F \in \mathcal{M}\Phi_0^{gc}(H_{\mathcal{A}})$ if ImF is closed and $kerF \cong ImF^{\perp}$ (here we do <u>not</u> require the self-duality of kerF, ImF^{\perp}).

Proposition

Let $F, D \in \mathcal{M}\Phi_0^{gc}(H_{\mathcal{A}})$ and suppose that ImDF is closed. Then $DF \in \mathcal{M}\Phi_0^{gc}(H_{\mathcal{A}})$.

Definition

Let $M_1,...,M_n$ be Hilbert submodules of $H_{\mathcal{A}}$. We say that the sequence $0 \to M_1 \to M_2 \to ... \to M_n \to 0$ is exact if for each $k \in \{2,...,n-1\}$ there exist closed submodules M_k' and M_k'' such that the following holds:

- 1) $M_k = M'_k \tilde{\oplus} M''_k$ for all $k \in \{2, ..., n-1\}$;
- 2) $M_2' \cong M_1$ and $M_{n-1}'' \cong M_n$;
- 3) $M_k'' \cong M_{k+1}'$ for all $k \in \{2, ..., n-2\}$.

Lemma

Let $F, D \in B^a(\mathcal{H}_A)$ and suppose that ImF, ImD, ImDF are closed. Then the sequence

$$0 \to \ker F \to \ker DF \to \ker D \to \mathit{Im}F^\perp \to \mathit{Im}DF^\perp \to \mathit{Im}D^\perp \to 0$$

is exact.

Lemma

Let $F, D \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$ and suppose that ImDF is closed. Then $DF \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$.

Let $F \in B^a(H_A)$. Then $F \in \mathcal{M}\Phi^{gc}(H_A)$ if and only if $F^* \in \mathcal{M}\Phi^{gc}(H_A)$.

Proposition

Let $F, D \in B^a(H_A)$, suppose that ImF, ImD are closed and $DF \in \mathcal{M}\Phi^{gc}(H_A)$. Then the following statements hold:

- a) $D \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}}) \Leftrightarrow F \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}});$
- b) if ker D is self-dual, then $F,D\in\mathcal{M}\Phi^{gc}(\mathcal{H}_{\mathcal{A}})$;
- c) if ImF^{\perp} is self-dual, then $F, D \in \mathcal{M}\Phi^{gc}(\mathcal{H}_{\mathcal{A}})$.

Lemma

Let $F \in B^a(\mathcal{H}_{\mathcal{A}})$ and suppose that ImF is closed. Moreover, assume that there exist operators $D, D' \in B^a(\mathcal{H}_{\mathcal{A}})$ with closed images such that $D'F, FD \in \mathcal{M}\Phi^{gc}(\mathcal{H}_{\mathcal{A}})$. Then $F \in \mathcal{M}\Phi^{gc}(\mathcal{H}_{\mathcal{A}})$.

Definition

Let X, Y be Banach spaces and $T \in B(X, Y)$. Then T is called a regular operator if T(X) is closed in Y and in addition $T^{-1}(0)$ and T(X) are complementable in X and Y, respectively.

Definition

[**DDj2**] Let X, Y be Banach spaces and $T \in B(X, Y)$. Then we say that T is generalized Weyl, if T(X) is closed in Y, and $T^{-1}(0)$ and $Y/_{T(X)}$ are mutually isomorphic Banach spaces.

Proposition

Let X,Y,Z be Banach spaces and let $T\in B(X,Y),S\in B(Y,Z)$. Suppose that T,S,ST are regular, that is T(X),S(Y),ST(X) are closed and T,S,ST admit generalized inverse. If T and S are generalized Weyl operators, then ST is a generalized Weyl operator.

Definition

Let X,Y be Banach spaces and $T\in B(X,Y)$ be a regular operator. Then T is said to be a generalized upper semi-Weyl operator if $\ker T \preceq Y \setminus R(T)$. Similarly T is said to be a generalized lower semi-Weyl operator if $Y \setminus R(T) \preceq \ker T$.

Lemma

Let $T \in B(X, Y)$ $S \in B(Y, Z)$ and suppose that S, T, ST are regular. If S and T are upper (or lower) generalized semi-Weyl operators, then ST is an upper (or respectively lower) generalized semi-Weyl operator.

Definition

For two Hilbert C^*- modules M and M', We set $\tilde{\mathcal{M}}\Phi_0^{gc}(M,M')$ to be the class of all closed range operators $F\in B^a(M,M')$ such that there exist finitely generated Hilbert submodules N,\tilde{N} with the property that $N\oplus\ker F\cong\tilde{N}\oplus ImF^\perp$.

Let $T \in \tilde{\mathcal{M}}\Phi_0^{gc}(H_{\mathcal{A}})$ and $F \in B^a(H_{\mathcal{A}})$ s.t. ImF is closed, finitely generated. Suppose that Im(T+F), $T(\ker F)$, $P(\ker T)$, $P(\ker (T+F))$ are closed, where P denotes the orthogonal projection onto $\ker F^{\perp}$. Then $T+F \in \tilde{\mathcal{M}}\Phi_0^{gc}(H_{\mathcal{A}})$.

Corollary

Let $T \in \mathcal{M}\Phi_0^{gc}(H_{\mathcal{A}})$ and suppose that $\ker T \cong ImT^{\perp} \cong H_{\mathcal{A}}$. If $F \in B^a(H_{\mathcal{A}})$ satisfies the assumptions of Lemma 64, then $\ker(T+F) \cong Im(T+F)^{\perp} \cong H_{\mathcal{A}}$. In particular, $T+F \in \mathcal{M}\Phi_0^{gc}(H_{\mathcal{A}})$.

Lemma

Let $F \in B^a(M)$ where M is a Hilbert C^* -module and suppose that ImF is closed. Then the following statements hold:

- a) $F \in \mathcal{M}\Phi_+(M)$, if and only if ker F is finitely generated;
- b) $F \in \mathcal{M}\Phi_{-}(M)$, if and only if ImF^{\perp} is finitely generated.

Lemma

Let $T \in \mathcal{M}\Phi(H_{\mathcal{A}})$ and suppose that ImT is closed. Then $T \in \tilde{\mathcal{M}}\Phi_0^{gc}(H_{\mathcal{A}})$.

On semi-A-B-Fredholm operators

Definition

Let $F \in B^a(H_A)$. Then F is said to be an upper semi-A-B-Fredhom operator if there exists some $n \in \mathbb{N}$ such that ImF^m is closed for all $m \geq n$ and $F_{|_{ImF^n}}$ is an upper semi-A-Fredhom operator.

Similarly, F is said to be a lower semi- \mathcal{A} - \mathcal{B} -Fredholm operator if the conditions above hold except that in this case we assume that $F_{|_{ImF^n}}$ is a lower semi- \mathcal{A} -Fredhom operator and not an upper semi- \mathcal{A} -Fredhom operator.

Proposition

If F is an upper semi- \mathcal{A} -B-Fredholm operator (respectively, a lower semi- \mathcal{A} -B-Fredholm operator) and $n \in \mathbb{N}$ is such that ImF^m is closed for all $m \geq n$ and $F_{|_{ImF^n}}$ is an upper semi- \mathcal{A} -Fredholm operator (respectively, a lower semi- \mathcal{A} -Fredholm operator), then $F_{|_{ImF^m}}$ is an upper semi- \mathcal{A} -Fredholm operator (respectively, a lower semi- \mathcal{A} -Fredholm operator) for all $m \geq n$. Moreover, if F is an \mathcal{A} -B-Fredholm operator and $n \in \mathbb{N}$ is such that $ImF^n \cong H_{\mathcal{A}}$, ImF^m is closed for all $m \geq n$ and $F_{|_{ImF^n}}$ is an \mathcal{A} -Fredholm operator, then $ImF^m \cong H_{\mathcal{A}}$ $F_{|_{ImF^n}}$ is an \mathcal{A} -Fredholm operator and index $F_{|_{ImF^m}} = indexF_{|_{ImF^n}}$ for all $m \geq n$.

Let $F \in \mathcal{M}\Phi(H_{\mathcal{A}})$, let $P \in \mathcal{B}(H_{\mathcal{A}})$ be a projection such that $\mathcal{N}(P)$ is finitely generated. Then $PF_{|_{R(P)}} \in \mathcal{M}\Phi(R(P))$ and $indexPF_{|_{R(P)}} = indexF$.

Theorem

Let T be an A-B-Fredholm operator on H_A and suppose that $m \in \mathbb{N}$ is such that $T_{|_{ImT^m}}$ is an A-Fredholm operator and ImT^n is closed for all $n \geq m$. Let F be in the linear span of elementary operators and suppose that $Im(T+F)^n$ is closed for all $n \geq m$. Finally, assume that $ImT^m \cong H_A$ and that $Im(\tilde{F})$, $T^m(\ker \tilde{F})$ are closed, where $\tilde{F} = (T+F)^m - T^m$. Then T+F is an A-B-Fredholm operator and indexT+F=indexT.

Proposition

Let $F \in B(H_{\mathcal{A}})$. If $n \in \mathbb{N}$ is s.t. ImF^n closed, $ImF^n \cong H_{\mathcal{A}}$, $F_{|_{ImF^n}}$ is upper semi- \mathcal{A} -Fredholm and ImF^m is closed for all $m \geqslant n$, then $F_{|_{ImF^n}}$ is upper semi- \mathcal{A} - Fredholm and $ImF^m \cong H_{\mathcal{A}}$ for all $m \geqslant n$. If $n \in \mathbb{N}$ is s.t. ImF^n is closed, $ImF^n \cong H_{\mathcal{A}}$, ImF^m is closed and complementable in ImF^n for all $m \geqslant n$ and $F_{|_{ImF^n}}$ is lower semi- \mathcal{A} -Fredholm, then $F_{|_{ImF^m}}$ is lower semi- \mathcal{A} -Fredholm for all $m \geqslant n$ and $ImF^m \cong H_{\mathcal{A}}$ for all $m \geqslant n$.

Let $F \in \widehat{\mathcal{M}}\Phi(H_A)$, $K \in K(H_A)$. Then indexF = indexF + K.

Lemma

Let $F, D \in B^a(H_A)$ and suppose that ImF, ImD are closed. If $ImF + \ker D$ is closed, then $ImF + \ker D$ is orthogonally complementable.

Corollary

Let $F, D \in B^a(H_A)$ and suppose that ImF, ImD are closed. Then ImDF is closed if and only if $ImF + \ker D$ is orthogonally complementable.

Definition

Given two closed submodules M, N of H_A , we set

$$c_0(M,N) = \sup\{\| \langle x, y \rangle \| | \ x \in M, y \in N, \| \ x \ \|, \| \ y \ \| \leq 1 \}.$$

We say then that the Dixmier angle between M and N is positive if $c_0(M,N) < 1$.

Lemma

Let M,N be two closed, submodules of $H_{\mathcal{A}}$, assume that M orthogonally complementable and suppose that $M \cap N = \{0\}$. Then M+N is closed if the Dixmier angle between M and N is positive.

Corollary

Let $F,D\in B^a(H_{\mathcal{A}})$ and suppose that ImF,ImD are closed. Set $M=ImF\cap (\ker D\cap ImF)^\perp$, $M'=\ker D\cap (\ker D\cap ImF)^\perp$. Assume that $\ker D\cap ImF$ is orthogonally complementable. Then ImDF is closed if the Dixmier angle between M' and ImF, or equivalently the Dixmier angle between M and ImF and ImF are constituted.

