A quantum optomechanical system in a Mach-Zehnder interferometer

Alberto Barchielli

Dipartimento di Matematica, Politecnico di Milano Istituto Nazionale di Fisica Nucleare, INFN Istituto Nazionale d'Alta Matematica, INDAM-GNAMPA

November 30, 2020

Workshop on
New Trends in Mathematical Physics
November 9 – December 11, 2020, online
Steklov Mathematical Institute, Moscow

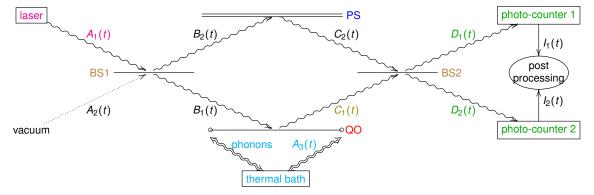
The aim: modelling of quantum optical devices — production of squeezed light

- The system: a quantum optomechanical system in an optical circuit
- Quantum optomechanics concerns the interaction of "quantum" oscillating micromirros with light, usually in a cavity.
 - Here: only travelling waves, no cavity.
 - The (ideal) optical circuit: the oscillating micromirror is inserted in a Mach-Zehnder interferometer (MZI).
 - The results: the input light is coherent, the output light is squeezed typical quantum effects: sub-Poissonian statistics in direct detection, reduction of shot noise in spectra.
- The mathematical model is based on quantum stochastic calculus (QSC).
 QSC allows to describe
 - the interaction quantum micromirror/light, via Hudson-Parthasarathy equation,
 - the linear optical elements, via generalized Weyl operators,
 - the output light (the quantum fields of QSC in the Heisenberg picture) and its monitoring via photo-detectors and spectrum analyzers (direct and homodyne detection)
 - the quantum noise affecting the micromirror (even non-Markovian effects can be taken into account).

a Mach-Zehnder interferometer with a quantum subsystem inserted

Mach-Zehnder interferometer: 2 beam splitters (BS) + 2 mirrors

- QO: Quantum Oscillator (a quantum optomechanical micro-mirror)
- PS: fixed mirror and tunable Phase Shifter



- $A_1(t)$ input: coherent light
 - $C_1(t)$ output: squeezed light
- Detection after interference at BS2: counting of photons or measurement of the spectrum of the "difference" current $I_{-}(t) = I_{1}(t) - I_{2}(t)$.

The quantum fields and quantum stochastic calculus

- Symmetric Fock space: $\Gamma \equiv \Gamma(L^2(\mathbb{R}; \mathbb{C}^d)) = \mathbb{C} \oplus \sum_{n=1}^{\infty} L^2(\mathbb{R}; \mathbb{C}^d)^{\otimes_s n}$
- Coherent vectors, i.e. normalized exponential vectors,

$$e(f) = e^{-\frac{1}{2} \|f\|^2} \left(1, f, (2!)^{-1/2} f \otimes f, \dots, (n!)^{-1/2} f^{\otimes n}, \dots \right) \qquad f \in L^2(\mathbb{R}; \mathbb{C}^d)$$

• $A_j(t)$, j = 1, ..., d: quantum Bose fields in the Fock representation; heuristic definition:

$$A_j(t) = \int_0^t a_j(s) \mathrm{d}s \qquad [a_i(s), a_j(t)] = 0 \qquad [a_i(s), a_j^{\dagger}(t)] = \delta_{ij}\delta(t-s)$$

- Gauge process: $\Lambda_{ij}^{A}(t) = \int_{0}^{t} a_{i}^{\dagger}(s)a_{j}(s)ds$ $\Lambda_{jj}^{A}(t)$: Number operator in channel j
- Stochastic equations of Itô type. Itô table: (all the other possible products vanish)

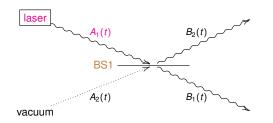
$$\mathrm{d}A_k(t)\mathrm{d}A_l^\dagger(t) = \delta_{kl}\mathrm{d}t \qquad \mathrm{d}A_l(t)\mathrm{d}\Lambda_{kl}^A(t) = \delta_{ik}\mathrm{d}A_l(t)$$
$$\mathrm{d}\Lambda_{kl}^A(t)\mathrm{d}A_l^\dagger(t) = \delta_{ll}\mathrm{d}A_k^\dagger(t) \qquad \mathrm{d}\Lambda_{kl}^A(t)\mathrm{d}\Lambda_{il}^A(t) = \delta_{ll}\mathrm{d}\Lambda_{kl}^A(t)$$

The rigorous definition of field and gauge operators is through their action on the exponential vectors

Our case: d = 3 (2 optical fields, 1 phonon field = noise)

