

Application of Painlevé 3 equations to dynamical systems on 2-torus modeling Josephson junction

Yulia Bibilo, Alexey A. Glutsyuk

Plan

Plan of the talk:

- Rotation number, phase-lock areas.
- Josephson effect and dynamical system modeling it.
- Properties of phase-lock areas.
- Main results: theorems A and B.
- Ideas of the theorem A proof: application of isomonodromic deformations and Painlevé 3 equation.
- Some open problems.

Alexey Glutsyuk and YB

On families of constrictions in model of overdamped Josephson junction and
Painlevé 3 equation

<https://arxiv.org/abs/2011.07839v4>

Circle homeomorphisms and rotation number

$S^1 := \mathbb{R}/2\pi\mathbb{Z}$ oriented circle; $f : S^1 \rightarrow S^1$ a **positive homeomorphism**.

Definition of the **Poincaré rotation number** $\rho(f) \in \mathbb{R}/\mathbb{Z}$.

H.Poincaré. *Sur les courbes définies par les équations différentielles.* J. Math. Pures App. I 167 (1885).

$\pi : \mathbb{R} \rightarrow S^1$:= the **universal covering projection**: $x \mapsto x(\bmod 2\pi)$.

F := a **continuous lifting** of f to \mathbb{R} .

Defined up to postcomposition

with translation by $2\pi m$, $m \in \mathbb{Z}$.

$$\rho(F)(x) := \lim_{k \rightarrow +\infty} \frac{F^k(x)}{2\pi k}.$$

$$\begin{array}{ccc} \mathbb{R} & \xrightarrow{F} & \mathbb{R} \\ \pi \downarrow & & \downarrow \pi \\ S^1 & \xrightarrow{f} & S^1 \end{array}$$

The limit exists and is independent ! of

$$\rho(f) := \rho(F)(\bmod \mathbb{Z}).$$

Henri Poincaré (1854–1912)

Rotation numbers: first examples

$$\rho(F)(x) := \lim_{k \rightarrow +\infty} \frac{F^k(x)}{2\pi k}.$$

$$\rho(f) := \rho(F)(\text{mod } \mathbb{Z}).$$

1) $f(x) = x + 2\pi a \Rightarrow \rho(f) = a(\text{mod } \mathbb{Z}) \text{ for every } a \in \mathbb{R}.$

2) $f(x)$ has a **fixed point** $\Leftrightarrow \rho(f) = 0(\text{mod } \mathbb{Z}).$

3) $f(x)$ has a **q -periodic point** $\Leftrightarrow \rho(f) = \frac{p}{q}(\text{mod } \mathbb{Z})$ for some $p \in \mathbb{Z}.$

A **family** $f = f(x, u)$ of positive circle homeomorphisms $S^1 \rightarrow S^1$, $x \mapsto f(x, u)$;
 u := the **parameter**; u lies in a domain $U \subset \mathbb{R}^n$.

The **rotation number function**: $\rho(u) := \rho(f(., u))$: $U \rightarrow S^1 = \mathbb{R}/\mathbb{Z}.$

Main definition (a version of **Arnold tongues**)

Phase-lock areas: subsets $\{u \in U \mid \rho(u) = r\} \subset U$ with **non-empty interiors**.

Example. Consider a family $f(x, u)$ of **circle diffeomorphisms**.

Let for some $u_0 \in U$ the diffeomorphism $f_{u_0}(x) = f(x, u_0)$

have a q -periodic point x_0 with $(f_{u_0}^q)'(x_0) \neq 1$. Then

$$\rho(u_0) = \frac{p}{q} \text{ for some } p = p(u_0) \in \mathbb{Z};$$

$$L_{\frac{p}{q}} := \{u \in U \mid \rho(u) = \frac{p}{q}\} \text{ is a **phase-lock area**.}$$

This example illustrates a **classical fact**: **stability** of the above q -periodic point.

Rotation number and Poincaré map of flow on 2-torus

Differential equation on 2-torus $\mathbb{T}^2 := \mathbb{R}_{(\phi, \tau)}^2 / 2\pi\mathbb{Z}^2$

$$\begin{cases} \dot{\phi} = f(\phi, \tau) \\ \dot{\tau} = 1 \end{cases} \quad f \in C^1, \quad f(\phi + 2\pi, \tau) = f(\phi, \tau + 2\pi) = f(\phi, \tau).$$

Solution $\phi = \phi(\tau) \in \mathbb{R}$. Uniquely defined by $\phi_0 = \phi(0)$.

If $\phi(\tau)$ is a solution, then $\phi(\tau + 2\pi)$ is also a solution.