Lemma

Let M and N be two closed submodules of $H_{\mathcal{A}}$. Suppose that M and N are orthogonally complementable in $H_{\mathcal{A}}$ and that $M \cap N = \{0\}$. Then M+N is closed if and only if $P_{|_{N}}$ is bounded below, where P denotes the orthogonal projection onto M^{\perp} .

Corollary

Let $F,D\in B^a(H_{\mathcal A})$ and suppose that ImF,ImD are closed. Then ImDF is closed if and only if $\ker D\cap ImF$ is orthogonally complementable and $P_{|_{ImF\cap(\ker D\cap ImF)^\perp}}$ is bounded below, or equivalently $Q_{|_{\ker D\cap(\ker D\cap ImF)^\perp}}$ is bounded below, where P and Q denote the orthogonal projections onto $\ker D^\perp$ and ImF^\perp , respectively.

Lemma

Let $F,G\in \widehat{\mathcal{M}\Phi}_I(H_{\mathcal{A}})$ and suppose that ImG and ImF are closed. Then ImGF is closed if and only if ImF + ker G is closed and complementable. If $F,G\in \widehat{\mathcal{M}\Phi}_r(H_{\mathcal{A}})$ and ImG,ImF are closed, then the statment above holds under additional assumtion that ImG,ImF are complementable. Moreover, if $F,G\in \widehat{\mathcal{M}\Phi}_I(H_{\mathcal{A}})$ and ImF,ImG are closed and if the Dixmier angle between ker G and $ImF\cap (\ker G\cap ImF)^0$ is positive, or equivalently the Dixmier angle between ImF and $ImF\cap (\ker G\cap ImF)^0$ is positive, where $ImF\cap (\ker G\cap ImF)^0$ denotes the complement of $ImF\cap (\ker G\cap ImF)^0$ then ImGF is closed.

Proposition

Let $F \in B^a(H_A)$. Then the following statements are equivalent:

- 1) ImF is closed in H_A
- 2) ImL_F is closed in $B^a(H_A)$
- 3) ImR_F is closed in $B^a(H_A)$.

Lemma

Let $F \in M^a(\mathcal{H}_A)$. If there exists a sequence $\{F_n\} \subseteq \mathcal{M}\Phi(\mathcal{H}_A)$) of constant index such that $F_n \to F$, then $F \subset \mathcal{M}\Phi(\mathcal{H}_A)$ and index $F = \text{index}F_n$ for all n.

Lemma

Let $F \in B(\mathcal{H}_{\mathcal{A}})$ and suppose that ImF is closed. Then F is a regular operator with the property that ImF⁰, ker F are finitely generated if and only if $F \in \widehat{\mathcal{M}\Phi}(\mathcal{H}_{\mathcal{A}})$.

Proposition

Let $F \in B(H_A)$ be bounded below and suppose that there exists a sequence $\{F_n\} \subseteq \widehat{\mathcal{M}}\Phi(H_A)$ of constant index and such that $F_n \to F$. Suppose also that for each n there exists an $\widehat{\mathcal{M}}\Phi-$ decomposition

$$H_{\mathcal{A}} = M_1^{(n)} \widetilde{\oplus} N_1^{(n)} \xrightarrow{F_n} M_2^{(n)} \widetilde{\oplus} N_2^{(n)} = H_{\mathcal{A}}$$

such that the sequence of projections $\{\sqcap_n\}$ is uniformly bounded, where \sqcap_n denotes the projection onto $N_2^{(n)}$ along $M_2^{(n)}$ for each n. Then $F \in \widehat{\mathcal{M}}\Phi(H_{\mathcal{A}})$ and $indexF_n = indexF$ for all n.

Lemma

Let X,Y be Banach spaces and $F \in M(X,Y)$. Suppose that there exists a sequence $\{F_n\}$ of regular operators in B(X,Y) such that $F_n \to F$. Moreover, assume that there exists a sequence of projections $\{\sqcap_n\}$ in B(Y) which is uniformly bounded in the norm and such that $Im(I-\sqcap_n)=ImF_n$ for all n. Then, F is a regular operator, i.e. ImF is complementable in Y.

Question: If A is a C^* -algebra, then for $\alpha \in A$ could we define in a suitable way the operator αI on H_A and the generalized spectra in \mathcal{A} of operators in $B^a(H_A)$ by setting for every $F \in B^a(H_A)$ $\sigma^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \text{ is not invertible in } B^{a}(H_{\mathcal{A}}) \}$? Answer: For $a \in \mathcal{A}$ we may let αI be the operator on $H_{\mathcal{A}}$ given by $\alpha I(x_1, x_2, \dots) = (\alpha x_1, \alpha x_2, \dots)$. It is straightforward to check that αI is an A-linear operator on H_A . Moreover, αI is bounded and $\|\alpha I\| = \|\alpha\|$. Finally, αI is adjointable and its adjoint is given by $(\alpha I)^* = \alpha^* I$. We introduce then the following notion: $\sigma^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \text{ is not invertible in } B^{a}(H_{\mathcal{A}}) \};$ $\sigma_{\mathbf{p}}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid \ker(F - \alpha I) \neq \{0\} \};$ $\sigma_{\mathcal{A}}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \text{ is bounded below, but not surjective on } H_{\mathcal{A}} \}$; $\sigma_{\mathcal{A}}^{\mathcal{A}}(F) = \{\alpha \in \mathcal{A} \mid Im(F - \alpha I) \text{ is } \underline{\text{not}} \text{ closed } \}. \text{ (where } F \in B^a(H_{\mathcal{A}}))\}.$

Proposition

Let $\mathcal A$ be a unital C^* -algebra, $\{e_k\}_{k\in\mathbb N}$ denote the standard orthonormal basis of $H_{\mathcal A}$ and S be the operator defined by $Se_k=e_{k+1}, k\in\mathbb N$, that is S is unilateral shift and $S^*e_{k+1}=e_k$ for all $k\in\mathbb N$. If $\mathcal A=L^\infty((0,1))$ or if $\mathcal A=C([0,1])$, then $\sigma^{\mathcal A}(S)=\{\alpha\in\mathcal A\mid\inf|\alpha|\leq 1\}$, (where in the case when $\mathcal A=L^\infty((0,1))$, we set $\inf|\alpha|=\inf\{C>0\mid\mu(|\alpha|^{-1}[0,C])>0\}=\sup\{K>0\mid|\alpha|>K)$ a.e. on $(0,1)\}$). Moreover, $\sigma_p^{\mathcal A}(S)=\varnothing$ in both cases.

Corollary

Let \mathcal{A} be a commutative unital C^* -algebra. Then $\sigma^{\mathcal{A}}(S) = \mathcal{A} \setminus G(\mathcal{A}) \cup \{\alpha \in G(\mathcal{A}) | (\alpha^{-1}, \alpha^{-2}, \cdots, \alpha^{-k}, \cdots) \notin \mathcal{H}_{\mathcal{A}}\}.$

Proposition

Let $\alpha \in \mathcal{A}$. We have

- 1. If $\alpha I F$ is bounded below, and $F \in B^a(\mathcal{H}_A)$ then $\alpha \in \sigma_{rl}^A(F)$ if and only if $\alpha^* \in \sigma_p^A(F^*)$.
- 2. If $F, D \in B^{a}(H_{\mathcal{A}})$ and $D = U^*FU$ for some unitary operator U, then $\sigma^{\mathcal{A}}(F) = \sigma^{\mathcal{A}}(D), \sigma^{\mathcal{A}}_{p}(F) = \sigma^{\mathcal{A}}_{p}(D), \sigma^{\mathcal{A}}_{cl}(F) = \sigma^{\mathcal{A}}_{cl}(D)$ and $\sigma^{\mathcal{A}}_{rl}(F) = \sigma^{\mathcal{A}}_{rl}(D)$.

Proposition

Let $U \in B^a(\mathcal{H}_{\mathcal{A}})$ be unitary. Then $\sigma^{\mathcal{A}}(U) \subseteq \{\alpha \in \mathcal{A} \mid \parallel \alpha \parallel \geq 1\}$ and $\sigma^{\mathcal{A}}(U) \cap G(\mathcal{A}) \subseteq \{\alpha \in G(\mathcal{A}) \mid \parallel \alpha^{-1} \parallel, \parallel \alpha \parallel \geq 1\}.$

Consider again the orthonormal basis $\{e_k\}_{k\in\mathbb{N}}$ for $H_{\mathcal{A}}$. We may enumerate this basis by indexes in \mathbb{Z} . Then we get orthonormal basis $\{e_j\}_{j\in\mathbb{Z}}$ for $H_{\mathcal{A}}$ and we can consider bilateral shift operator V w.r.t. this basis i.e. $Ve_k=e_{k+1}$ all $k\in\mathbb{Z}$, which gives $V^*e_k=e_{k-1}$ for all $k\in\mathbb{Z}$.

Proposition

Let V be bilateral shift operator. Then the following holds 1) If $\mathcal{A} = C([0,1])$, then $\sigma^{\mathcal{A}}(V) = \{f \in \mathcal{A} \mid |f|([0,1]) \cap \{1\} \neq \varnothing\}$ 2) If $\mathcal{A} = L^{\infty}([0,1])$, then $\sigma^{\mathcal{A}}(V) = \{f \in \mathcal{A} \mid \mu(|f|^{-1}((1-\epsilon,1+\epsilon)) > 0 \ \forall \epsilon > 0\}$. In both cases $\sigma^{\mathcal{A}}_{\mathcal{P}}(V) = \varnothing$.

Lemma

If F is a self-adjoint operator on H_A , then $\sigma_p^A(F)$ is a self-adjoint subset of A, that is $\alpha \in \sigma_p^A(F)$ if and only if $\alpha^* \in \sigma_p^A(F)$ in the case when A is a commutative C^* -algebra.

Lemma

Let \mathcal{A} be a commutative C^* -algebra. If F is a self-adjoint operator on $H_{\mathcal{A}}$ and $\alpha \in \mathcal{A} \setminus \sigma_p^{\mathcal{A}}(F)$, then $\overline{R(F-\alpha I)}^\perp = \{0\}$. Hence, if $\alpha \in \mathcal{A} \setminus \sigma_p^{\mathcal{A}}(F)$ and in addition $F-\alpha I$ is bounded below, then $\alpha \in \mathcal{A} \setminus \sigma^{\mathcal{A}}(F)$.

Let \mathcal{A} be a commutative unital C^* -algebra and F be a normal operator on $H_{\mathcal{A}}$, that is $FF^* = F^*F$. If $\alpha_1, \alpha_2 \in \sigma_p^{\mathcal{A}}(F)$ and $\alpha_1 - \alpha_2$ is invertible in \mathcal{A} , then $\ker(F - \alpha_1 I) \perp \ker(F - \alpha_2 I)$.

Lemma

Let \mathcal{A} be a commutative C^* -algebra and F be a normal operator on $H_{\mathcal{A}}$. Then $\sigma_{rl}^{\mathcal{A}}(F) = \varnothing$, hence $\sigma^{\mathcal{A}}(F) = \sigma_p^{\mathcal{A}}(F) \cup \sigma_{cl}^{\mathcal{A}}(F)$.

Lemma

Let $F \in B^a(H_A)$. Then the following statements are equivalent:

- a) $\alpha \in \mathcal{A} \setminus \sigma_a(F)$
- b) $\alpha \in \mathcal{A} \setminus \sigma_l(F)$
- c) $\alpha^* \in \mathcal{A} \setminus \sigma_r(F^*)$
- d) $Im(\alpha^*I F^*) = H_A$.

Next, for $F \in B^a(\mathcal{H}_A)$, set $\sigma_a^A(F) = \{\alpha \in A \mid F - \alpha I \text{ is not bounded below } \}$.

