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Plan

Plan of the talk:
Rotation number, phase-lock areas.
Josephson effect and dynamical system modeling it.
Properties of phase-lock areas.
Main results: theorems A and B.
Ideas of the theorem A proof: application of isomonodromic deformations
and Paineleve 3 equation.
Some open problems.

Alexey Glutsyuk and YB
On families of constrictions in model of overdamped Josephson junction and
Painlevé 3 equation
https://arxiv.org/abs/2011.07839v4
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Circle homeomorphisms and rotation number

S1 := R/2πZ oriented circle; f : S1 → S1 a positive homeomorphism.

Definition of the Poincaré rotation number ρ(f ) ∈ R/Z.
H.Poincaré. Sur les courbes définies par les équations
différentialles. J. Math. Pures App. I 167 (1885).

π : R→ S1 := the universal covering projection: x 7→ x(mod 2π).
F := a continuous lifting of f to R.
Defined up to postcomposition
with translation by 2πm, m ∈ Z.

R

π
��

F
// R

π
��

S1 f
// S1

Henri Poincaré (1854–1912)

ρ(F )(x) := limk→+∞
F k (x)
2πk .

The limit exists and is independent ! of x .
ρ(f ) := ρ(F )(modZ).
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Rotation numbers: first examples

ρ(F )(x) := limk→+∞
F k (x)
2πk .

ρ(f ) := ρ(F )(modZ).

1) f (x) = x + 2πa => ρ(f ) = a(modZ) for every a ∈ R.

2) f (x) has a fixed point <=> ρ(f ) = 0(modZ).

3) f (x) has a q-periodic point <=> ρ(f ) = p
q (modZ) for some p ∈ Z.

A family f = f (x , u) of positive circle homeomorphisms S1 → S1, x 7→ f (x , u);
u := the parameter; u lies in a domain U ⊂ Rn.

The rotation number function: ρ(u) := ρ(f (., u)): U → S1 = R/Z.

Main definition (a version of Arnold tongues)
Phase-lock areas: subsets {u ∈ U | ρ(u) = r} ⊂ U with non-empty interiors.
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Example. Consider a family f (x , u) of circle diffeomorphisms.
Let for some u0 ∈ U the diffeomorphism fu0 (x) = f (x , u0)
have a q-periodic point x0 with (f q

u0
)′(x0) 6= 1. Then

ρ(u0) = p
q for some p = p(u0) ∈ Z;

L p
q

:= {u ∈ U | ρ(u) = p
q } is a phase-lock area.

This example illustrates a classical fact: stability of the above q-periodic point.

Rotation number and Poincaré map of flow on 2-torus
Differential equation on 2-torus T2 := R2

(φ,τ)/2πZ2{
φ̇ = f (φ, τ)
τ̇ = 1

f ∈ C1, f (φ+ 2π, τ) = f (φ, τ + 2π) = f (φ, τ).

Solution φ = φ(τ) ∈ R. Uniquely defined by φ0 = φ(0).
If φ(τ) is a solution, then φ(τ + 2π) is also a solution.
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Flow on torus{
φ̇ = f (φ, τ)
τ̇ = 1

f ∈ C1, f (φ+ 2π, τ) = f (φ, τ + 2π) = f (φ, τ).

Rotation number of flow:
ρ := lim

k→+∞

φ(2πk)
2πk ∈ R.

The Poincaré map of the circle S1 = Rφ/2πZ = S1
φ × {0} ⊂ T2

(φ,τ):

h : S1
φ → S1

φ, (φ(0), 0) 7→ (φ(2π), 0).

Properties of the rotation number ρ:
1) Independent on choice of the initial condition φ0 = φ(0).
2) the rotation number of flow mod Z, equals
the rotation number of the Poincaré map.
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Phase-lock areas in family of dynamical systems on 2-torus{
φ̇ = f (φ, τ ; u)
τ̇ = 1

; u ∈ U ⊂ Rn is the parameter. (B)

The rotation number function ρ : U → R:
ρ(u) := lim

k→+∞

φ(2πk; u)
2πk ∈ R.

Phase-lock areas: subsets {u ∈ U | ρ(u) = r} ⊂ U with non-empty interiors.