Flow on torus

$$\begin{cases} \dot{\phi} = f(\phi, \tau) \\ \dot{\tau} = 1 \end{cases} \quad f \in C^1, \quad f(\phi + 2\pi, \tau) = f(\phi, \tau + 2\pi) = f(\phi, \tau).$$

Rotation number of flow:

$$\rho := \lim_{k \rightarrow +\infty} \frac{\phi(2\pi k)}{2\pi k} \in \mathbb{R}.$$

The **Poincaré map** of the circle $S^1 = \mathbb{R}_\phi / 2\pi\mathbb{Z} = S_\phi^1 \times \{0\} \subset \mathbb{T}_{(\phi, \tau)}^2$:

$$h : S_\phi^1 \rightarrow S_\phi^1, \quad (\phi(0), 0) \mapsto (\phi(2\pi), 0).$$

Properties of the rotation number ρ :

- 1) Independent on choice of the initial condition $\phi_0 = \phi(0)$.
- 2) the rotation number **of flow mod \mathbb{Z}** , equals
the rotation number of the **Poincaré map**.

Phase-lock areas in family of dynamical systems on 2-torus

$$\begin{cases} \dot{\phi} = f(\phi, \tau; u) \\ \dot{\tau} = 1 \end{cases} ; \quad u \in U \subset \mathbb{R}^n \text{ is the parameter.} \quad (\text{B})$$

The rotation number function $\rho : U \rightarrow \mathbb{R}$:

$$\rho(u) := \lim_{k \rightarrow +\infty} \frac{\phi(2\pi k; u)}{2\pi k} \in \mathbb{R}.$$

Phase-lock areas: subsets $\{u \in U \mid \rho(u) = r\} \subset U$ with **non-empty interiors**.

Example. Let for $u = u_0$ (B) have an attracting (or repelling) **periodic orbit** (\Leftrightarrow h have attracting (repelling) q -periodic point). Then

Period of the orbit $= 2\pi q$, $q \in \mathbb{Z}$; $\rho(u_0) = \frac{p}{q} \in \mathbb{Q}$ for some $p \in \mathbb{Z}$;

$L_{\frac{p}{q}} := \{u \in U \mid \rho(u) = \frac{p}{q}\}$ is a **phase-lock area**.

Goal: study phase-lock areas in a model of **Josephson junction** (**superconductivity**).

Superconductivity

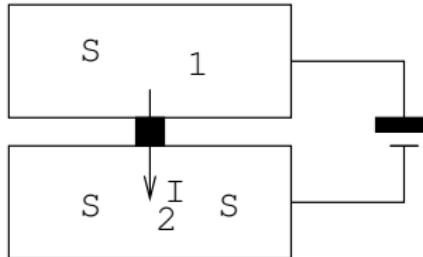
Phenomenon, when the **electric resistance** becomes **exactly zero**.

Occurs in **some** metals at temperature $T < T_{crit.}$

The resistance **jumps to zero**, once T becomes **less than** $T_{crit.}$

The Josephson effect

Let two superconductors S_1, S_2 be separated
by a very narrow dielectric
or a very narrow metal layer,
thickness $\leq 10^{-5} \text{ cm}$ (\ll distance in Cooper pair).
There exists a **supercurrent** I_S through the dielectric.



Born in UK in 1940.
Nobel Prize in 1973
for "the discovery of
tunnelling supercurrents".

Supercurrent is carried by coherent **Cooper pairs** of electrons.

Josephson effect

Quantum mechanics. State of S_j : wave function $\Psi_j = |\Psi_j| e^{i\chi_j}$;

χ_j are the **phases**, $\phi := \chi_1 - \chi_2$ is the **phase difference**.

The first Josephson relation: $I_S = I_c \sin \phi$, $I_c \equiv \text{const.}$

Josephson voltage relation: $V(t) = \frac{\hbar}{2e} \dot{\phi}$.

General mathematical model

$$\varepsilon_1 \frac{d^2\phi}{dt^2} + \varepsilon_2 \frac{d\phi}{dt} + \sin \phi = f(t); \quad \varepsilon_1, \varepsilon_2 = \text{const.}$$

In physical works this equation is called the **Langevin equation**.

Our main, special "overdamped" case: $\varepsilon_1 = 0$, $\varepsilon_2 = 1$, $f(t) = B + A \cos \omega t$.

$$\frac{d\phi}{dt} = -\sin \phi + B + A \cos \omega t.$$

$$\frac{d\phi}{dt} = -\sin \phi + B + A \cos \omega t.$$

V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi (2004): the model is equivalent to a family of dynamical systems on two-torus $\mathbb{T}_{(\phi,\tau)}^2 = \mathbb{R}^2 / 2\pi\mathbb{Z}^2$, $\tau = \omega t$:

$$\begin{cases} \dot{\phi} = \frac{1}{\omega}(-\sin \phi + B + A \cos \tau) \\ \dot{\tau} = 1 \end{cases} . \quad (1)$$

Our main problem: Describe the **rotation number** ρ of the flow (1) as a **function on the space** $(B, A; \omega)$ with fixed $\omega > 0$.

Phase-lock area:= a level set $\{\rho = r\}$ if it has a **non-empty interior**.