Linear optical devices and Weyl operators

- Generalized Weyl operators: $\mathcal{W}(g; V) \in \mathcal{U}(\Gamma)$ $g \in L^2(\mathbb{R}; \mathbb{C}^d)$ $V \in \mathcal{U}(L^2(\mathbb{R}; \mathbb{C}^d))$ $\mathcal{W}(g; V) e(f) = \exp \{i \operatorname{Im} \langle V f | g \rangle\} e(V f + g), \forall f \in L^2(\mathbb{R}; \mathbb{C}^d).$
- Composition rules $W(h; U)W(g; V) = \exp \{-i \operatorname{Im}\langle h|Ug\rangle\}W(h+Ug; UV)$ In quantum optics W(g; 1) is called a **displacement operator**
- Linear optical devices: represented by W(0; V), $V \in \mathcal{U}(\mathbb{C}^d)$
 - $A_i(t) \longmapsto \mathcal{W}(0; V)^{\dagger} A_i(t) \mathcal{W}(0; V) = \sum_i V_{ii} A_i(t)$
 - Unitary transformation \Rightarrow the CCRs are preserved.
 - A beam splitter of transmittance $\eta \in [0,1]$: $V \to V_{\eta} = \begin{pmatrix} \sqrt{\eta} & \mathrm{i}\sqrt{1-\eta} \\ \mathrm{i}\sqrt{1-\eta} & \sqrt{\eta} \end{pmatrix}$

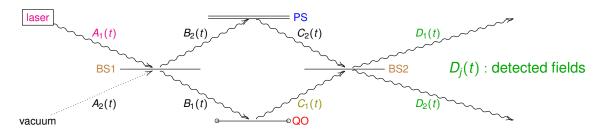


$$B_1(t) = \sqrt{\eta} A_1(t) + i\sqrt{1-\eta} A_2(t)$$

$$B_2(t) = i\sqrt{1-\eta} A_1(t) + \sqrt{\eta} A_2(t)$$

The Mach-Zehnder interferometer

- BS1: $B_1(t) = \sqrt{\eta} A_1(t) + i\sqrt{1-\eta} A_2(t)$ $B_2(t) = i\sqrt{1-\eta} A_1(t) + \sqrt{\eta} A_2(t)$
- Tunable phase shift: $C_2(t) = e^{i\psi}B_2(t)$



• Interaction light/oscillator: $C_1(t) = U(t)^{\dagger}B_1(t)U(t)$, $\mathrm{d}U(t) = \cdots$ (Hudson-Parthasarathy equation). Peculiar property: $U(T)^{\dagger}B_1(t)U(T) = U(t)^{\dagger}B_1(t)U(t)$, $\forall 0 \leq t \leq T$

 \Rightarrow also the output fields satisfy the CCRs.

• BS2 (transmittance 1/2):
$$D_1(t) = \frac{1}{\sqrt{2}} \left[C_1(t) + iC_2(t) \right]$$
 $D_2(t) = \frac{1}{\sqrt{2}} \left[iC_1(t) + C_2(t) \right]$

The Hudson-Parthasarathy equation for the mechanical oscillator

mechanical mode:
$$[a_{\rm m},a_{\rm m}^{\dagger}]=1$$
 position and momentum: $[q,p]={\rm i}$ $(q,p)\stackrel{?}{\leftrightarrow}(a_{\rm m},a_{\rm m}^{\dagger})$ thermal bath $H_{\rm m}=H_{\rm m}(q,p)$ (quadratic)

- The choice of H_m(q, p) and the connection between the mode operator a_m and the position and momentum operators q, p must give rise to the classical equations of motion for the mean values: (p) must be proportional to the mean velocity.
- Absorption/emission of phonons and scattering of photons:

$$\begin{split} \mathrm{d}\textit{U}(t) &= \left\{ -\frac{\mathrm{i}}{\hbar} \, \textit{H}_m \mathrm{d}t + \sqrt{\gamma_m} \left(a_m \mathrm{d}A_3^\dagger(t) - a_m^\dagger \mathrm{d}A_3(t) \right) \right. \\ & \left. -\frac{\gamma_m}{2} \, a_m^\dagger a_m \mathrm{d}t + (\textit{S} - 1) \mathrm{d}\Lambda_{11}^\textit{B}(t) \right\} \textit{U}(t) \qquad \textit{v} \in \mathbb{R}, \quad \phi \in [0, 2\pi). \end{split}$$

- $-\frac{\gamma_{\rm m}}{2} a_{\rm m}^{\dagger} a_{\rm m} dt$ is an Itô correction.
- U(t) is the unitary evolution in the interaction picture with respect to the free field dynamics. In the Schrödinger picture it becomes a strongly continuous unitary group.