Proposition

For $F \in B^a(\mathcal{H}_{\mathcal{A}})$, we have that $\sigma_a^{\mathcal{A}}(F)$ is a closed subset of \mathcal{A} in the norm topology and $\sigma^{\mathcal{A}}(F) = \sigma_a^{\mathcal{A}}(F) \cup \sigma_{rl}^{\mathcal{A}}(F)$.

Proposition

If $F \in B^a(\mathcal{H}_{\mathcal{A}})$, then $\partial \sigma^{\mathcal{A}}(F) \subseteq \sigma_a^{\mathcal{A}}(F)$. Moreover, if M is a closed submodule of $\mathcal{H}_{\mathcal{A}}$ and invariant with respect to F, and $F_0 = F_{|_{M}}$, then we have $\partial \sigma^{\mathcal{A}}(F_0) \subseteq \sigma_a^{\mathcal{A}}(F)$, $\sigma^{\mathcal{A}}(F_0) \cap \sigma^{\mathcal{A}}(F) = \sigma_{rl}^{\mathcal{A}}(F_0)$.

Definition

Let $F \in B^a(H_A)$. We set

$$\begin{split} \sigma_{ew}^{\mathcal{A}}(\mathbf{F}) &= \{\alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{0}(\mathcal{H}_{\mathcal{A}})\}, \\ \sigma_{e\alpha}^{\mathcal{A}}(\mathbf{F}) &= \{\alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}})\}, \\ \sigma_{e\beta}^{\mathcal{A}}(\mathbf{F}) &= \{\alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})\}, \\ \sigma_{ek}^{\mathcal{A}}(\mathbf{F}) &= \{\alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \cup \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})\}, \\ \sigma_{ef}^{\mathcal{A}}(\mathbf{F}) &= \{\alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}})\}. \end{split}$$

Definition

Definition
We set
$$ms_{\Phi}(F) = \inf\{\|\alpha\| \| \alpha \in \mathcal{A}, F - \alpha I \notin \mathcal{M}\Phi(H_{\mathcal{A}})\},$$

$$ms(F) = \inf\{\|\alpha\| \| \alpha \in \mathcal{A}, F - \alpha I \notin (\mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \cup \mathcal{M}\Phi_{-}(H_{\mathcal{A}}))\},$$

$$ms_{+}(F) = \inf\{\|\alpha\| \| \alpha \in \mathcal{A}, F - \alpha I \notin \mathcal{M}\Phi_{+}(H_{\mathcal{A}})\},$$

$$ms_{-}(F) = \inf\{\|\alpha\| \| \alpha \in \mathcal{A}, F - \alpha I \notin \mathcal{M}\Phi_{-}(H_{\mathcal{A}})\},$$

$$lt \text{ follows that } ms_{\Phi}(F) = \max\{\epsilon \geq 0 \mid \|\alpha\| < \epsilon \Rightarrow F - \alpha I \in \mathcal{M}\Phi(H_{\mathcal{A}})\},$$

$$ms_{+}(F) = \max\{\epsilon \geq 0 \mid \|\alpha\| < \epsilon \Rightarrow F - \alpha I \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}})\},$$

$$ms_{-}(F) = \max\{\epsilon \geq 0 \mid \|\alpha\| < \epsilon \Rightarrow F - \alpha I \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}})\},$$

$$ms(F) = \max\{\epsilon \geq 0 \mid \|\alpha\| < \epsilon \Rightarrow F - \alpha I \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \cup \mathcal{M}\Phi_{-}(H_{\mathcal{A}})\},$$

$$it \text{ follows that } ms_{\Phi}(F) > 0 \Leftrightarrow F \in \mathcal{M}\Phi(H_{\mathcal{A}}),$$

$$ms_{+}(F) > 0 \Leftrightarrow F \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}}), ms_{-}(F) > 0 \Leftrightarrow F \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}}),$$

$$ms(F) > 0 \Leftrightarrow F \in (\mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \cup \mathcal{M}\Phi_{-}(H_{\mathcal{A}})), \text{ it follows that}$$

 $ms_{+}(F) = ms_{-}(F^{*}), ms_{\Phi}(F) = ms_{\Phi}(F^{*}), ms(F) = ms(F^{*}).$

Let $F \in B(H_A)$. If $ms_+(F) > 0$ and $ms_-(F) > 0$, then $ms_+(F) = ms_-(F)$.

Lemma

Let $F \in B(H_A)$. Then 1) $ms_{\Phi}(F) = \min\{ms_{+}(F), ms_{-}(F)\}$ 2) $ms(F) = \max\{ms_{+}(F), ms_{-}(F)\}$.

Lemma

Let $F \in B(H_A)$, where A be a W^* -algebra and suppose that K(A) satisfies the cancellation property. Then $\sigma^A(F) = \sigma^A_{ew}(F) \cup \sigma^A_p(F) \cup \sigma^A_{cl}(F)$.

Let now \mathcal{A} be an arbitrary C^* -algebra. For $F \in B^a(\mathcal{H}_{\mathcal{A}})$ set $\sigma_{\text{ewgc}}^{\mathcal{A}}(F) = \{\alpha \in \mathcal{A} \mid (F - \alpha I) \notin \mathcal{M}\Phi_0^{gc}(\mathcal{H}_{\mathcal{A}})\}$. Then $\sigma^{\mathcal{A}}(F) = \sigma_{\text{ewgc}}^{\mathcal{A}}(F) \cup \sigma_p^{\mathcal{A}}(F)$.

Lemma

Let $F \in B^a(\mathcal{H}_A)$ and supppose K(A) satisfies the cancellation property. Then $\sigma^A(F) = \sigma^A_{ew}(F) \cup \sigma^A_p(F) \cup \sigma^A_{cl}(F)$.

Proposition

If $F \in B^a(\mathcal{H}_{\mathcal{A}})$ then the components of $\mathcal{A} \setminus (\sigma_{e\alpha}^{\mathcal{A}}(F) \cap \sigma_{e\beta}^{\mathcal{A}}(F))$ are either completely contained in $\mathcal{M}\Phi_+(F) \setminus \mathcal{M}\Phi(F)$ or in $\mathcal{M}\Phi_+(F) \setminus \mathcal{M}\Phi(F)$ or index $(F - \alpha I)$ is constant on them.

Lemma

Let
$$F \in B^{\mathfrak{s}}(\mathcal{H}_{\mathcal{A}})$$
. If $\alpha \in \partial \sigma^{\mathcal{A}}(F) \setminus (\sigma^{\mathcal{A}}_{e\alpha}(F) \cap \sigma^{\mathcal{A}}_{e\beta}(F))$, then $\alpha \in \mathcal{M}\Phi_0(F)$.

Let now $\tilde{\mathcal{M}}\Phi_0(\mathcal{H}_{\mathcal{A}})$ be the set of all $F\in\mathcal{B}^a(\mathcal{H}_{\mathcal{A}})$ such that there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{\mathrm{F}}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

w.r.t. which F has the matrix $\begin{bmatrix} F_1 & 0 \\ 0 & F_4 \end{bmatrix}$, where F_1 is an isomorphism, N_1, N_2 are finitely generated and

$$N \widetilde{\oplus} N_1 = N \widetilde{\oplus} N_2 = H_{\mathcal{A}}$$

for some closed submodule $N \subseteq H_A$.

Notice that this implies that $F \in \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}})$ and $\mathcal{N}_1 \cong \mathcal{N}_2$, so that index $F = [\mathcal{N}_1] - [\mathcal{N}_2] = 0$. Hence $\tilde{\mathcal{M}}\Phi_0(\mathcal{H}_{\mathcal{A}}) \subseteq \mathcal{M}\Phi_0(\mathcal{H}_{\mathcal{A}})$.

Let $P(\mathcal{H}_{\mathcal{A}}) = \{P \in \mathcal{B}(\mathcal{H}_{\mathcal{A}}) \mid P \text{ is a projection and } N(P) \text{ is finitely generated}\}$

and let

$$\sigma_{\mathrm{eW}}^{\mathcal{A}}(\mathrm{F}) = \{ \alpha \in Z(\mathcal{A}) \mid (\mathrm{F} - \alpha \mathrm{I}) \notin \tilde{\mathcal{M}} \Phi_0(\mathcal{H}_{\mathcal{A}}) \}$$

for $F \in B^a(\mathcal{H}_A)$.

Theorem

Let $\mathrm{F} \in B^a(H_\mathcal{A})$. Then

$$\sigma_{\mathrm{eW}}^{\mathcal{A}}(F) = \cap \{ \sigma^{\mathcal{A}}(PF_{|_{R(P)}}) \mid P \in P(\mathcal{H}_{\mathcal{A}}) \}$$

where

$$\sigma^{\mathcal{A}}(\mathrm{PF}_{|_{\mathrm{R}(\mathrm{P})}}) = \{\alpha \in \mathit{Z}(\mathcal{A}) \mid (\mathrm{PF} - \alpha \mathrm{I})_{|_{\mathrm{R}(\mathrm{P})}} \text{ is not invertible in } \mathit{B}(\mathrm{R}(\mathrm{P}))\}.$$

Lemma

 $\tilde{\mathcal{M}}\Phi_0(H_{\mathcal{A}})$ is open in $B^a(H_{\mathcal{A}})$.

We let now $\widehat{\mathcal{M}\Phi}_+^-(H_{\mathcal{A}})$ be the space of all $F \in \mathcal{B}^a(H_{\mathcal{A}})$ such that there exists a decomposition

$$H_{\mathcal{A}} = M_1 \widetilde{\oplus} N_1 \stackrel{\mathrm{F}}{\longrightarrow} M_2 \widetilde{\oplus} N_2 = H_{\mathcal{A}},$$

w.r.t. which F has the matrix $\left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}\right],$ where F_1 is an isomorphism,

 N_1 is finitely generated and such that there exist closed submodules N_2', N where $N_2' \subseteq N_2, N_2' \cong N_1$,

 $H_{\mathcal{A}}=N\tilde{\oplus}N_1=N\tilde{\oplus}N_2'$ and the projection onto N along N_2' is adjointable.

Then we set

$$\sigma_{e\check{\mathbf{a}}}^{\mathcal{A}}(F) := \{ \alpha \in \mathcal{Z}(\mathcal{A}) \mid (F - \alpha I) \notin \widehat{\mathcal{M}} \Phi_{+}^{-}(\mathcal{H}_{\mathcal{A}}) \}.$$

Theorem

Let $F \in B^a(\mathcal{H}_{\mathcal{A}})$. Then $\sigma_{e\tilde{a}}^{\mathcal{A}}(F) = \cap \{\sigma_a^{\mathcal{A}}(PF_{|_{R(P)}}) \mid P \in P^a(\mathcal{H}_{\mathcal{A}})\}$ where $\sigma_a^{\mathcal{A}}(PF_{|_{R(P)}})$ is the set of all $\alpha \in Z(\mathcal{A})$ s.t. $(PF - \alpha I)_{|_{R(P)}}$ is not bounded below on R(P) and $P^a(\mathcal{H}_{\mathcal{A}}) = P(\mathcal{H}_{\mathcal{A}}) \cap B^a(\mathcal{H}_{\mathcal{A}})$.