Quantization effect (Buchstaber, Karpov, Tertychnyi, 2010):
phase-lock areas exist only for **integer rotation values**.

$$\left\{ \begin{array}{l} \dot{\phi} = \frac{1}{\omega}(-\sin \phi + B + A \cos \tau) \\ \dot{\tau} = 1 \end{array} \right. . \quad (1)$$

Many works concern systems (1)

A subfamily of these systems occurred in the work by **Yu.S.Ilyashenko, J.Guckenheimer** (2001) from the slow-fast system point of view.

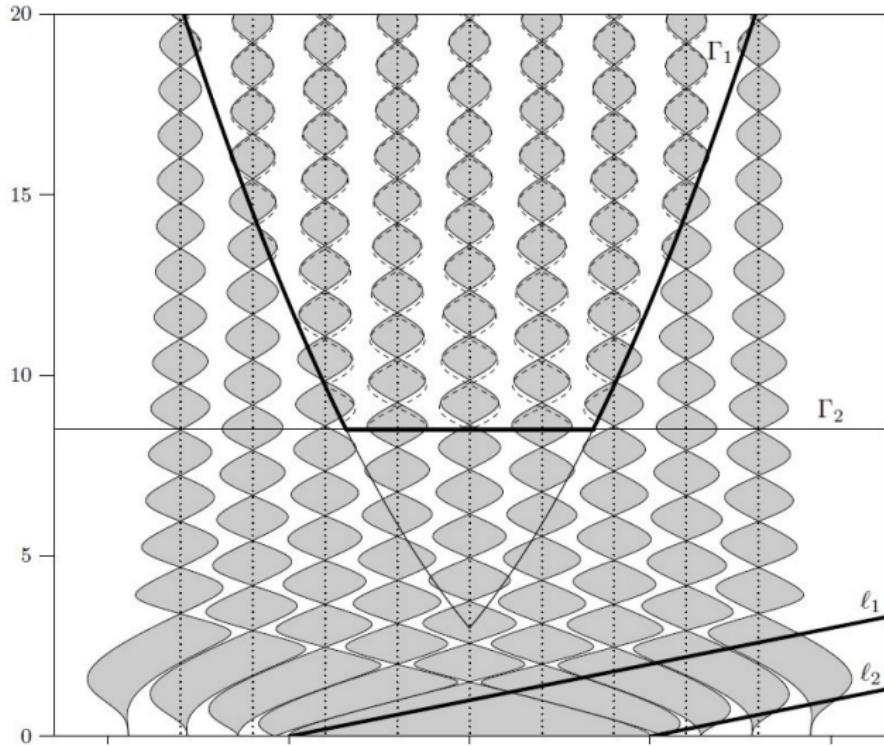
In a paper by **R. Foote, M. Levi, S. Tabachnikov** (2013) it was noticed that family (1) arises

in the investigation of some systems with non-holonomic connections.

In Prytz planimeter model and in kinematics of bicycle moving

Analogous equation describes the observed direction to a given point at infinity while moving along a geodesic in the hyperbolic plane.

Boundaries of phase-lock areas



Boundaries of phase-lock areas

1). There exist functions $\psi_{r,\pm}(A)$ **analytic** in $A \in \mathbb{R}$ such that the **boundary** ∂L_r **is the union** of their graphs:

$$\partial L_r = \partial_+ L_r \cup \partial_- L_r, \quad \partial_{\pm} L_r := \{B = \psi_{r,\pm}(A)\}.$$

$\psi_{r,\pm}(A)$ have asymptotics of **Bessel type** $r\omega \pm J_r(-\frac{A}{\omega}) + O(\frac{\ln|A|}{A})$, as $A \rightarrow \infty$.

Observed by **S.Shapiro, A.Janus, S.Holly** (1964);

Confirmed numerically by **V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi** (2005).

Proved by **A.V.Klimenko and O.L.Romaskevich** (2014).

2) Each L_r is an infinite chain (garland) of domains going to infinity, separated by points of intersection $\partial_+ L_r \cap \partial_- L_r$.

Observed numerically by **Buchstaber, Karpov, Tertychnyi**.

Proved by **Klimenko and Romaskevich** (2014).

The separation points with $A \neq 0$ are called **constriction points (constrictions)**.

The separation points of L_r with $A = 0$ exist for $r \neq 0$, are called **growth points** and their abscissas B_r satisfy the equation $B_r^2 - r^2\omega^2 = 1$.

The phase-lock area L_0 has no growth points; it intersects the B -axis by $[-1, 1]$.