Position/momentum ↔ mode operator

We take:

• $H_{\rm m}=H_0+H_1$ $H_0=\frac{\hbar\Omega_{\rm m}}{2}\left(p^2+q^2\right)$ $H_1=\frac{\hbar\gamma_{\rm m}}{4}\left\{q,p\right\}$ the free mechanical Hamiltonian H_0 is modified by the interaction with the bath and H_1 is added

$$\bullet \ \, \boldsymbol{a}_{\mathrm{m}} = \sqrt{\frac{\Omega_{\mathrm{m}}}{2\omega_{\mathrm{m}}}} \left(\boldsymbol{q} + \mathrm{i}\tau\boldsymbol{p}\right) \qquad \qquad \tau = \frac{\omega_{\mathrm{m}}}{\Omega_{\mathrm{m}}} - \frac{\mathrm{i}}{2}\frac{\gamma_{\mathrm{m}}}{\Omega_{\mathrm{m}}} \qquad \qquad \Omega_{\mathrm{m}}^{2} = \omega_{\mathrm{m}}^{2} + \frac{\gamma_{\mathrm{m}}^{2}}{4}$$

The mechanical mode operator \mathbf{a}_{m} and \mathbf{q} , \mathbf{p} are connected in an unusual way: the extra-phase τ appears. $[\mathbf{q}, \mathbf{p}] = \mathbf{i} \Leftrightarrow [\mathbf{a}_{m}, \mathbf{a}_{m}^{\dagger}] = 1$

Consequences:

(a)
$$H_{
m m}=\hbar\omega_{
m m}\left(a_{
m m}^{\dagger}a_{
m m}+rac{1}{2}
ight)$$
 ($a_{
m m}$ diagonalizes $H_{
m m}$)

(b) Consider the quantum Langevin equations for position and momentum, i.e. $dq(t) = \cdots$, $dp(t) = \cdots$, where $q(t) = U(t)^{\dagger} q U(t)$, $p(t) = U(t)^{\dagger} p U(t)$: the damping force and the radiation pressure force appear only in the equation for the momentum, as in the classical case.

The quantum Langevin equations for position and momentum

Quantum Langevin equations (Heisenberg equations of motion)

$$dq(t) = \Omega_{\rm m}p(t)dt + d\hat{W}_q(t)$$

$$dp(t) = -(\Omega_{\rm m}q(t) + \gamma_{\rm m}p(t))dt + vd\Lambda_{11}^B(t) + d\hat{W}_p(t)$$

- Damping force: $-\gamma_{\rm m} p(t)$
- Radiation pressure force: $vd\Lambda_{11}^{B}(t)/dt$
- Thermal noises:

$$\hat{W}_q(t) = -\sqrt{rac{\gamma_{
m m}\Omega_{
m m}}{2\omega_{
m m}}} \left(\overline{ au}\, A_3(t) + au A_3^\dagger(t)
ight), \quad \hat{W}_
ho(t) = {
m i}\sqrt{rac{\gamma_{
m m}\Omega_{
m m}}{2\omega_{
m m}}} \left(A_3(t) - A_3^\dagger(t)
ight).$$

The means of the quantum noises are zero and the equations for the means of position and momentum turn out to be the classical ones, with

damping constant $\gamma_m > 0$, bare frequency $\Omega_m > 0$,

effective frequency $\omega_{\rm m} = \sqrt{\Omega_{\rm m}^2 - \gamma_{\rm m}^2/4}$ (no overdamped case)

The state of the fields

- The field state: $\rho_{\text{field}}^T = \rho_{\text{em}}^T \otimes \rho_{\text{th}}^T$ $\rho_{\text{em}}^T = \mathbb{E}\left[|e(f_T)\rangle\langle e(f_T)|\right] \otimes |e(0)\rangle\langle e(0)|$
- $f_T(t) = f(t) \mathbb{1}_{(0,T)}(t)$ $f(t) = \lambda e^{-i\omega_0 t}$, $\lambda \in \mathbb{C}$, $\omega_0 > 0$, a coherent monochromatic laser & vacuum for the optical fields
- For the thermal field: A field analog of the *P*-representation of quantum optics
 - Let u be a stationary Gaussian complex random process with $\mathbb{E}[u(t)] = 0$ $\mathbb{E}[u(t)|u(s)] = 0$ $\mathbb{E}[u(t)|u(s)] = F(t-s)$

$$F(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\nu t} N(\nu) d\nu \qquad N(\nu) \ge 0 \quad N(\nu) \in L^1(\mathbb{R})$$

- Take the state of the thermal field to be the mixture of coherent states (for $A_3(t)$) $\rho_{th}^T = \mathbb{E}\left[|e_{th}(u_T)\rangle\langle e_{th}(u_T)|\right], \qquad u_T(t) := 1_{[0,T]}(t)u(t)$
- the current time t is always smaller than T, but in the final physical formulae $T \to +\infty$
- First consequences:
 - the reduced state for the mechanical oscillator does not satisfy a simple closed master equation
 - the quantity $N(\nu)$ will play the role of noise spectral density

Equilibrium state of the quantum oscillator

$$dq(t) = \Omega_{\rm m} p(t) dt + d\hat{W}_q(t) \qquad dp(t) = -(\Omega_{\rm m} q(t) + \gamma_{\rm m} p(t)) dt + v d\Lambda_{11}^B(t) + d\hat{W}_p(t)$$
Non homogeneous, linear equations \Rightarrow **explicit solution for** $q(t)$, $p(t)$