Definition We set $\widehat{\mathcal{M}}\Phi_{-}^{+}(H_{\mathcal{A}})$ to be the set of all $\mathrm{D}\in\mathcal{B}^{a}(H_{\mathcal{A}})$ such that there exists a decomposition

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \stackrel{\mathrm{D}}{\longrightarrow} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}}$$

w.r.t. which D has the matrix $\left[\begin{array}{cc} D_1 & 0 \\ 0 & D_4 \end{array}\right]$, where D_1 is an isomorphism,

 N_2' is finitely generated and such that $H_A = M_1' \oplus N \oplus N_2'$ for some closed submodule N, where the projection onto $M'_1 \widetilde{\oplus} N$ along N'_2 is adjointable.

Then we set

$$\sigma_{e\tilde{d}}^{\mathcal{A}}(D) = \{ \alpha \in Z(\mathcal{A}) \mid (D - \alpha I) \notin \widehat{\mathcal{M}} \Phi_{-}^{+}(\mathcal{H}_{\mathcal{A}}) \}$$

and for $P \in P^a(\mathcal{H}_A)$ we set

$$\sigma_d^{\mathcal{A}}(\mathrm{PD}_{|_{\mathrm{R}(\mathrm{P})}}) = \{\alpha \in \mathcal{Z}(\mathcal{A})\} \mid (\mathrm{PD} - \alpha \mathrm{I})_{|_{\mathrm{R}(\mathrm{P})}} \text{ is not onto } \mathrm{R}(\mathrm{P})\}.$$

Theorem

Let $D \in B^a(H_A)$. Then

$$\sigma_{a\tilde{d}}^{\mathcal{A}}(D) = \bigcap \{ \sigma_{d}^{\mathcal{A}}(PD_{|_{R(P)}}) \mid P \in P^{a}(\mathcal{H}_{\mathcal{A}}) \}$$

Definition

We let $\widehat{\mathcal{M}}\Phi_+(H_{\mathcal{A}})$ be the set of all $F\in B(H_{\mathcal{A}})$ such that there exists an $\mathcal{M}\Phi_+$ -decomposition for F

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}},$$

and closed submodules N, N_2' with the property that N_1 is isomorphic to $N_2', N_2' \subseteq N_2$ and

$$H_{\mathcal{A}}=N\tilde{\oplus}N_1=N\tilde{\oplus}N_2'.$$

Theorem

For $F \in B(H_A)$ we have

$$\sigma_{\text{e\~a0}}^{\mathcal{A}}(F) = \cap \{\sigma_{\text{a0}}^{\mathcal{A}}(PF_{|_{R(P)}}) \mid P \in P(\mathcal{H}_{\mathcal{A}})\},$$

where $\sigma_{a0}^{\mathcal{A}}(PF_{|_{R(P)}}) = \{\alpha \in Z(\mathcal{A}) \mid (PF - \alpha I)_{|_{R(P)}} \text{ is not bounded below on } R(P) \text{ or } R(PF - \alpha P) \text{ is not complementable in } R(P)\}.$

Definition +

We set $\widehat{\mathcal{M}}\Phi_-(H_{\mathcal{A}})$ to be the set of all $G\in B(H_{\mathcal{A}})$ such that there exists an $\mathcal{M}\Phi_-$ -decomposition for G

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \stackrel{G}{\longrightarrow} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}},$$

and a closed submodule N with the property that $H_{\mathcal{A}} = M_1' \tilde{\oplus} N \tilde{\oplus} N_2'$.

Theorem

For $G \in B(H_A)$ we have

$$\sigma_{\tilde{ed0}}^{\mathcal{A}}(G) = \cap \{\sigma_{d0}^{\mathcal{A}}(PG_{|_{R(P)}}) \mid P \in P(\mathcal{H}_{\mathcal{A}})\},$$

where $\sigma_{d0}^{\mathcal{A}}(PG_{|_{R(P)}}) = \{\alpha \in Z(\mathcal{A}) \mid R(P) \text{ does not split into the decomposition } R(P) = \tilde{N} \tilde{\oplus} \tilde{\tilde{N}} \text{ with the property that } PG_{|_{\tilde{N}}} \text{ is an isomorphism onto } R(P)\}.$

The boundary of several kinds of Fredholm spectra in ${\mathcal A}$

Theorem

Let $F \in B^a(\mathcal{H}_A)$. Then the following inclusions hold:

$$\partial \sigma_{\mathsf{ew}}^{\mathcal{A}}(F) \subseteq \partial \sigma_{\mathsf{ef}}^{\mathcal{A}}(F) \subseteq \begin{array}{c} \partial \sigma_{\mathsf{e}\beta}^{\mathcal{A}}(F) \\ \partial \sigma_{\mathsf{e}\alpha}^{\mathcal{A}}(F) \end{array} \subseteq \partial \sigma_{\mathsf{ek}}^{\mathcal{A}}(F).$$

Theorem

Let $F \in B^a(\mathcal{H}_A)$. Then

$$\partial \sigma_{\mathsf{ew}}^{\mathcal{A}}(F) \subseteq \partial \sigma_{\mathsf{e\tilde{a}}}^{\mathcal{A}}(F) \subseteq \partial \sigma_{\mathsf{ea}}^{\mathcal{A}}(F)$$

Moreover, $\partial \sigma_{ea}^{\mathcal{A}}(F) \subseteq \partial \sigma_{e\alpha}^{\mathcal{A}}(F)$ if $K(\mathcal{A})$ satisfies the cancellation property.

Perturbations of the generalized spectra in ${\cal A}$

Lemma

 $\mathcal{M}I(H_{\mathcal{A}})$ is a closed two sided ideal in $B^a(H_{\mathcal{A}})$ and

$$\mathcal{M}I(H_{\mathcal{A}}) = \{D \in B^{a}(H_{\mathcal{A}}) \mid I + DF \in \mathcal{M}\Phi(H_{\mathcal{A}}) \ \forall F \in B^{a}(H_{\mathcal{A}})\} =$$

$$= \{D \in B^{a}(H_{\mathcal{A}}) \mid I + DF \in \mathcal{M}\Phi(H_{\mathcal{A}}) \ \forall F \in \mathcal{M}\Phi(H_{\mathcal{A}})\} =$$

$$= \{D \in B^{a}(H_{\mathcal{A}}) \mid I + FD \in \mathcal{M}\Phi(H_{\mathcal{A}}) \ \forall F \in B^{a}(H_{\mathcal{A}})\} =$$

$$= \{D \in B^{a}(H_{\mathcal{A}}) \mid I + FD \in \mathcal{M}\Phi(H_{\mathcal{A}}) \ \forall F \in F \in \mathcal{M}\Phi(H_{\mathcal{A}})\}.$$

Lemma

a) If $F \in \mathcal{M}\Phi_+(H_\mathcal{A}) \setminus \mathcal{M}\Phi(H_\mathcal{A})$ and $D \in P(\mathcal{M}\Phi(H_\mathcal{A}))$, then $F + D \in \mathcal{M}\Phi_+(H_\mathcal{A}) \setminus \mathcal{M}\Phi(H_\mathcal{A})$. b) If $F \in \mathcal{M}\Phi_-(H_\mathcal{A}) \setminus \mathcal{M}\Phi(H_\mathcal{A})$ and $D \in P(\mathcal{M}\Phi(H_\mathcal{A}))$, then $F + D \in \mathcal{M}\Phi_-(H_\mathcal{A}) \setminus \mathcal{M}\Phi(H_\mathcal{A})$. c) If $\mathcal{M}\Phi(H_\mathcal{A})$ and $D \in P(\mathcal{M}\Phi(H_\mathcal{A}))$, then $D + F \in \mathcal{M}\Phi(H_\mathcal{A})$ and index D + F = index F.

We have $P(\mathcal{M}\Phi_0(H_A)) = P(\mathcal{M}\Phi(H_A))$.

Proposition

Let $F \in B^a(H_A)$. Then

$$\sigma_{ew}^{\mathcal{A}}(F) = \bigcap_{D \in K^*(H_{\mathcal{A}})} \sigma^{\mathcal{A}}(F+D) = \bigcap_{D \in \mathcal{M}I(H_{\mathcal{A}})} \sigma^{\mathcal{A}}(F+D).$$

Theorem

The operator $D \in B^a(H_A)$ satisfies the condition $\sigma_{ek}^A(F+D) = \sigma_{ek}^A(F)$ for every $F \in B^a(H_A)$ if and only if $D \in P(\mathcal{M}\Phi_+(H_A)) \cap P(\mathcal{M}\Phi_-(H_A)) = P(\mathcal{M}\Phi(H_A))$.

The operator $D \in B^a(\mathcal{H}_A)$ satisfies the condition $\sigma_{e\alpha}^{\mathcal{A}}(F+D) = \sigma_{e\alpha}^{\mathcal{A}}(F)$ for every $F \in B^a(\mathcal{H}_A)$ if and only if $D \in P(\mathcal{M}\Phi(\mathcal{H}_A))$.

Lemma

The operator $D \in B^a(\mathcal{H}_A)$ satisfies the condition $\sigma_{e\beta}^A(F+D) = \sigma_{e\beta}^A(F)$ for every $F \in B^a(\mathcal{H}_A)$ if and only if $D \in P(\mathcal{M}\Phi(\mathcal{H}_A))$.

Lemma

The operator $D \in B^a(H_A)$ satisfies the condition $\sigma_{ef}^A(F+D) = \sigma_{ef}^A(F)$ for every $F \in B^a(H_A)$ if and only if $D \in P(\mathcal{M}\Phi(H_A))$.

Lemma

The operator $D \in B^a(\mathcal{H}_A)$ satisfies the condition $\sigma_{ew}^{\mathcal{A}}(F+D) = \sigma_{ew}^{\mathcal{A}}(F)$ for every $F \in B^a(\mathcal{H}_A)$ if and only if $D \in P(\mathcal{M}\Phi(\mathcal{H}_A))$.

Definition

For $F \in B^a(\mathcal{H}_{\mathcal{A}})$ we set $\sigma_{e\alpha'}^{\mathcal{A}}(F) = \{\alpha \in \mathcal{A} \mid F - \alpha I \notin \mathcal{M}\Phi_+^{-\prime}(\mathcal{H}_{\mathcal{A}})\}$ and $\sigma_{e\beta'}^{\mathcal{A}}(F) = \{\alpha \in \mathcal{A} \mid F - \alpha I \notin \mathcal{M}\Phi_+^{+\prime}(\mathcal{H}_{\mathcal{A}})\}.$

Lemma

Let $F \in B^a(H_A)$. Then

$$\sigma_{e\alpha'}^{\mathcal{A}}(F) = \bigcap_{D \in K^*(H_{\mathcal{A}})} \sigma_a^{\mathcal{A}}(F+D) = \bigcap_{D \in P(\mathcal{M}\Phi_+^{-\prime}(H_{\mathcal{A}}))} \sigma_a^{\mathcal{A}}(F+D),$$

$$\sigma_{e\beta'}^{\mathcal{A}}(F) = \bigcap_{D \in K^*(H_{\mathcal{A}})} \sigma_d^{\mathcal{A}}(F+D) = \bigcap_{D \in P(\mathcal{M}\Phi_{-}^{+\prime}(H_{\mathcal{A}}))} \sigma_d^{\mathcal{A}}(F+D),$$

Lemma

Let $F \in B^a(H_A)$. Then

- 1) We have $\sigma_{e\alpha'}^{\mathcal{A}}(F+D) = \sigma_{e\alpha'}^{\mathcal{A}}(D)$ for every $D \in \mathcal{B}^a(\mathcal{H}_{\mathcal{A}})$ if and only if $F \in \mathcal{P}(\mathcal{M}\Phi_+^{-\prime}(\mathcal{H}_{\mathcal{A}}))$.
- 2) We have $\sigma_{e\beta'}^{\mathcal{A}}(D) = \sigma_{e\beta'}^{\mathcal{A}}(F+D)$ for every $D \in \mathcal{B}^{a}(\mathcal{H}_{\mathcal{A}})$ if and only $F \in \mathcal{P}(\mathcal{M}\Phi_{-}^{+\prime}(\mathcal{H}_{\mathcal{A}}))$.