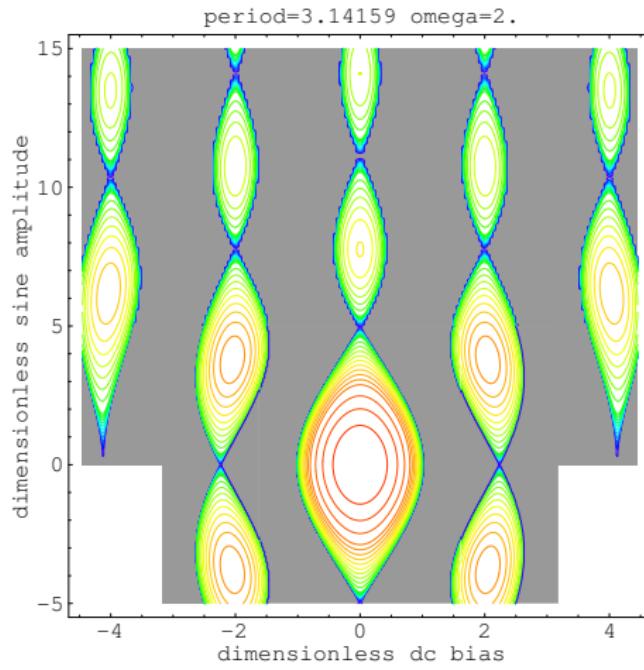
We present pictures of phase-lock areas for different values of ω . They are **symmetric** with respect to coord. axes: $(B, A) \mapsto (-B, A)$; $(B, A) \mapsto (B, -A)$.

Taking into account these symmetries, we present only upper parts of the pictures.

Phase-lock areas for $f(t) = B + A \cos \omega t$, $\omega = 2$

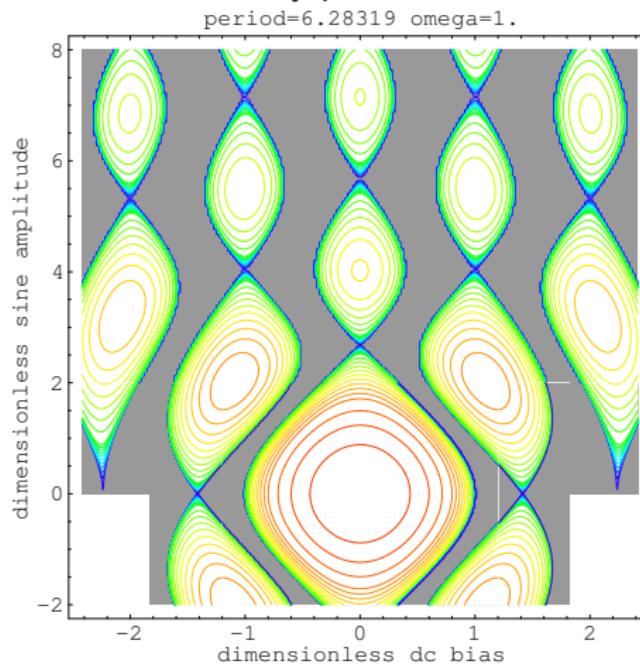
Each phase-lock area L_r is an infinite chain (garland) of domains going to infinity, separated by points of intersection $\partial_+ L_r \cap \partial_- L_r$.

The separation points with $A \neq 0$ are called **constriction points (constrictions)**.



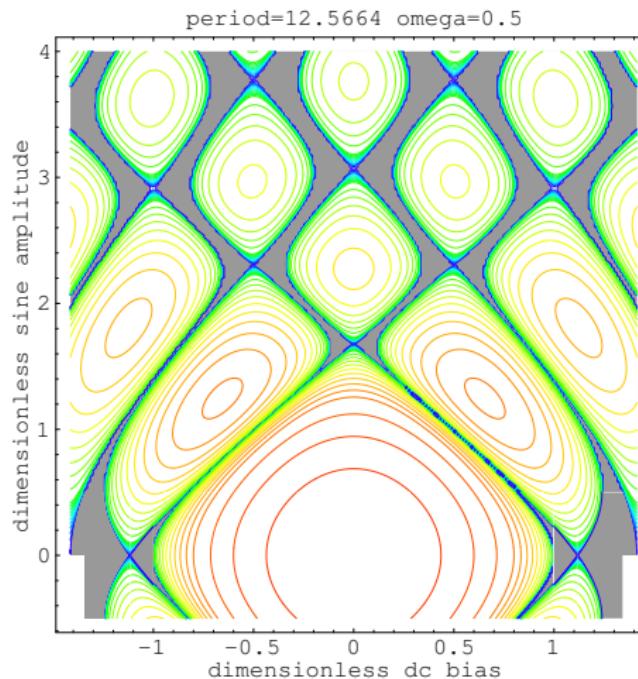
Phase-lock areas for $f(t) = B + A \cos \omega t$, $\omega = 1$

- infinitely many **constrictions** in every phase-lock area.