Explicit solution + quantum correlations of the fields \Rightarrow in principle all the properties of the mechanical oscillator can be computed (without relying on a master equation). In particular, the reduced equilibrium state of the quantum oscillator is

$$\sigma_{\rm eq} = \lim_{t \to +\infty} \lim_{T \to +\infty} {\rm Tr}_{\Gamma} \left\{ \textit{U}(t) \left(\sigma_0 \otimes \rho_{\rm field}^{\it T} \right) \textit{U}(t)^{\dagger} \right\} \qquad ({\rm Tr}_{\Gamma} : {\rm partial \ trace \ over \ the \ fields})$$

and it turns out to be a Gaussian state with

$$\begin{split} \langle \rho \rangle_{eq} &= 0, \qquad \langle q \rangle_{eq} = \frac{v \eta \, |\lambda|^2}{\Omega_m}, \\ \langle q^2 \rangle_{eq} - \langle q \rangle_{eq}^2 &= \langle p^2 \rangle_{eq} = \frac{\Omega_m}{\omega_m} \left(N_{eff} + \frac{1}{2} \right) + \frac{\eta \, |\lambda|^2 \, v^2}{2 \gamma_m} \quad \text{equipartition in the mean} \\ \langle \{q, p\} \rangle_{eq} &= -\frac{\gamma_m}{\omega_m} \left(N_{eff} + \frac{1}{2} \right), \qquad N_{eff} := \frac{\gamma_m}{2\pi} \int_{\mathbb{R}} \frac{N(\nu)}{\frac{\gamma_m^2}{4} + (\omega_m - \nu)^2} \, \mathrm{d}\nu \end{split}$$

The mean of the Hamiltonian turns out to be $\langle H_{\rm m} \rangle_{\rm eq} = \hbar \omega_{\rm m} \left(N_{\rm eff} + \frac{1}{2} \right)$

The output field

By the explicit solutions of the quantum Langevin equations:

$$C_1(t) = U(t)^{\dagger} B_1(t) U(t) \quad \Rightarrow \quad \mathrm{d} C_1(t) = \mathrm{e}^{\mathrm{i} v q(t) + \mathrm{i} \phi} \mathrm{d} B_1(t),$$
 Also: the number operator commutes with $U(t)$,
$$\Lambda_{11}^C(t) = U(t)^{\dagger} \Lambda_{11}^B(t) U(t) = \Lambda_{11}^B(t)$$

$$e^{ivq(t)} = S_0(q, p, t) \mathcal{W}_{th}(\ell_t; 1) \mathcal{W}_{em}(0; V_t), \qquad S_0(q, p, t) \stackrel{t \to +\infty}{\longrightarrow} 1,$$

$$\begin{split} \mathcal{W}_{\text{th}}(\ell_t;\mathbb{1}) &= \exp\left\{\int_0^t \ell_t(s) \mathrm{d}A_3^\dagger(s) - \text{h.c.}\right\}, \qquad \mathcal{W}_{\text{em}}(0; \textit{V}_t) = \exp\left\{\int_0^t \textit{V}_t(s) \, \mathrm{d}\Lambda_{11}^\textit{B}(s)\right\}, \\ \ell_t(s) &= -i\textit{V}\tau\sqrt{\frac{\Omega_m\gamma_m}{2\omega_m}} \, \mathrm{e}^{\left(\mathrm{i}\omega_m - \frac{\gamma_m}{2}\right)(t-s)}, \qquad \textit{V}_t(s) = \exp\left\{\mathrm{i}\frac{\Omega_m\textit{V}^2}{\omega_m} \mathrm{e}^{-\frac{\gamma_m}{2}(t-s)}\sin\omega_m\left(t-s\right)\right\}. \end{split}$$

- $\frac{d\Lambda_{11}^{p}(s)}{ds}$ is the rate of arrival of photons —
- $W_{\rm em}(0; V_t)$, which appears in the transformation $b_1(t) \to c_1(t) = {\rm e}^{{\rm i} v q(t) + {\rm i} \phi} b_1(t)$, introduces an intensity dependent phase shift
 - a typical situation known in quantum optics to produce squeezed light

Direct detection of the output fields

A general property of output fields: $C_1(t) = U(t)^{\dagger}B_1(t)U(t) = U(T)^{\dagger}B_1(t)U(T)$ for $t \leq T$ Moreover, by construction U(t) and $C_2(s)$ commute

- \Rightarrow $C_1(\bullet)$ and $C_2(\bullet)$ satisfy the CCRs as the free Bose fields
- \Rightarrow $D_1(\bullet)$ and $D_2(\bullet)$ satisfy the CCRs as the free Bose fields
- the number operators $\{\Lambda_{11}^D(t), \Lambda_{22}^D(s)\}_{t,s\in[0,T]}$ form a family of commuting self-adjoint operators \Rightarrow The associated observables, $N_1(\bullet), N_2(\bullet)$, form a couple of counting processes, whose probability law P is given by the "usual" rules of quantum mechanics (from the joint projection valued measure and the system state).