We will consider the operator $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}(\mathrm{F},\mathrm{D}):H_{\mathcal{A}}\oplus H_{\mathcal{A}}\to H_{\mathcal{A}}\oplus H_{\mathcal{A}}$ given as 2×2 operator matrix

$$\left[\begin{array}{cc} F & C \\ 0 & D \end{array}\right],$$

where $C \in B^a(\mathcal{H}_A)$.

To simplify notation we will only write $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}$ instead of $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}(\mathrm{F},\mathrm{D})$ when $\mathrm{F},\mathrm{D}\in\mathcal{B}^{a}(\mathcal{H}_{\mathcal{A}})$ are given.

Proposition

For given $F, C, D \in B^a(\mathcal{H}_A)$, one has

$$\sigma_e^{\mathcal{A}}(\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}) \subset (\sigma_e^{\mathcal{A}}(\mathrm{F}) \cup \sigma_e^{\mathcal{A}}(\mathrm{D})).$$

Theorem

generated and

Let $F, D \in \mathcal{B}^a(\mathcal{H}_{\mathcal{A}})$. If $\mathbf{M}_C^{\mathcal{A}} \in \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}})$ for some $C \in \mathcal{B}^a(\mathcal{H}_{\mathcal{A}})$, then $F \in \mathcal{M}\Phi_+(\mathcal{H}_{\mathcal{A}}), D \in \mathcal{M}\Phi_-(\mathcal{H}_{\mathcal{A}})$ and for all decompositions

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{\mathrm{F}}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}},$$

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \xrightarrow{\mathcal{D}} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}}$$

w.r.t. which F,D have matrices $\left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}\right], \left[\begin{array}{cc} D_1 & 0 \\ 0 & D_4 \end{array}\right],$ respectively, where F_1,D_1 are isomorphisms, and N_1,N_2' are finitely generated, there exist closed submodules $\tilde{N}_1',\,\tilde{\tilde{N}}_1',\,\tilde{\tilde{N}}_2,\,\tilde{\tilde{N}}_2$ such that $N_2\cong\tilde{N}_2,\,N_1'\cong\tilde{N}_1',\,\tilde{\tilde{N}}_2$ and $\tilde{\tilde{N}}_1'$ are finitely

$$\tilde{\mathcal{N}}_2 \tilde{\oplus} \tilde{\tilde{\mathcal{N}}}_2 \cong \tilde{\mathcal{N}}_1' \tilde{\oplus} \tilde{\tilde{\mathcal{N}}}_1'.$$

Proposition

Suppose that there exists some $C \in B^a(\mathcal{H}_A)$ such that the inclusion $\sigma_e^{\mathcal{A}}(\mathbf{M}_C^{\mathcal{A}}) \subset \sigma_e^{\mathcal{A}}(F) \cup \sigma_e^{\mathcal{A}}(D)$ is proper. Then for any

$$\alpha \in [\sigma_e^{\mathcal{A}}(F) \cup \sigma_e^{\mathcal{A}}(D)] \setminus \sigma_e^{\mathcal{A}}(\mathbf{M}_C^{\mathcal{A}})$$

we have

$$\alpha \in \sigma_e^{\mathcal{A}}(F) \cap \sigma_e^{\mathcal{A}}(D).$$

Next, we define the following classes of operators on $\mathcal{H}_\mathcal{A}$:

$$\mathcal{M}S_{+}(H_{\mathcal{A}}) = \{ F \in \mathcal{B}^{\mathsf{a}}(H_{\mathcal{A}}) \mid (F - \alpha 1) \in \mathcal{M}\Phi_{-}^{+}(H_{\mathcal{A}})$$
 whenever $\alpha \in \mathcal{A}$ and $(F - \alpha 1) \in \mathcal{M}\Phi_{\pm}(H_{\mathcal{A}}) \},$
$$\mathcal{M}S_{-}(H_{\mathcal{A}}) = \{ F \in \mathcal{B}^{\mathsf{a}}(H_{\mathcal{A}}) \mid (F - \alpha 1) \in \mathcal{M}\Phi_{+}^{-}(H_{\mathcal{A}})$$
 whenever $\alpha \in \mathcal{A}$ and $(F - \alpha 1) \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \}.$

Proposition

If $F \in \mathcal{M}S_+(\mathcal{H}_A)$ or $D \in \mathcal{M}S_-(\mathcal{H}_A)$, then for all $C \in \mathcal{B}^a(\mathcal{H}_A)$, we have

$$\sigma_{\mathrm{e}}^{\mathcal{A}}(\mathsf{M}_{\mathrm{C}}^{\mathcal{A}}) = \sigma_{\mathrm{e}}^{\mathcal{A}}(\mathrm{F}) \cup \sigma_{\mathrm{e}}^{\mathcal{A}}(\mathrm{D})$$

Let $F \in \mathcal{M}\Phi_+(H_\mathcal{A}), D \in \mathcal{M}\Phi_-(H_\mathcal{A})$ and suppose that there exist decompositions

$$H_{\mathcal{A}} = M_{1} \widetilde{\oplus} N_{1} \stackrel{\mathrm{F}}{\longrightarrow} N_{2}^{\perp} \oplus N_{2} = H_{\mathcal{A}}$$

$$H_{\mathcal{A}} = N_{1}^{\prime \perp} \oplus N_{1}^{\prime} \stackrel{\mathrm{D}}{\longrightarrow} M_{2}^{\prime} \widetilde{\oplus} N_{2}^{\prime} = H_{\mathcal{A}}$$

w.r.t. which F, D have matrices

$$\left[\begin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}\right], \left[\begin{array}{cc} D_1 & 0 \\ 0 & D_4 \end{array}\right],$$

respectively, where F_1, D_1 are isomorphims, N_1, N_2' are finitely generated and assume also that one of the following statements hold:

- a) There exists some $J \in B^a(N_2,N_1')$ such that $N_2 \cong \mathrm{Im} J$ and $\mathrm{Im} J^\perp$ is finitely generated.
- b) There exists some $J' \in B^a(N_1',N_2)$ such that $N_1' \cong \mathrm{Im} J', (\mathrm{Im} J')^\perp$ is finitely generated.

Then $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M}\Phi(H_{\mathcal{A}} \oplus H_{\mathcal{A}})$ for some $\mathrm{C} \in \mathcal{B}^{a}(H_{\mathcal{A}})$.

Suppose $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}} \oplus H_{\mathcal{A}})$ for some $\mathrm{C} \in B^{a}(H_{\mathcal{A}})$. Then $\mathrm{D} \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}})$ and in addition the following statement holds: Either $\mathrm{F} \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}})$ or there exists decompositions

$$H_{\mathcal{A}} \oplus H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \xrightarrow{\mathrm{F}'} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}} \oplus H_{\mathcal{A}},$$

$$H_{\mathcal{A}} \oplus H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \xrightarrow{\mathrm{D}'} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}} \oplus H_{\mathcal{A}},$$

w.r.t. which F',D' have the matrices $\left[\begin{array}{cc} F_1' & 0 \\ 0 & F_4' \end{array}\right], \left[\begin{array}{cc} D_1' & 0 \\ 0 & D_4' \end{array}\right],$ where F_1',D_1' are isomorphisms, N_2' is finitely generated, N_1,N_2,N_1' are closed, but <u>not</u> finitely generated, and $M_2\cong M_1',N_2\cong N_1'.$

Let $F, D \in \mathcal{B}^a(\mathcal{H}_A)$ and suppose that $D \in \mathcal{M}\Phi_-(\mathcal{H}_A)$ and either $F \in \mathcal{M}\Phi_-(\mathcal{H}_A)$ or that there exist decompositions

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{\mathrm{F}}{\longrightarrow} N_2^{\perp} \tilde{\oplus} N_2 = H_{\mathcal{A}},$$

$$H_{\mathcal{A}} = N_1'^{\perp} \widetilde{\oplus} N_1' \stackrel{\mathrm{D}}{\longrightarrow} M_2' \widetilde{\oplus} N_2' = H_{\mathcal{A}},$$

w.r.t. which
$$F,D$$
 have the matrices $\begin{bmatrix} F_1 & 0 \\ 0 & F_4 \end{bmatrix}, \begin{bmatrix} D_1 & 0 \\ 0 & D_4 \end{bmatrix},$

respectively, where F_1, D_1 are isomorphisms N_2' , is finitely generated and that there exists some

 $\iota \in B^a(N_2,N_1')$ such that ι is an isomorphism onto its image in N_1' .

Then $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}} \oplus H_{\mathcal{A}})$ for some $\mathrm{C} \in \mathcal{B}^{a}(H_{\mathcal{A}})$.

Let $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}} \oplus H_{\mathcal{A}})$. Then $\mathrm{F}' \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}} \oplus H_{\mathcal{A}})$ and either $\mathrm{D} \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}})$ or there exist decompositions

$$H_{\mathcal{A}} \oplus H_{\mathcal{A}} = M_1 \tilde \oplus N_1 \stackrel{\mathrm{F}'}{\longrightarrow} M_2 \tilde \oplus N_2 = H_{\mathcal{A}} \oplus H_{\mathcal{A}},$$

$$H_{\mathcal{A}} \oplus H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \xrightarrow{\mathrm{D}'} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}} \oplus H_{\mathcal{A}},$$

w.r.t. which F', D' have matrices $\begin{bmatrix} F_1' & 0 \\ 0 & F_4' \end{bmatrix}$, $\begin{bmatrix} D_1' & 0 \\ 0 & D_4' \end{bmatrix}$, respectively, where F_1', D_1' are isomorphisms, $M_2 \cong M_1'$ and $N_2 \cong N_1'$, N_1 is finitely generated and N_2, N_1' are closed, but not finitely generated.

Let $F \in \mathcal{M}\Phi_+(H_{\mathcal{A}})$ and suppose that either $D \in \mathcal{M}\Phi_+(H_{\mathcal{A}})$ or that there exist decompositions

$$H_{\mathcal{A}} = M_1 \widetilde{\oplus} N_1 \stackrel{\mathrm{F}}{\longrightarrow} N_2^{\perp} \widetilde{\oplus} N_2 = H_{\mathcal{A}},$$

$$H_{\mathcal{A}} = N_1'^{\perp} \widetilde{\oplus} N_1' \xrightarrow{\mathrm{D}} M_2' \widetilde{\oplus} N_2' = H_{\mathcal{A}}$$

w.r.t. which F,D have matrices $\begin{bmatrix} F_1 & 0 \\ 0 & F_4 \end{bmatrix}$, $\begin{bmatrix} D_1 & 0 \\ 0 & D_4 \end{bmatrix}$, respectively, where F_1,D_1 are isomorphisms, N_1' is finitely generated and in addition there exists some

 $\iota \in B^a(N_1',N_2)$ such that ι is an isomorphism onto its image. Then

$$\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}} \oplus H_{\mathcal{A}}),$$

for some $C \in B^a(H_A)$.

Definition

Let \mathcal{X} be a Banach space. A sequence $(T_n)_{n\in\mathbb{N}_0}$ of operators in $B(\mathcal{X})$ is called *topologically transitive* if for each non-empty open subsets U,V of \mathcal{X} , $T_n(U)\cap V\neq\varnothing$ for some $n\in\mathbb{N}$. If $T_n(U)\cap V\neq\varnothing$ holds from some n onwards, then $(T_n)_{n\in\mathbb{N}_0}$ is called *topologically mixing*.