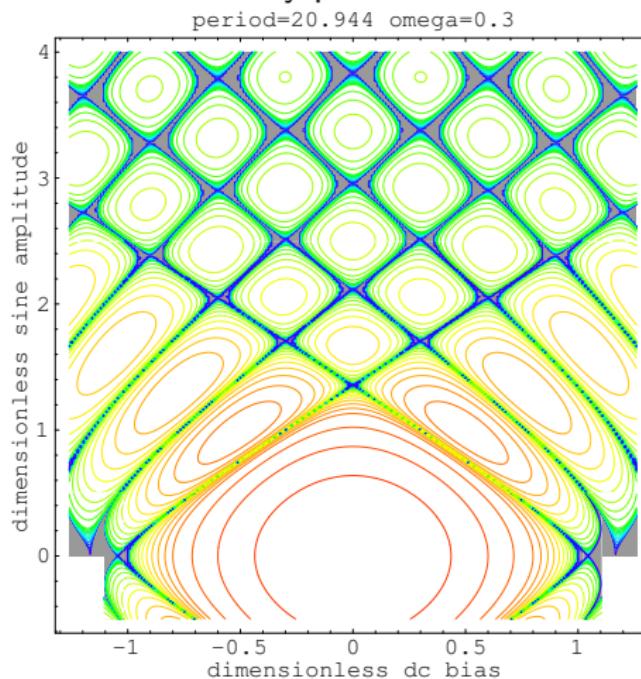
Phase-lock areas for $f(t) = B + A \cos \omega t, \omega = 0.5$

- infinitely many **constrictions** in every phase-lock areas.



Phase-lock areas for $f(t) = B + A \cos \omega t$, $\omega = 0.3$

- infinitely many **constrictions** in every phase-lock areas.



Constrictions:= the separation points in L_r , $r \in \mathbb{Z}$, with $A \neq 0$.

The constrictions $\mathcal{A}_{r,1}, \mathcal{A}_{r,2}, \mathcal{A}_{r,3}, \dots$ with $A > 0$ are ordered by their A -coordinates.

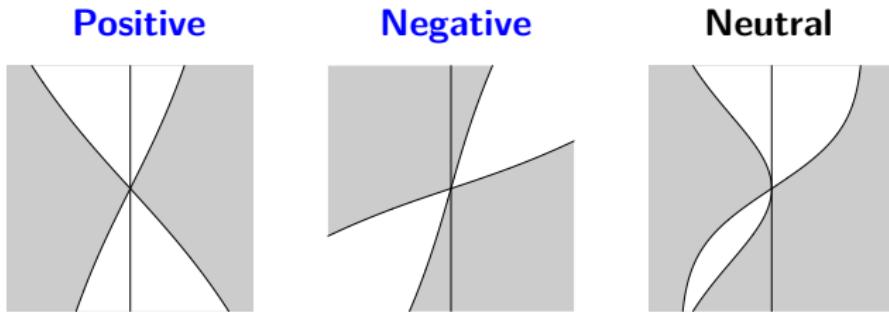
Theorem 1 (quantization of constrictions) (Y.B., A.Glutsyuk): *All the constrictions $\mathcal{A}_{r,k}$ lie in the line $\Lambda_r := \{B = r\omega\}$:= the axis of the area L_r .*

This is a confirmation of an experimental fact that was earlier discovered in numerical simulations (**Tertychnyi, Filimonov, Kleptsyn, Schurov, 2011**).

Previous results (Filimonov, Glutsyuk, Kleptsyn, Schurov, 2014) Each constriction $\mathcal{A}_{r,k}$ lies in a line $\{B = \ell\omega\}$, where $\ell \in [0, r]$ and $\ell \equiv r(\text{mod}2\mathbb{Z})$.

Theorem 1 holds for $\omega \geq 1$.

Definition. A priori possible types of constrictions:



Theorem 2 (Y.B., A.Glutsyuk). Each constriction is **positive**.

Known: For every constriction $\ell := \frac{B}{\omega} \in \mathbb{Z}$

(Filimonov, Glutsyuk, Kleptsyn, Schurov, 2014).

Definition. Ghost constriction: = a constriction satisfying one of two conditions:

- either the **rotation number** $\rho \neq \ell$,
- or the constriction is **non-positive**.

Theorems 1 and 2 state that there are **no ghost constrictions**.

Plan of proof of main results: no ghost constrictions

Known properties of constrictions: $\ell := \frac{B}{\omega} \in \mathbb{Z}$, $\ell \in [0, \rho]$, $\ell \equiv \rho \pmod{2}$.

Ghost constriction:= either non-positive, or $|\ell| < |\rho|$

Theorem A. For every given $\ell \in \mathbb{Z}$ each constriction $(\ell\omega, A; \omega)$ can be deformed to another constriction of the same type, ℓ , ρ , with **arbitrarily small** ω .

\Rightarrow **Ghost constrictions** are deformed to **ghost constrictions** with small ω .

Proof is based on equivalent description of the model by **complex linear equations on \mathbb{C}** and studying their **isomonodromic deformations**.

Theorem B. For every given $\ell \in \mathbb{Z}$ and every $\omega > 0$ small enough there are **no ghost constrictions** with $B = \ell\omega$.