Some notations:

- $\mathbb{E}_{P}[\bullet]$, expectation of a random variable with respect to the probability P.
- $\langle \bullet \rangle_T = \text{Tr} \left\{ \bullet \rho_{\text{osc}} \otimes \rho_{\text{field}}^T \right\}$, quantum expectation of an operator with respect to the initial state of oscillator and fields.
- The laser state is the coherent state $e(f_T)$ with $f_T(t) = \lambda e^{i\omega_0 t} \mathbb{1}_{(0,T)}(t)$; $|\lambda|^2$ is the intensity of the laser; the final time T is the largest one.
- By using the field densities we write $\Lambda_{jj}^D(t) = \int_0^t d_j^{\dagger}(s) d_j(s) \mathrm{d}s$

Example:
$$\mathbb{E}_{P}[N_{j}(t)] = \int_{0}^{t} ds \langle d_{j}^{\dagger}(s) d_{j}(s) \rangle_{T}$$

Mean of the counts

For large t: $\mathbb{E}_{P}[N_{j}(t+\Delta t)-N_{j}(t)]\simeq n_{j}\Delta t$, $n_{j}=\lim_{t\to+\infty}\lim_{T\to+\infty}\langle d_{j}^{\dagger}(t)d_{j}(t)\rangle_{T}$

By using the HP-equation and the various transformations of the fields it is possible to compute n_j :

$$n_j = \frac{|\lambda|^2}{2} \left[1 + (-1)^j \chi e^{-(K+M)} \cos(\psi - \phi - \theta) \right], \qquad \chi := 2\sqrt{\eta(1-\eta)} \in [0,1]$$

 ψ is the tunable phase shift;

- η is the transmittance of the first beam splitter
- The constants K>0, M>0 and θ depend on the oscillator dynamics $(\omega_{\rm m},\,\gamma_{\rm m})$ and on the intensity of the optomechanical interaction (v^2) ; moreover, K depends also on the temperature, while M and θ depend on the laser intensity $|\lambda|^2$.
- Case of no interaction, v=0, and balanced beam splitter, $\eta=1/2$: $\Rightarrow \chi=1$, $K=M=0, \ \theta=0$. Then: (a) $\psi=\phi\Rightarrow n_1=0$, i.e. no light from port 1; (b) $\psi=\phi+\pi\Rightarrow n_2=0$, i.e. no light from port 2. This is a classical result for a MZI.
- For $v \neq 0$, there is always some light at the two output ports due to the factor $e^{-(K+M)}$.

Mandel Q-parameter

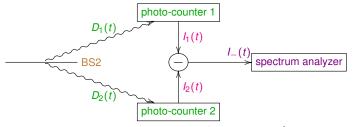
$$Var[N_j(T)] = \langle \Lambda_{jj}^D(T)^2 \rangle_T - (\langle \Lambda_{jj}^D(T) \rangle_T)^2$$
 an long analytical expression can be obtained

- Poisson distribution $\Rightarrow Q_i = 0$

For any choice of the parameters:

- Squeezed light \Rightarrow sub-Poissonian statistics: $-1 \le Q_i < 0$
- We find $Q_i < 0$ for certain choices of the parameters
- moreover, if $Q_j\big|_{\psi=\psi^*}<0$, then, $Q_j\big|_{\psi=\psi^*+\pi/2}>0$, as it must be for squeezed light: "when a quadrature is squeezed, the orthogonal quadrature is anti-squeezed"
- $Var[N_1(T) + N_2(T)] = \mathbb{E}_P[N_1(T)] + \mathbb{E}_P[N_2(T)] = |\lambda|^2 T$. To recombine in this way the two rays gives the same result as to count the photons in the initial coherent laser field.

Post-processing



$$I_j(t) = c\varkappa \int_0^t \mathrm{e}^{-\varkappa(t-r)}\,\mathrm{d}N_j(r),$$
 spectrum analyzer
$$j = 1, 2 \quad 0 < t \le T$$

$$c\varkappa \mathrm{e}^{-\varkappa(t-r)} \quad \text{represents the } re-$$
 sponse function of the detector

- Quantum observables: $\hat{l}_j(t) = c \varkappa \int_0^t \mathrm{e}^{-\varkappa(t-r)} \,\mathrm{d}\Lambda_{jj}(r)$ $\Rightarrow [\hat{l}_j(t), \hat{l}_j(s)] = 0$ (from the commutation property of the number operators)
- The "difference" current $\hat{l}_{-}(t) = \hat{l}_{1}(t) \hat{l}_{2}(t)$ \Rightarrow $[\hat{l}_{-}(t), \hat{l}_{-}(s)] = 0$
- $I_{-}(t) = I_{1}(t) I_{2}(t)$ is a stochastic process; its law P can be computed, in principle.
- The intensity spectrum: $S_{I_{-}}(\mu) = \lim_{T \to +\infty} \frac{1}{T} \mathbb{E}_{P} \left[\left| \int_{0}^{T} \mathrm{e}^{\mathrm{i}\mu t} I_{-}(t) \mathrm{d}t \right|^{2} \right]$

This is the usual definition of spectrum of an asymptotically stationary stochastic process.