Definition

Let $\mathcal X$ be a Banach space. A sequence $(T_n)_{n\in\mathbb N_0}$ of operators in $B(\mathcal X)$ is called hypercyclic if there is an element $x\in\mathcal X$ (called hypercyclic vector) such that the orbit $\mathcal O_x:=\{T_nx:n\in\mathbb N_0\}$ is dense in $\mathcal X$. The set of all hypercyclic vectors of a sequence $(T_n)_{n\in\mathbb N_0}$ is denoted by $HC((T_n)_{n\in\mathbb N_0})$. If $HC((T_n)_{n\in\mathbb N_0})$ is dense in $\mathcal X$, the sequence $(T_n)_{n\in\mathbb N_0}$ is called densely denseting <math>denseting for all <math>denseting for all <math>denseting for all <math>denseting for all <math>denseting for all for all <math>denseting for all for all <math>denseting for all <math>denseting for all denseting for all <math>denseting for all <math>denseting for all denseting for all denseting for all <math>denseting for all denseting for all denseting for all <math>denseting for all denseting for all dense

Definition

Let $\mathcal X$ be a Banach space, and $(T_n)_{n\in\mathbb N_0}$ be a sequence of operators in $B(\mathcal X)$. A vector $x\in\mathcal X$ is called a *periodic element* of $(T_n)_{n\in\mathbb N_0}$ if there exists a constant $N\in\mathbb N$ such that for each $k\in\mathbb N$, $T_{kN}x=x$. The set of all periodic elements of $(T_n)_{n\in\mathbb N_0}$ is denoted by $\mathcal P((T_n)_{n\in\mathbb N_0})$. The sequence $(T_n)_{n\in\mathbb N_0}$ is called *chaotic* if $(T_n)_{n\in\mathbb N_0}$ is topologically transitive and $\mathcal P((T_n)_{n\in\mathbb N_0})$ is dense in $\mathcal X$. An operator $T\in B(\mathcal X)$ is called *chaotic* if the sequence $\{T^n\}_{n\in\mathbb N_0}$ is chaotic.

Linear dynamics of Translation Operators

Definition

Let $U,W\in \mathcal{B}(\mathcal{H}).$ We define the operator $T_{U,W}:\mathcal{B}(\mathcal{H})\to\mathcal{B}(\mathcal{H})$ by

$$T_{U,W}(F) := WFU \tag{1}$$

for all $F \in B(\mathcal{H})$.

Let \mathcal{H} be a separable Hilbert space. Let $W \in \mathcal{B}(\mathcal{H})$ be invertible and $U \in \mathcal{B}(\mathcal{H})$ be unitary such that for each $k \in \mathbb{N}$ there exists an $N_k \in \mathbb{N}$ with

$$U^n(L_k) \perp L_k \quad \text{for all } n \geq N_k.$$
 (2)

Then, the following statements are equivalent.

- (i) $T_{U,W}$ is hypercyclic on $B_0(\mathcal{H})$, where $B_0(\mathcal{H})$ is equipped with the operator norm $\|\cdot\|$.
- (ii) For each $m \in \mathbb{N}$ there exist a strictly increasing sequence $\{n_k\}$ in \mathbb{N} and the sequences $\{D_k\}$ and $\{G_k\}$ of operators in $B_0(\mathcal{H})$ such that

$$\lim_{k \to \infty} \|D_k - P_m\| = \lim_{k \to \infty} \|G_k - P_m\| = 0, \tag{3}$$

and

$$\lim_{k \to \infty} \|W^{n_k} G_k\| = \lim_{k \to \infty} \|W^{-n_k} D_k\| = 0, \tag{4}$$

where P_m denotes the orthogonal projection onto L_m .

Definition

Let \mathcal{X} be a Banach space, $a \in \mathcal{X}$, and $T \in B(\mathcal{X})$. We say that T is a-transitive if for each two non-empty open subsets \mathcal{O}_1 and \mathcal{O}_2 of \mathcal{X} with $a \in \mathcal{O}_1$, there are $m, n \in \mathbb{N}$ such that

$$T^n(\mathcal{O}_1)\cap\mathcal{O}_2\neq\varnothing, \qquad T^m(\mathcal{O}_2)\cap\mathcal{O}_1\neq\varnothing.$$

Theorem

Let $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Then, the following statements are equivalent.

- (i) $T_{U,W}$ and $S_{U,W}$ are 0-transitive on $B_0(\mathcal{H})$.
- (ii) For every finite dimensional subspace K of $\mathcal H$ there are strictly increasing sequences $\{n_j\}$ and $\{m_j\}$ in $\mathbb N$ and sequences of operators $\{G_j\}$ and $\{D_j\}$ in $B_0(\mathcal H)$ such that

$$\lim_{j \to \infty} \|G_j - P_K\| = \lim_{j \to \infty} \|D_j - P_K\| = 0, \tag{5}$$

and

$$\lim_{i \to \infty} \|W^{-m_j} G_j\| = \lim_{i \to \infty} \|W^{n_j} D_j\| = 0.$$
 (6)

Let $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. If $T_{U,W}$ is hypercyclic on $B_0(\mathcal{H})$, then $m(W) < 1 < \|W\|$.

Theorem

Let $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. Suppose that there is a finite dimensional subspace K of \mathcal{H} such that for a constant N > 0, $U^n(K) \perp K$ for all $n \geq N$. Then, we have (i) \Rightarrow (ii):

- (i) P_K belongs to the closure of $\mathcal{P}(\{S_{U,W}^n\}_{n\in\mathbb{N}_0})$ in $B_0(\mathcal{H})$.
- (ii) There exists an increasing sequence (n_k) in $\mathbb N$ such that $m(W^{-n_k}) \to 0$ as $k \to \infty$.

Let \mathcal{H} be a separable Hilbert space and $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. Then, we have (ii) \Rightarrow (i):

- (i) the operators $T_{U,W}$ and $S_{U,W}$ are chaotic on $B_0(\mathcal{H})$.
- (ii) For each $m \in \mathbb{N}$ there is a strictly increasing sequence $\{n_k\} \subseteq \mathbb{N}$ such that

$$\lim_{k\to\infty}\sum_{l=1}^{\infty}\|W^{ln_k}P_m\|=\lim_{k\to\infty}\sum_{l=1}^{\infty}\|W^{-ln_k}P_m\|=0,$$

where the corresponding series are convergent for each k.

Cosine Operator Functions

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Then, we have $(ii) \Rightarrow (i)$:

- (i) The sequence $(C_{U,W}^{(n)})_{n\in\mathbb{N}_0}$ is topologically transitive on $B_0(\mathcal{H})$.
- (ii) For each $m \in \mathbb{N}$, there are sequences (E_k) and (R_k) of subspaces of L_m and an strictly increasing sequence (n_k) of positive integers such that $L_m = E_k \oplus R_k$ and

$$\lim_{k \to \infty} \|W^{n_k} P_m\| = \lim_{k \to \infty} \|W^{-n_k} P_m\| = 0, \tag{7}$$

$$\lim_{k \to \infty} \| W^{2n_k} P_{E_k} \| = \lim_{k \to \infty} \| W^{-2n_k} P_{R_k} \| = 0.$$
 (8)

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Let there exist a closed subspace K of \mathcal{H} such that $U^n(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii).

- (i) $\mathcal{P}(C_{U,W}^{(n)})$ is dense in $B_0(\mathcal{H})$, and for each $F \in B_0(\mathcal{H})$, $\lim_{n \to \infty} S_{U,W}^n(F) = 0$ in $B_0(\mathcal{H})$.
- (ii) m(W) < 1.

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Assume that there exists a closed subspace K of \mathcal{H} such that $U^n(K) \perp K$ for all $n \geq N$. We have $(i) \Rightarrow (ii)$.

- (i) $\mathcal{P}(C_{U,W}^{(n)})$ is dense in $B_0(\mathcal{H})$, and $\lim_{n\to\infty} T_{U,W}^n F = F$ for all $F \in B_0(\mathcal{H})$.
- (ii) $m(W^{-1}) < 1$.

Let \mathcal{H} be a separable Hilbert space. We have (ii) \Rightarrow (i):

- (i) The sequence $\{C_{U,W}^{(n)}\}$ is chaotic on $B_0(\mathcal{H})$.
- (ii) For each $m \in \mathbb{N}$, there exists a strictly increasing sequence $\{n_k\} \subseteq \mathbb{N}$ such that

$$\lim_{k \to \infty} \sum_{l=1}^{\infty} \|W^{ln_k} P_m\| = \lim_{k \to \infty} \sum_{l=1}^{\infty} \|W^{-ln_k} P_m\| = 0,$$
 (9)

where the corresponding series are convergent for each k.

Remark

Our sufficient conditions for topological transitivity in the norm topology of $B_0(\mathcal{H})$ in Theorem 129 and Theorem 135 are also sufficient conditions for topological transitivity in the strong topology of $B(\mathcal{H})$. Indeed, since $\{e_n\}$ is an orthonormal basis for \mathcal{H} , it is easily seen that the set $\{P_nF: F\in B(\mathcal{H}),\ n\in\mathbb{N}\}$ is dense in $B(\mathcal{H})$ in the strong operator topology. Moreover, in this case the conditions (3)-(4) in Theorem 129 can even be relaxed by considering the strong limits instead of the limit in norm and by dropping the requirement that the sequences $\{D_k\}$ and $\{G_k\}$ should belong to $B_0(\mathcal{H})$. Hence, also in the case of strong operator topology on $B(\mathcal{H})$, the operator W in Example 147 satisfies the sufficient conditions for topological transitivity of $T_{U,W}$ and $\{C_{U,W}^{(n)}\}_n$.

Remark

Except from the implication (i) \Rightarrow (ii) in Theorem 129, all our results about sufficient conditions for topological transitivity, easily generalize to the case where $B_0(\mathcal{H})$ is replaced by an arbitrary non-unital C^* -algebra \mathcal{A} , and the set of all finite rank orthogonal projections on \mathcal{H} is replaced by the canonical approximate unit in \mathcal{A} . Indeed, if \mathcal{A} is a non-unital C^* -algebra, then it can be isometrically embedded into a unital C^* -algebra \mathcal{A}_1 such that \mathcal{A} becomes an ideal in \mathcal{A}_1 . If u and u are invertible elements in \mathcal{A}_1 and u is unitary (i.e. $uu^* = u^*u = 1_{\mathcal{A}_1}$), then we can define the operator $T_{u,w}$ on \mathcal{A} by $T_{u,w}(a) := wau$ for all $a \in \mathcal{A}$. Therefore, all our results regarding the sufficient conditions for $T_{u,w}$ to be topologically transitive or chaotic can be generalized in this setting.

Moreover, if \mathcal{A} is a unital C^* -algebra and $H_{\mathcal{A}}$ denotes the standard Hilbert module over \mathcal{A} , then all our results so far can be transferred directly to the case where $B_0(\mathcal{H})$ and $B(\mathcal{H})$ are replaced by $K(H_{\mathcal{A}})$ and $B(H_{\mathcal{A}})$, respectively. Here, $K(H_{\mathcal{A}})$ and $B(H_{\mathcal{A}})$ stand for the set of all compact and all bounded \mathcal{A} -linear operators on $H_{\mathcal{A}}$, respectively.

Let $w \in \mathcal{A}_1$ be invertible and u be a unitary element of \mathcal{A}_1 . Suppose that there exist an element $a \in \mathcal{A}^+$ and an $N \in \mathbb{N}$ such that $au^n a = 0$ for all $n \geq N$. Then, $(i) \Rightarrow (ii)$.