Theorem B is proved by methods of theory of **slow-fast** families of dynam. systems.

Equivalent description of model by linear systems on \mathbb{C} .

$$\frac{d\phi}{d\tau} = \frac{1}{\omega}(\sin \phi + B + A \cos \tau) = \frac{\sin \phi}{\omega} + \ell + 2\mu \cos \tau. \quad (2)$$

V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi, 2004. The variable changes

$$z := e^{i\tau}, \quad \Phi := ie^{i\phi}$$

transforms (2) to Riccati equation

$$\frac{d\Phi}{dz} = z^{-2}((\ell z + \mu(z^2 + 1))\Phi + \frac{z}{2\omega}(\Phi^2 + 1)). \quad (3)$$

$\Phi(z)$ is a solution of (3) $\Leftrightarrow \Phi(z) = \frac{v}{u}(z)$, where $Y = (u, v)(z)$ is a solution of

$$Y' = \left(\frac{\text{diag}(-\mu, 0)}{z^2} + \frac{R}{z} + \text{diag}(-\mu, 0) \right) Y, \quad R = \begin{pmatrix} -\ell & -\frac{1}{2\omega} \\ \frac{1}{2\omega} & 0 \end{pmatrix}, \quad (4)$$

In other words, (3) is the **projectivization** of (4).

$$\frac{d\phi}{d\tau} = \frac{1}{\omega}(\sin \phi + B + A \cos \tau) = \frac{\sin \phi}{\omega} + \ell + 2\mu \cos \tau. \quad (2)$$

$$Y' = \left(\frac{\text{diag}(-\mu, 0)}{z^2} + \frac{R}{z} + \text{diag}(-\mu, 0) \right) Y, \quad R = \begin{pmatrix} -\ell & -\frac{1}{2\omega} \\ \frac{1}{2\omega} & 0 \end{pmatrix}, \quad (4)$$

The monodromy operator M of system (4).

Acts on its local solution space $\mathbb{C}^2 = \mathbb{C}^2 \times \{z_0\}$ at $z_0 \in \mathbb{C}^*$
by analytic extension along counterclockwise circuit around 0.

Fact. $(B, A; \omega)$ is a **constriction** \Leftrightarrow (4) has **trivial monodromy**: $M = Id$.

D.A.Filimonov, A.G., V.A.Kleptsyn, I.V.Schurov, 2014.

Linear systems with irregular nonresonant singularities.

Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).

$$Y' = \left(\frac{K}{z^2} + \frac{R}{z} + N + O(z) \right) Y, \quad Y = \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{C}^2, \quad (5)$$

Germ at 0; $K, R, N \in \text{Mat}_2(\mathbb{C})$, K has **distinct eigenvalues** $\lambda_1 \neq \lambda_2$.

Then we say that 0 is **irregular non-resonant singularity of Poincaré rank 1**.

Two germs (5), (5)' are **analytically equivalent**, if there exists a germ of holomorphic $\text{GL}_2(\mathbb{C})$ -valued function $H(z)$ such that $Y = H(z)\tilde{Y}$ sends (5) to (5)'.

(5) \simeq (5)' **formally**, if this holds for a **formal** invertible matrix power series $\hat{H}(z)$.

Theorem. System (5) is **formally equivalent** to a unique **formal normal form**

$$\tilde{Y}' = \left(\frac{\tilde{K}}{z^2} + \frac{\tilde{R}}{z} \right) \tilde{Y}, \quad \tilde{K} = \text{diag}(\lambda_1, \lambda_2), \quad \tilde{R} = \text{diag}(b_1, b_2). \quad (6)$$

Here $\tilde{K} = \mathbf{H}^{-1}K\mathbf{H}$ for some $\mathbf{H} \in \text{GL}_2(\mathbb{C})$; $\tilde{R} = \mathbf{H}^{-1}R\mathbf{H}$ is the **diagonal part** of $\mathbf{H}^{-1}R\mathbf{H}$.

Linear systems with irregular nonresonant singularities. Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).

$$Y' = \left(\frac{K}{z^2} + \frac{R}{z} + N + O(z) \right) Y \quad (5)$$

is generically not analytically equivalent to its formal normal form

$$\tilde{Y}' = \left(\frac{\tilde{K}}{z^2} + \frac{\tilde{R}}{z} \right) \tilde{Y}, \quad \tilde{K} = \text{diag}(\lambda_1, \lambda_2), \quad \tilde{R} = \text{diag}(b_1, b_2) : \quad (6)$$

for generic (5) the **normalizing series** $\hat{H}(z)$ **diverges**.

There exists a covering $\mathbb{C}^* = S_0 \cup S_1$ by two sectors with vertex 0 and **analytic** functions $H_j : S_j \cap D_r \rightarrow \text{GL}_2(\mathbb{C})$, $H_j \in C^\infty(\overline{S}_j \cap D_r)$, s.t. $Y = H_j(z) \tilde{Y}$: (5) \mapsto (6).