The idea of studying the difference current comes from *balanced homodyne detection*, which has analogies with our MZI scheme

The structure of the spectrum

In terms of the quantum observables $d\Lambda_{ii}^D(t) = d_i^{\dagger}(t)d_i(t)dt$, by a few steps, we get

$$S_{l_-}(\mu) = \lim_{T o +\infty} rac{c^2arkappa^2}{(\mu^2+arkappa^2)T} \sum_{i,j=1}^2 (-1)^{i+j} \int_0^T \mathrm{d}t \int_0^T \mathrm{d}s \, \mathrm{e}^{\mathrm{i}\mu(t-s)} \langle d_j^\dagger(t) d_j(t) d_i^\dagger(s) d_i(s)
angle_T$$

CCRs for the *D*-fields: $[d_i(s), d_j(t)] = 0$, $[d_i(s), d_i^{\dagger}(t)] = \delta_{ij}\delta(t-s)$

$$\langle d_{j}^{\dagger}(t)d_{j}(t)d_{i}^{\dagger}(s)d_{i}(s)\rangle_{T} = \langle d_{j}^{\dagger}(t)d_{j}(t)\rangle_{T}\langle d_{i}^{\dagger}(s)d_{i}(s)\rangle_{T} + \delta_{ij}\delta(t-s)\langle d_{j}(t)^{\dagger}d_{j}(t)\rangle_{T} + \left(\langle d_{j}^{\dagger}(t)d_{i}^{\dagger}(s)d_{i}(s)d_{j}(t)\rangle_{T} - \langle d_{j}^{\dagger}(t)d_{j}(t)\rangle_{T}\langle d_{i}^{\dagger}(s)d_{i}(s)\rangle_{T}\right)$$

$$S_{l_{-}}(\mu) = 2\pi c^2 (n_1 - n_2)^2 \delta(\mu) + \frac{c^2 \varkappa^2}{\mu^2 + \varkappa^2} \left[n_1 + n_2 + |\lambda|^2 (1 - \eta) \Sigma_{-}(\mu) \right]$$

The first term is the contribution of the constant part of I_{-} ;

$$n_2 - n_1 = |\lambda|^2 \chi e^{-(K+M)} \cos(\psi - \phi - \theta)$$

Fourier transform of the detector response function: $\frac{c^2 \varkappa^2}{\mu^2 + \varkappa^2}$

Shot noise: $n_1 + n_2 = |\lambda|^2$ it comes out from normal ordering the *d*'s.

The reduced spectrum

Reduced spectrum:
$$\Sigma_{-}(\mu) = \lim_{T \to +\infty} \sum_{i,j=1}^{2} (-1)^{i+j} \frac{1}{|\lambda|^2 (1-\eta) T} \int_0^T \mathrm{d}t \int_0^T \mathrm{d}s \, \mathrm{e}^{\mathrm{i}\mu(t-s)} \times \left(\langle d_j^{\dagger}(t) d_i^{\dagger}(s) d_i(s) d_j(t) \rangle_T - \langle d_j^{\dagger}(t) d_j(t) \rangle_T \langle d_i^{\dagger}(s) d_i(s) \rangle_T \right)$$

We can express $\Sigma_{-}(\mu)$ in terms of the output field $c_1(t)$, and of $a_1(t)$, $a_2(t)$. We use the fact that the initial state is a coherent state for the a_j -fields: $e(f_T) \otimes e(0)$. We obtain:

$$\bullet \ 1 + \Sigma_{-}(\mu) = \lim_{T \to +\infty} \langle \Delta Q_{T}(\mu; \psi)^{\dagger} \Delta Q_{T}(\mu; \psi) \rangle_{T} \geq 0, \qquad \Rightarrow \qquad \Sigma_{-}(\mu) \geq -1$$

$$egin{aligned} \Delta Q_{\mathcal{T}}(\mu;\psi) &:= Q_{\mathcal{T}}(\mu;\psi) - \langle Q_{\mathcal{T}}(\mu;\psi)
angle_{\mathcal{T}}, & Q_{\mathcal{T}}(\mu;\psi) := \mathrm{e}^{\mathrm{i}\psi} c_{\mathcal{T}}(\mu) + \mathrm{e}^{-\mathrm{i}\psi} c_{\mathcal{T}}^{\dagger}(-\mu), \\ c_{\mathcal{T}}(\mu) &:= rac{1}{|\lambda| \sqrt{T}} \int_0^{\mathcal{T}} \mathrm{d}t \, \mathrm{e}^{\mathrm{i}\mu t} \, \overline{f(t)} \, c_1(t) & \Rightarrow & [c_{\mathcal{T}}(\mu), c_{\mathcal{T}}^{\dagger}(\mu)] = 1 \end{aligned}$$