- (i) $\mathcal{P}((C_{u,w}^{(n)})_n)$ is dense in \mathcal{A} .
- (ii) $m(\varphi(w)) < 1 < \parallel \varphi(w) \parallel$, where (φ, \mathcal{H}) is the universal representation of \mathcal{A}_1 .

Dynamics of the Adjoint Operator

Theorem

Suppose that for every $m \in \mathbb{N}$ there exist sequences (E_k) and (R_k) of subspaces of L_m and an increasing sequence $(n_k) \subseteq \mathbb{N}$ such that for each k, $L_m = E_k \oplus R_k$ and

$$\lim_{k \to \infty} \|W^{n_k} P_m\| = \lim_{k \to \infty} \|W^{-n_k} P_m\| = 0, \tag{10}$$

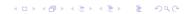
$$\lim_{k \to \infty} \| W^{2n_k} P_{E_k} \| = \lim_{k \to \infty} \| W^{-2n_k} P_{R_k} \| = 0.$$
 (11)

Then, $\{C_{U,W}^{*(n)}\}\$ is topologically transitive on $B_1(\mathcal{H})$.

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Assume that there exists a finite dimensional subspace K of \mathcal{H} such that $U^n(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii).

- (i) $\mathcal{P}(C_{U,W}^{(n)^*})$ is dense in $B_1(\mathcal{H})$, and for each $F \in B_1(\mathcal{H})$, $\lim_{n \to \infty} S_{U,W}^{*n}(F) = 0$ in $B(\mathcal{H})$.
- (ii) m(W) < 1.



Let $U, W \in B(\mathcal{H})$ be invertible such that U is unitary. Suppose that there exists a finite dimensional subspace K of \mathcal{H} and $N \in \mathbb{N}$ such that $U^n(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii):

- (i) $\mathcal{P}\{(C_{U,W}^*)^n\}$ is dense in $B(\mathcal{H})'$ and $\lim_{n\to\infty} (S_{U,W}^*)^n \varphi = 0$ for all $\varphi \in B(\mathcal{H})'$.
- (ii) m(W) < 1.

Theorem

We have (ii) \Rightarrow (i):

- (i) $(C_{U,W}^{(n)*})$ is topologically transitive in $B(\mathcal{H})'$.
- (ii) For every $m \in \mathbb{N}$ there exist sequences (E_k) and (R_k) of subspaces of L_m and an increasing sequence $(n_k) \subseteq \mathbb{N}$ such that for each k, $L_m = E_k \oplus R_k$ and

$$\lim_{k \to \infty} \|P_m W^{n_k}\| = \lim_{k \to \infty} \|P_m W^{-n_k}\| = 0, \tag{12}$$

$$\lim_{k \to \infty} \| P_{E_k} W^{2n_k} \| = \lim_{k \to \infty} \| P_{R_k} W^{-2n_k} \| = 0.$$
 (13)

We have (i) \Rightarrow (ii):

- (i) $P(T_{U,W}^{*^n})$ is dense in $B(\mathcal{H})'$.
- (ii) m(W) < 1.

Theorem

We have (i) \Rightarrow (ii):

- (i) $P(S_{U|W}^{*^n})$ is dense in $B(\mathcal{H})'$.
- (ii) $m(W^{-1}) = ||W||^{-1} < 1$, that is ||W|| > 1.

Let $B(\mathcal{H})$ be equipped with the strong topology, and $B(\mathcal{H})'$ be equipped with the w^* -topology, where $B(\mathcal{H})'$ is the dual of $B(\mathcal{H})$. Then we have $(ii) \Rightarrow (i)$:

- (i) $\{T_{U,W}^{*^n}\}$ and $\{S_{U,W}^{*^n}\}$ are topologically transitive on $B(\mathcal{H})'$.
- (ii) for every $n \in \mathbb{N}$ there exist an increasing sequence $\{n_k\} \subseteq \mathbb{N}$ and sequences of operators $\{G_k\}$ and $\{D_k\}$ in $B(\mathcal{H})$ such that same as theorem 3.2 in the draft with

$$\lim_{k \to \infty} \|G_k W^{n_k}\| = \lim_{k \to \infty} \|D_k W^{-n_k}\| = 0,$$

and

$$s-\lim_{k\to\infty}G_k=s-\lim_{k\to\infty}D_k=P_n,$$

where s-lim denotes the limit in the strong operator topology.

Let $\{e_j\}_{j\in\mathbb{N}}$ be an orthonormal basis for a Hilbert space $\mathcal{H}.$ Define $W\in B(\mathcal{H})$ by

$$W(e_j) := \left\{egin{array}{ll} rac{1}{2}\,e_{j+2}, & ext{if j is odd,} \ & & \ 2\,e_{j-2}, & ext{if j is even and $j>2$,} \ & & \ e_1, & ext{if $j=2$.} \end{array}
ight.$$

Then, W is invertible and $\|W\|=2$. For each fixed $k\in\mathbb{N}$ it is easily checked that $\|W^{2k-1+m}P_{2k}\|=\frac{1}{2^m}$ for all $m\in\mathbb{N}$. Consequently, $\|W^{2k-1+m}P_{2k-1}\|\leq \frac{1}{2^m}$. Further, it is also easily verified that for each $k,m\in\mathbb{N}$ we have $\|W^{-2k-m}P_{2k+1}\|=\frac{1}{2^{m-1}}$, and this gives that $\|W^{-2k-m}P_{2k}\|\leq \frac{1}{2^{m-1}}$. As above, P_n denotes the orthogonal projection onto $\operatorname{span}\{e_1,\ldots,e_n\}$.

It follows that

$$\|P_{2k}(W^*)^{2k-1+m}\| = \frac{1}{2^m}, \qquad \|P_{2k+1}(W^*)^{-2k-m}\| = \frac{1}{2^{m-1}},$$

for all $k, m \in \mathbb{N}$.

Then W and W^* satisfy the sufficient condition in various results above on topological transitivity. If we instead of H consider $H_{\mathcal{A}}$ and let $\{e_j\}_{j\in\mathbb{N}}$ denote the standard basis, then the same arguments applies in this case also.

Let
$$F(e_k) = e_{2k}$$
 for all k .
Then $F \in \mathcal{M}\Phi_+(H_A)$

Example

Let
$$D(e_{2k-1}) = 0$$
, $D(e_{2k}) = e_k$.
Then $D \in \mathcal{M}\Phi_-(H_A)$

Example

In general, let $\iota: \mathbb{N} \to \iota(\mathbb{N})$ be a bijection such that $\iota(\mathbb{N}) \subseteq \mathbb{N}$ and $\mathbb{N} \setminus \iota(\mathbb{N})$ infinite. Moreover we may define ι in a such way s.t. $\iota(1) < \iota(2) < \iota(3) < \dots$ Then, if we define an \mathcal{A} -linear operator F as $F(e_k) = e_{\iota(k)}$ for all k, we get that $F \in \mathcal{M}\Phi_+(H_A)$. Moreover, if we define an A-linear operator D as

$$D(e_k) = \begin{cases} e_{\iota^{-1}(k)}, & \text{for } k \in \iota(\mathbb{N}), \\ 0, & \text{else} \end{cases}$$

then $D \in \mathcal{M}\Phi_{-}(H_{\Delta})$.

Those examples are also valid in the case when $\mathcal{A}=\mathbb{C}$, that is when $\mathcal{H}_{\mathcal{A}}=\mathcal{H}$ is a Hilbert space. We will now introduce examples where we use the structure of \mathcal{A} itself in the case when $\mathcal{A}\neq\mathbb{C}$:

Example

Let $\mathcal{A} = (L^{\infty}([0,1]), \mu)$, where μ is a Borel probability measure. Set

$$F(f_1,f_2,f_3,...) = (\mathcal{X}_{[0,\frac{1}{2}]}f_1,\mathcal{X}_{[\frac{1}{2},1]}f_1,\mathcal{X}_{[0,\frac{1}{2}]}f_2,\mathcal{X}_{[\frac{1}{2},1]}f_2,...) \; .$$

Then F is bounded A— linear operator, $\ker F = \{0\}$,

$$\textit{ImF} = \textit{Span}_{\mathcal{A}} \{ \mathcal{X}_{[0,\frac{1}{2}]} e_1, \mathcal{X}_{[\frac{1}{2},1]} e_2, \mathcal{X}_{[0,\frac{1}{2}]} e_3, \mathcal{X}_{[\frac{1}{2},1]} e_4, ... \},$$

and clearly $F \in \mathcal{M}\Phi_+(\mathcal{H}_{\mathcal{A}})$.

Example

Let again $\mathcal{A} = (L^{\infty}([0,1]), \mu)$. Set

$$D(g_1,g_2,g_3,...) = (\mathcal{X}_{[0,\frac{1}{2}]}g_1 + \mathcal{X}_{[\frac{1}{2},1]}g_2, \mathcal{X}_{[0,\frac{1}{2}]}g_3 + \mathcal{X}_{[\frac{1}{2},1]}g_4,...).$$

Then ker D = ImF, D is an A-linear, bounded operator and $ImD = H_A$. Thus $D \in \mathcal{M}\Phi_-(H_A)$. Indeed, $D = F^*$.

Let A = B(H), where H is a Hilbert space and let P be an orthogonal projection on H. Set

$$F(T_1, T_2,...) = (PT_1, (I-P)T_1, PT_2, (I-P)T_2,...),$$

$$D(S_1, S_2, ...) = (PS_1 + (I - P)S_2, PS_3 + (I - P)S_4, ...),$$

then by similar arguments $F \in \mathcal{M}\Phi_+(H_A), D \in \mathcal{M}\Phi_-(H_A)$.

In general, supose that $\{p_i^i\}_{j,i\in\mathbb{N}}$ is a family of projections in \mathcal{A} s.t.

 $p^i_{j_1}p^i_{j_2}=0$ for all i, whenever $j_1
eq j_2$ and $\sum\limits_{j=1}^kp^i_j=1$ for some $k\in\mathbb{N}.$ Set

$$F'(\alpha_1, ..., \alpha_n, ...) = (p_1^1 \alpha_1, p_2^1 \alpha_1, ... p_k^1 \alpha_1, p_2^1 \alpha_2, p_2^2 \alpha_2, ... p_k^2 \alpha_2, ...),$$

$$D'(\beta_1, ..., \beta_n, ...) = (\sum_{i=1}^k p_i^1 \beta_i, \sum_{i=1}^k p_i^2 \beta_{i+k}, ...).$$

Then $F' \in \mathcal{M}\Phi_+(H_A), D' \in \mathcal{M}\Phi_-(H_A)$.

Recalling now that a composition of two $\mathcal{M}\Phi_+$ operators is again an $\mathcal{M}\Phi_+$ operator and that the same is true for $\mathcal{M}\Phi_-$ operators, we may take suitable comprositions of operators from these examples in order to construct more $\mathcal{M}\Phi_\pm$ operators.

Even more $\mathcal{M}\Phi_{\pm}$ operators can be obtained by composing these operators with isomorphisms of $H_{\mathcal{A}}$. We will present here also some isomorphisms of $H_{\mathcal{A}}$.

Let $j: \mathbb{N} \to \mathbb{N}$ be a bijection. Then the operator U given by $U(e_k) = e_{j(k)}$ for all k is an isomorphism of $H_{\mathcal{A}}$. This is a classical well known example of an isomorphism.