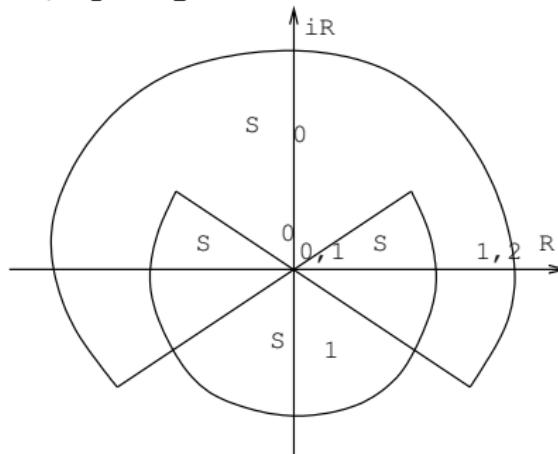
The matrix functions H_j are **unique** up to left multipl. by const diagonal matrices.

NF (6) has **canonical solution basis**, fund. matr. $W(z) = \text{diag}(\tilde{y}_1(z), \tilde{y}_2(z))$.

$X^j(z) := H_j(z)W(z)$ are **canonical sectorial solution bases** for system (5) in S_j .

Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).

Example. Let $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 - \lambda_2 < 0$.



On intersect. component $S_{j,j+1}$ two canonical solution bases $X^0(z)$, $X^1(z)$ of (5).

$$X^1(z) = X^0(z)C_0 \text{ on } S_{0,1}; \quad X^0(z)\exp(2\pi i \tilde{R}) = X^1(z)C_1 \text{ on } S_{1,2} \quad (7)$$

C_0 , C_1 **Stokes matrices. Unipotent**; C_0 is **upper-triangular**, C_1 is **lower-triang.**

Theorem. (5) is **analytically** \simeq to form. norm. form (6) $\Leftrightarrow C_0 = C_1 = Id$;
(5) \simeq (5)' anal. $\Leftrightarrow (6) = (6)', (C'_0, C'_1) = D(C_0, C_1)D^{-1}$ for some diag. matr. D .

Linear systems on $\overline{\mathbb{C}}$. Monodromy–Stokes data.

$$Y' = \left(\frac{K}{z^2} + \frac{R}{z} + N \right) Y, \quad K, R, N \in \text{End}(\mathbb{C}^2), \quad (8)$$

where each one of the matrices K and N at $0, \infty$ has **distinct real eigenvalues**.

Fix a $z_0 \in S_0$, e.g., $z_0 = 1$. Let $M : \mathbb{C}^2 \times \{z_0\} \rightarrow \mathbb{C}^2 \times \{z_0\}$ - **monodromy**.

In the sector S_0 two fund. solution matrices $X^{0,0}(z)$, $X^{0,\infty}(z)$: from 0 and ∞ .
Their 4 columns $f_{10}(z)$, $f_{20}(z)$, $f_{1\infty}(z)$, $f_{2\infty}(z)$ are solutions of (8).

$\pi : \mathbb{C}^2 \setminus \{0\} \rightarrow \mathbb{CP}^1 = \overline{\mathbb{C}}$ tautological projection.

$$q_{kp} := \pi(f_{kp}(z_0)) \in \mathbb{CP}^1 = \overline{\mathbb{C}}, \quad q := (q_{10}, q_{20}, q_{1\infty}, q_{2\infty}) \in \overline{\mathbb{C}}^4.$$

$(q, M) \simeq (q', M')$:= if there exists an $H \in \text{GL}_2(\mathbb{C})$, $H(q) = q'$, $H^{-1}M'H = M$.

$[q, M] = (q, M) / \simeq :=$ **the monodromy–Stokes data**.

Definition. A family of systems (8) is **isomonodromic**, if $[q, M] = \text{const}$.

Method of proof of Theorem A (i.e., reduction to small ω).

$$Y' = \left(\frac{\text{diag}(-\mu, 0)}{z^2} + \frac{R}{z} + \text{diag}(-\mu, 0) \right) Y, \quad R = \begin{pmatrix} -\ell & -\frac{1}{2\omega} \\ \frac{1}{2\omega} & 0 \end{pmatrix} \quad (\text{Jos})$$

lie in the **4-dimensional** family of **normalized \mathbb{R}_+ -Jimbo type linear systems**:

$$Y' = \left(\frac{\tau}{z^2} G \begin{pmatrix} -\frac{1}{2} & 0 \\ 0 & 0 \end{pmatrix} G^{-1} + \frac{1}{z} \begin{pmatrix} -\ell & -R_{21} \\ R_{21} & 0 \end{pmatrix} + \tau \begin{pmatrix} -\frac{1}{2} & 0 \\ 0 & 0 \end{pmatrix} \right) Y, \quad \tau \in \mathbb{R}_+, \quad (\mathbf{J}(\mathbb{R}_+))$$

K, R, N are real 2×2 -matrices, $R_{21} > 0$, $\ell \in \mathbb{R}$,

where $G \in \text{SL}_2(\mathbb{R})$, $G^{-1}RG = \begin{pmatrix} -\ell & * \\ * & 0 \end{pmatrix}$; the elements $*$ are arbitrary.