- $c_T(\mu)$ is a "mode operator".
- A Heisenberg-like relation holds for the "quadrature" operators $Q_T(\mu; \psi)$:

$$\langle \Delta Q_{T}(\mu; \psi)^{\dagger} \Delta Q_{T}(\mu; \psi) \rangle_{T} \langle \Delta Q_{T}(\mu; \psi \pm \pi/2)^{\dagger} \Delta Q_{T}(\mu; \psi \pm \pi/2) \rangle_{T} \geq 1.$$

$$\Rightarrow \qquad \left(1 + \Sigma_{-}(\mu) \big|_{\psi} \right) \left(1 + \Sigma_{-}(\mu) \big|_{\psi + \pi/2} \right) \geq 1$$

Squeezing

Consider
$$\mu=0$$
. $c_T(0)=\frac{1}{|\lambda|\sqrt{T}}\int_0^T\overline{f(t)}\,c_1(t)\,\mathrm{d}t \qquad [c_T(0),c_T^\dagger(0)]=1$
$$Q_T(0;\psi)=\mathrm{e}^{\mathrm{i}\psi}c_T(0)+\mathrm{e}^{-\mathrm{i}\psi}c_T^\dagger(0)=Q_T(0;\psi)^\dagger \qquad \langle\Delta Q_T(0;\psi)^2\rangle_T\,\langle\Delta Q_T(0;\psi\pm\pi/2)^2\rangle_T\geq 1$$

$$1+\Sigma_-(0)=\langle\Delta Q_T(0;\psi)^2\rangle_T$$

On a coherent vector for $c_T(0)$ we have $\langle \Delta Q_T(0; \psi)^2 \rangle_T = 1$, $\forall \psi$. When $\langle \Delta Q_T(0; \psi)^2 \rangle_T < 1$ for a certain ψ (and, so, $\langle \Delta Q_T(0; \psi \pm \pi/2)^2 \rangle_T > 1$) one says that the reduced state of the mode $c_T(0)$ is **squeezed**.

• When $\Sigma_{-}(0) \in (-1,0)$, the light in the channel $C_1(t)$ is squeezed.

Use $c_1(t) = \mathrm{e}^{\mathrm{i} v q(t) + \mathrm{i} \phi} b_1(t)$ and the decomposition of the scattering operator in terms of Weyl operators: $\mathrm{e}^{\mathrm{i} v q(t)} = S_0(q, p, t) \mathcal{W}_{\mathrm{th}}(\ell_t; \mathbb{1}) \mathcal{W}_{\mathrm{em}}(0; V_t)$, $S_0(q, p, t) \stackrel{t \to +\infty}{\longrightarrow} \mathbb{1}$ $\Rightarrow \Sigma_-(\mu) = \text{an involved analytical expression}$ Approximations are needed to get explicit expressions for $\Sigma_-(\mu)$

Some conditions for squeezing

Assumptions: small temperature, strong laser intensity, $|\lambda|^2 \uparrow +\infty$, weak interaction, $v^2 \downarrow 0$ – (ideally the parameter v^2 can be changed by changing the incidence angle in the MZI); precisely, we ask

$$\left(N_{\mathrm{eff}}+rac{1}{2}
ight)rac{v^2\Omega_{\mathrm{m}}}{2\omega_{\mathrm{m}}}\ll 1, \qquad rac{\eta\left|\lambda
ight|^2v^4}{4\gamma_{\mathrm{m}}}\ll 1, \qquad rac{\Omega_{\mathrm{m}}}{\eta\left|\lambda
ight|^2v^2}\ll 1.$$

Take $\psi = \psi_1$ such that

$$\begin{split} \sin 2(\psi_1 - \phi - \theta) &\simeq -\frac{\Omega_m}{\eta \left| \lambda \right|^2 v^2} \ll 1, \qquad 1 - \cos 2(\psi_1 - \phi - \theta) \simeq \frac{1}{2} \left(\frac{\Omega_m}{\eta \left| \lambda \right|^2 v^2} \right)^2 \ll 1 \\ & \qquad \qquad \Sigma_-(\mu) \big|_{\psi_1} \simeq \frac{\Omega_m^2 \left(2\mu^2 - \Omega_m^2 \right)}{\left[\frac{\gamma_m^2}{4} + (\mu + \omega_m)^2 \right] \left[\frac{\gamma_m^2}{4} + (\mu - \omega_m)^2 \right]} \end{split}$$

$$\Sigma_{-}(0)\big|_{\psi_1} \simeq -1$$
 $\Sigma_{-}(\mu)\big|_{\psi_1} < 0$ for $\mu \in (-\Omega_{\mathrm{m}}/\sqrt{2},\Omega_{\mathrm{m}}/\sqrt{2})$ $\lim_{\mu \to \pm \infty} \Sigma_{-}(\mu) = 0$

$$S_{I_{-}}(\mu) = 2\pi c^2 (n_1 - n_2)^2 \delta(\mu) + \frac{c^2 \varkappa^2 |\lambda|^2}{\mu^2 + \varkappa^2} [1 + (1 - \eta) \Sigma_{-}(\mu)]$$

 η can be small, so $\Sigma_{-}(0)|_{\psi_{1}}$ can nearly cancel the whole shot noise.