Example

Let $(\alpha_1,...,\alpha_n,...) \in \mathcal{A}^{\mathbb{N}}$ be a sequence of invertible elements in \mathcal{A} s.t. $\parallel \alpha_k \parallel \leq M$ for all $k \in \mathbb{N}$ and some M > 0. If the operator V is given by $V(e_k) = e_k \cdot \alpha_k$ for all k, then V is an isomorphism of $H_{\mathcal{A}}$. Moreover, if $(\alpha_1, \cdots, \alpha_n, \cdots)$ is the sequence from above, we may let \tilde{V} be the operator on $H_{\mathcal{A}}$ given by $\tilde{V}(x_1, \cdots, x_n) = (\alpha_1 x_1, \cdots, \alpha_n x_n, \cdots)$. Then \tilde{V} is also an isomorphism of $H_{\mathcal{A}}$.

Thank you for attention!

Stefan Ivković

stefan.iv10@outlook.com

The Mathematical Institute of the Serbian Academy of Sciences and Arts

- [AH] T. Aghasizadeh, S. Hejazian, *Maps preserving semi-Fredholm operators on Hilbert C*-modules*, J. Math. Anal. Appl. **354**(2009), 625-629.
- [BS] M. Berkani and M. Sarih, *On semi B-Fredholm operators*, Glasgow Mathematical Journal, Volume 43, Issue 3. May 2001, pp. 457-465, DOI: https://doi.org/10.1017/S0017089501030075
- [BM] M. Berkani, *Index of B-Fredholm Operators and Generalization of a Weyl Theorem*, Proceedings of the American Mathematical Society, Volume 130, Number **6**, Pages 1717-1723, S 0002-9939(01)06291-8, Article electronically published on October 17, 2001
- [Bld] Richard Bouldin, *The product of operators with closed range*, Thoku Math. Journ. **25** (1973), 359-363.
- [DDJ] Dragan S. Djordjević, Perturbations of spectra of operator matrices, J. Operator Theory 48(2002), 467-486.
- [DDj2] Dragan S.Djordjević, *On generalized Weyl operators*, Proceedings of the American Mathematical Society, Volume 130, Number 1, Pages 81 II4, s ooo2-9939(01)0608r-6, April 26,2001

- [FM] M. Frank and E. V. Troitsky, *Lefschetz numbers and geometry of oerators in W*-modules*, Funktsional Anal. i Priloshen. **30** (1996), no. 4 45-57
- [MFT] M. Frank, Manuilov V., Troitsky E. A reflexivity criterion for Hilbert C*-modules over commutative C*-algebras New York Journal of Mathematics **16** (2010), 399"408.
- [F] E. I. Fredholm, *Sur une classe d'equations fontionnelles*, Acta Math. **27** (1903), 365–390.
- [HLL] J.H. Han, H.Y. Lee, W.Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer.Math. Soc. 128 (2000), 119-123.
- [H] R.E. Harte, *The ghost of an index theorem*, Proceedings of the American Mathematical Society **106** (1989). 1031-1033. MR 92j:47029
- [HA] S. Hejazian, T. Aghasizadeh, *Equivalence classes of linear mappings on B(M)*, Bull. Malays. Math. Sci. Soc. (2) **3**(2012), no. 3, 627-632.

- [HG] G. Hong, F. Gao, *Moore-Penrose Inverses of Operators in Hilbert C*-modules*, International Journal of Mathematical Analysis Vol. **11**, 2017, no. 8, 389 396
- [IM] Anwar A. Irmatov and Alexandr S. Mishchenko, *On Compact and Fredholm Operators over C*-algebras and a New Topology in the Space of Compact Operators*, J. K-Theory **2** (2008), 329-351, doi:10.1017/is008004001jkt034
- [IS1] S. Ivkovic, Semi-Fredholm theory on Hilbert C*-modules, Banach Journal of Mathematical Analysis, Vol.13 no. 4 2019, 989-1016 doi:10.1215/17358787-2019-0022. https://projecteuclid.org/euclid.bjma/1570608171
- [IS3] S. Ivkovic, On operators with closed range and semi-Fredholm operators over W*-algebras, *Russ. J. Math. Phys.* 27, 48–60 (2020) http://link.springer.com/article/10.1134/S1061920820010057
- [IS4] S. Ivkovic, On compressions and generalized spectra of operators over C*-algebra, Annals of Functional Analysis 2020, https://doi.org/10.1007/s43034-019-00034-z

- [IS5] S. Ivkovic, On various generalizations of semi-A-Fredholm operators, *Complex Anal. Oper. Theory* 14, 41 (2020). https://doi.org/10.1007/s11785-020-00995-3
- [IS6] S. Ivkovic, On upper triangular operator 2 by 2 matrices over C*-algebras (to appear in Filomat, 2020), https://arxiv.org/abs/1906.05359
- [IS7] S. Ivkovic, On semi-Weyl and semi-B-Fredholm operators over C*-algebras https://arxiv.org/abs/2002.04905
- [JC]Conway, John B., A Course in Functional Analysis , Graduate Texts in Mathematics, ISBN 978-1-4757-4383-8
- [JS] P. Sam Johnson, *Multiplication Operators with Closed Range in Operator Algebras*, Journal of Analysis and Number Theory, No. 1, 1-5 (2013)
- [KY] Kung Wei Yang, *The generalized Fredholm operators*, Transactions of the American Mathematical Society Vol. **216** (Feb., 1976), pp. 313-326
- [LAN] E.C. Lance, *On nuclear C*-algebras*, J. Func. Anal. **12** (1973),157-176

- [LAY] D.Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. **184**(1970), 197-214.
- [L]Z. Lazović, Compact and "compact" operators on standard Hilbert modules over C*-algebras, Adv. Oper. Theory **3** (2018), no. 4, 829–836.
- [LIN] H. Lin, *Injective Hilbert C*-modules*, Pacific J. Math. **154** (1992), 133-164
- [LS] A. Lebow and M. Schechter, Semigroups of operators and measures of non-compactness, J. Funct. Anal. **7**(1971), 1-26.
- [MT] V. M. Manuilov, E. V. Troitsky, *Hilbert C*-modules*, In: Translations of Mathematical Monographs. 226, American Mathematical Society, Providence, RI, 2005.
- [MV] D. Miličić and K. Veselić, On the boundary of essential spectra, Glasnik Mat. tom 6 (26) No 1 (1971). 73—788
- [M] A. S. Mishchenko, *Banach algebras, pseudodifferential operators and their applications to K theory*, Uspekhi Mat. Nauk, no. 6, 67-79, English transl., Russian Math. Surveys **34** (1979), no. 6, 77–91.

- [MF] A. S. Mishchenko, A.T. Fomenko, *The index of eliptic operators over C*-algebras*, Izv. Akad. Nauk SSSR Ser. Mat. **43** (1979), 831–859; English transl., Math. USSR-Izv.**15** (1980) 87–112.
- [MSFC] M. S. Moslehian, K. Sharifi, M. Forough and M. Chakoshi, *Moore-Penrose inverses of Gram operator on Hilbert C*-modules*, Studia Mathematica, **210** (2012), 189-196.
- [N] Gyokai Nikaido , *Remarks on the Lower Bound of a linear Operator*, Proc. Japan Acad. Ser. A Math. Sci., Volume **56**, Number 7 (1980), 321-323.
- [P] W. L. Paschke, *Inner product modules over B*-algebras*, Trans. Amer. Math. Soc. **182** (1973), 443–468.
- [PO] A. Pokrzywa, A characterizations of the Weyl spectum, Proc. Am. math. Soc. 92. 215-218.
- [S] M. O. Searcoid, *The continuity of the semi-Fredholm index*, IMS Bulletin **29** (1992), 13–18.
- [S2] M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J., vol 21, No 11 (1972), 1061–1071.

- [SC] M. Schechter, *Quantities related to strictly singular operators*, Indiana Univ. Math. J., vol. **21**, No 11(1972), 1061-1071.
- [SE] M. O. Searooid, *The continuity of the semi-Fredholm index*, IMS Bulletin **29**(1992), 13-18.
- [SH3] K. Sharifi, *The product of operators with closed range in Hilbert C*-modules*, Linear Algebra App. 435 (2011), no. 5, 1122–1130
- [T]E. V. Troitsky, *Orthogonal complements and endomorphisms of Hilbert modules and C*-elliptic complexes*, Novikov Conjectures, Index Theorems and Rigidity, Vol 2 (S.C. Ferry, A. Ranicki, and J. Rosenberg. Eds.), London Math. Soc. Lecture Note Ser., vol. **227**, Cambridge Univ. Press, (1995), pp. 309–331.
- [W] N. E. Wegge –Olsen, *K-theory and C*-algebras*, Oxford Univ. Press, Oxford, 1993.
- [ZE] J. Zemanek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sec. A 86 (1986), 57-62.
- [ZZDH] S. Č. Živković-Zlatanović, D. S. Djordjević, R. E. Harte, Left-right Browder and left-right Fredholm operators, Integral Equations Operator Theory **69** (2011), 347–363.

- [ZZRD] S. Živković Zlatanović, V. Rakočević, D.S. Đorđević, Fredholm theory, University of Niš Faculty of Sciences and Mathematics, Niš,to appear (2019).
- [BMbook] F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math. **179**, Cambridge University Press, Cambridge, 2009.
- [BG99] L. Bernal-González, *On hypercyclic operators on Banach spaces*, Proc. Amer. Math. Soc. **127** (1999) 1003-1010.
- [ChaChe] S-J. Chang and C-C. Chen, *Topological mixing for cosine operator functions generated by shifts*, Topol. Appl. **160** (2013) 382-386.
- [Chen11] C-C. Chen, *Chaotic weighted translations on groups*, Arch. Math. **97** (2011) 61-68.
- [Chen141] C-C. Chen, Chaos for cosine operator functions generated by shifts, Int. J. Bifurcat. Chaos **24** (2014) Article ID 1450108, 7 pages.
- [Chen15] C-C. Chen, Topological transitivity for cosine operator functions on groups, Topol. Appl. **191**[] (2015) 48-57.

- [Ccot] C-C. Chen, K-Y. Chen, S. Öztop and S.M. Tabatabaie, Chaotic translations on weighted Orlicz spaces, Ann. Polon. Math. 122 (2019) 129-142.
- [Cc11] C-C. Chen and C-H. Chu, *Hypercyclic weighted translations on groups*, Proc. Amer. Math. Soc. **139** (2011) 2839-2846.
- [Cd18] C-C. Chen and W-S. Du, Some characterizations of disjoint topological transitivity on Orlicz spaces, J. Inequalities and Applications 2018 2018:88.
- [Chta2] C-C. Chen and S.M. Tabatabaie, *Chaotic operators on hypergroups*, Oper. Matrices, **12**(1) (2018) 143-156.
- [Chta3] C-C. Chen and S.M. Tabatabaie, *Chaotic and hypercyclic operators on solid Banach function spaces*, Probl. Anal. Issues Anal., to appear.
- [Conw] J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1985.
- [Ge00] K-G. Grosse-Erdmann, *Hypercyclic and chaotic weighted shifts*, Studia Math. **139** (2000) 47-68.

- [Gpbook] K-G. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, Springer, 2011.
- [Kalmes10] T. Kalmes, Hypercyclicity and mixing for cosine operator functions generated by second order partial differential operators, J. Math. Anal. Appl. **365** (2010) 363-375.
- [Kostic] M. Kostić, Hypercyclic and chaotic integrated C-cosine functions, Filomat **26** (2012) 1-44.
- [Sha] S-Y. Shaw, Growth order and stability of semigroups and cosine operator functions, J. Math. Anal. Appl. **357** (2009) 340-348.