Family $\mathbf{J}(\mathbb{R}_+)$ is foliated by **isomonodromic families** parametrized by τ , obtained from well-known **Jimbo isomonodromic families** via variable changes.

In isom. families $\ell \equiv \text{const}$, and $w(\tau) := -\frac{R_{12}(\tau)}{\tau K_{12}(\tau)}$ satisfies **Painlevé 3 equation**:

$$w'' = \frac{(w')^2}{w} - \frac{w'}{\tau} + w^3 - 2\ell \frac{w^2}{\tau} - \frac{1}{w} + (2\ell - 2) \frac{1}{\tau} \quad (\text{P3})$$

Method of proof of Theorem A (i.e., reduction to small ω).

Key argument 1. Systems \mathbf{Jos} correspond to **1st order poles with $\text{res}=1$** of solutions $w(\tau) := -\frac{R_{12}(\tau)}{\tau K_{12}(\tau)}$ of P3: $K_{12} = 0$ and $R_{12} \neq 0$ on \mathbf{Jos} .

$\Rightarrow \mathbf{Jos}$ is a **local cross-section** to the **isomonodromic foliation** of $\mathbf{J}(\mathbb{R}_+)$.

$\Sigma_\ell := \{\text{systems in } \mathbf{J}(\mathbb{R}_+) \text{ with trivial monodromy and given } \ell \in \mathbb{Z}\}.$

Key argument 2. Σ_ℓ is a 2-dim. submanifold foliated by isomonodromic leaves.

With **submersive** projection $\mathcal{R} : \Sigma_\ell \rightarrow \mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$ constant along the leaves.

\mathcal{R} is the **cross-ratio** of $(q_{10}, q_{20}, q_{1\infty}, q_{2\infty})$; an **analytic invariant** of lin. system.

$\text{Constr}_\ell := \Sigma_\ell \cap \mathbf{Jos} = \mathbf{constrictions}$ with $B = \ell\omega$;

Non-trivial fact: $\mathcal{R}(\text{Constr}_\ell)$ lies in \mathbb{R} : does not contain ∞ .

Corollary of 1 and 2. Constr_ℓ is **local cross-section** to isomon. foliation of Σ_ℓ

\Rightarrow each component \mathcal{C} in Constr_ℓ is **1-to-1 parametr.** by interval $(a, b) = \mathcal{R}(\mathcal{C})$.

$$\mathcal{R} := \frac{(q_{10} - q_{1\infty})(q_{20} - q_{2\infty})}{(q_{10} - q_{2\infty})(q_{20} - q_{1\infty})}.$$

For each component \mathcal{C} in $Constr_\ell$ one has

$\mathcal{R} : \mathcal{C} \rightarrow \mathcal{R}(\mathcal{C}) = (a, b) \subset \mathbb{R}$ **is an analytic diffeomorphism.**

The **inverse**: $(\mathcal{R}|_{\mathcal{C}})^{-1} : x \in (a, b) \mapsto C(x) \in \mathcal{C}$.

Theorem. For every $c \in \{a, b\} \setminus \{0\}$ there exists a sequence $x_k \in (a, b)$, $x_k \rightarrow c$, such that $\omega_k := \omega(C(x_k)) \rightarrow 0$.

This allows to **deform** analytically a **ghost constriction** (if it exists) to another one, with **arbitrarily small** ω .

Open problems

- 'Key argument 1' means that if one can obtain constriction points via poles of a solution $w(\tau)$ of Painlevé 3

$$w'' = \frac{(w')^2}{w} - \frac{w'}{\tau} + w^3 - 2\ell \frac{w^2}{\tau} - \frac{1}{w} + (2\ell - 2) \frac{1}{\tau}.$$

What real solutions have an infinite lattice of simple poles with residue 1 converging to $+\infty$?

(It is known that Painlevé 3 of the above form has a one-dimensional family of Bessel solutions and recent numerical experience has shown that their small deformations have an infinite lattice of poles too.)

- For what ℓ Painlevé 3 has solutions with no real poles, (smth like the tronquée solutions)?

Open problems

- **Theorem 2(Buchstaber-Glutsyuk)** *A point in the parameter space of the Josephson system lies in the boundary of a phase-lock area \iff the corresponding Josephson system monodromy either has Jordan cell type, or is the identity.*
So 'Key argument 1' works for the boundaries as well. Calculate improved asymptotics for boundaries.
- Study geometry of the three-dimensional phase-lock area portrait of family.
- Study geometry of phase-lock areas for generalized Josephson systems.