Back to the Mandel parameters

• The spectra of the two output currents: $S_{l_j}(\mu) = \lim_{T \to +\infty} \frac{1}{T} \mathbb{E}_P \left[\left| \int_0^T \mathrm{e}^{\mathrm{i}\mu t} I_j(t) \mathrm{d}t \right|^2 \right] = 0$

$$=2\pi c^2 n_j^2 \delta(\mu) + \frac{c^2 \varkappa^2}{\mu^2 + \varkappa^2} \Big[n_j + \frac{|\lambda|^2}{4} \left((1-\eta) \Sigma_-(\mu) + (-1)^j \Sigma_0(\mu) \right) \Big], \qquad j=1,2,$$

 $\Sigma_0(\mu) = \cdots$; when $\Sigma_-(0) < 0$, at least one of the to light beams presents reduction of the shot noise.

• The two Mandel *Q*-parameters for the counting of photons:

$$Q_j = \lim_{T \to +\infty} \frac{\mathsf{Var}[N_j(T)] - \mathbb{E}_P[N_j(T)]}{\mathbb{E}_P[N_j(T)]} = \frac{|\lambda|^2}{4n_j} \left[(-1)^j \Sigma_0(0) + (1-\eta) \Sigma_-(0) \right],$$

When $\Sigma_{-}(0)$ at least in one channel we get $Q_j < 0$

• However, under the conditions which give $(1-\eta)\Sigma_{-}(0)\simeq -1$, we get $\Sigma_{0}(0)\simeq 0$, $n_{j}\simeq \frac{|\lambda|^{2}}{2}$, and, so $Q_{1}\simeq -\frac{1}{2}$, $Q_{2}\simeq -\frac{1}{2}$; we see squeezing in both rays, but the extreme value -1 is not reached.

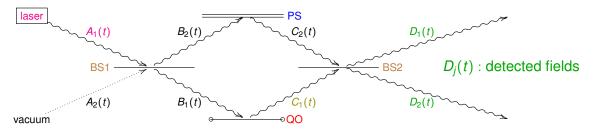


Conclusion

BS1, BS2: two beam splitters

QO: Quantum Oscillator (a quantum optomechanical micro-mirror)

PS: fixed mirror and tunable Phase Shifter



The input light, in field $A_1(t)$, is coherent, "classical" light.

The output light, in field $C_1(t)$ is squeezed, "quantum" light (under some choices of the free parameters).

Squeezing is detected only after the interference with the reference beam $C_2(t)$.

References

- A. Barchielli, Quantum stochastic equations for an opto-mechanical oscillator with radiation pressure interaction and non-Markovian effects, Rep. Math. Phys. **77** (2016) 315–333.
- A. Barchielli, B. Vacchini, *Quantum Langevin equations for optomechanical systems*, New J. Phys. **17** (2015) 083004.
- A. Santamato, *A quantum theory of photodetection and other optical devices*, master thesis, University of Milan (2010). DOI 10.13140/RG.2.2.36655.48801
- A. Barchielli, M. Gregoratti, *Quantum continuous measurements: The stochastic Schrödinger equations and the spectrum of the output*,

 Quantum Measurements and Quantum Metrology, **1** (2013) 34–56.
- A. Barchielli, Continual Measurements in Quantum Mechanics and Quantum Stochastic Calculus. In S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems III, Lect. Notes Math. **1882** (Springer, Berlin, 2006), pp. 207–291.

- W.P. Bowen, G.J. Milburn, *Quantum Optomechanics* (CRC, Taylor & Francis, 2016)
- R.L. Hudson and K.R. Parthasarathy, *Quantum Itô's formula and stochastic evolutions*, Commun. Math. Phys. **93**, 301–323 (1984).
- C.W. Gardiner and M.J. Collet, *Input and output in damped quantum systems:*Quantum stochastic differential equations and the master equation, Phys. Rev. A **31**, 3761–3774 (1985).
- J.E. Gough, *Scattering processes in quantum optics*, Phys. Rev. A **91** (2015) 013802.
- A. Barchielli, M. Gregoratti, Quantum measurements in continuous time, non-Markovian evolutions and feedback, Phil. Trans. R. Soc. A 370 no. 1979 (2012) 5364–5385.
- M. Gregoratti, *The Hamiltonian operator associated to some quantum stochastic evolutions*, Commun. Math. Phys. **222** (2001) 181–200.