Example. Let for u = u0 (B) have an attracting (or repelling) periodic orbit
(<=> h have attracting (repelling) q-periodic point). Then

Period of the orbit = 2πq, q ∈ Z; ρ(u0) = p
q ∈ Q for some p ∈ Z;

L p
q

:= {u ∈ U | ρ(u) = p
q } is a phase-lock area.

Goal: study phase-lock areas in a model of Josephson junction
(superconductivity).
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Superconductivity
Phenomenon, when the electric resistance becomes exactly zero.
Occurs in some metals at temperature T < Tcrit .
The resistance jumps to zero, once T becomes less than Tcrit .

The Josephson effect
Let two superconductors S1, S2 be separated
by a very narrow dielectric
or a very narrow metal layer,
thickness ≤ 10−5cm (<< distance in Cooper pair).
There exists a supercurrent IS through the dielectric.

   S

S
      1

S
    2

I

Supercurrent is carried by coherent Cooper pairs of electrons.

Born in UK in 1940.
Nobel Prize in 1973
for “the discovery of

tunnelling supercurrents”.
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Josephson effect
Quantum mechanics. State of Sj : wave function Ψj = |Ψj |e iχj ;

χj are the phases, φ := χ1 − χ2 is the phase difference.

The first Josephson relation: IS = Ic sinφ, Ic ≡ const.

Josephson voltage relation: V (t) = ~
2e φ̇.

General mathematical model

ε1
d2φ

dt2 + ε2
dφ
dt + sinφ = f (t); ε1, ε2 = const.

In physical works this equation is called the Langevin equation.

Our main, special "overdamped" case: ε1 = 0, ε2 = 1, f (t) = B + A cosωt.

dφ
dt = − sinφ+ B + A cosωt.
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dφ
dt = − sinφ+ B + A cosωt.

V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi (2004): the model is equivalent
to a family of dynamical systems on two-torus T2

(φ,τ) = R2/2πZ2, τ = ωt:{
φ̇ = 1

ω (− sinφ+ B + A cos τ)
τ̇ = 1

. (1)

Our main problem: Describe the rotation number ρ of the flow (1)
as a function on the space (B,A;ω) with fixed ω > 0.

Phase-lock area:= a level set {ρ = r} if it has a non-empty interior.

Quantization effect (Buchstaber, Karpov, Tertychnyi, 2010):
phase-lock areas exist only for integer rotation values.
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{
φ̇ = 1

ω (− sinφ+ B + A cos τ)
τ̇ = 1

. (1)

Many works concern systems (1)

A subfamily of these systems occurred in the work by Yu.S.Ilyashenko,
J.Guckenheimer (2001) from the slow-fast system point of view.

In a paper by R. Foote, M. Levi, S. Tabachnikov (2013) it was noticed that
family (1) arises

in the investigation of some systems with non-holonomic connections.

In Prytz planimeter model and in cinematics of bicycle moving

Analogous equation describes the observed direction to a given point at infinity
while moving along a geodesic in the hyperbolic plane.
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Boundaries of phase-lock areas
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Boundaries of phase-lock areas

1). There exist functions ψr ,±(A) analytic in A ∈ R such that
the boundary ∂Lr is the union of their graphs:

∂Lr = ∂+Lr ∪ ∂−Lr , ∂±Lr := {B = ψr ,±(A)}.

ψr ,±(A) have asymptotics of Bessel type rω ± Jr (−A
ω ) + O( ln |A|

A ), as A→∞.

Observed by S.Shapiro, A.Janus, S.Holly (1964);
Confirmed numerically by V.M.Buchstaber. O.V.Karpov, S.I.Tertychnyi (2005).

Proved by A.V.Klimenko and O.L.Romaskevich (2014).
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2) Each Lr is an infinite chain (garland) of domains going to infinity,
separated by points of intersection ∂+Lr ∩ ∂−Lr .

Observed numerically by Buchstaber, Karpov, Tertychnyi.
Proved by Klimenko and Romaskevich (2014).

The separation points with A 6= 0 are called constriction points (constrictions).

The separation points of Lr with A = 0 exist for r 6= 0, are called growth points
and their abscissas Br satisfy the equation B2

r − r2ω2 = 1.

The phase-lock area L0 has no growth points; it intersects the B-axis by [−1, 1].

We present pictures of phase-lock areas for different values of ω. They are
symmetric with respect to coord. axes: (B,A) 7→ (−B,A); (B,A) 7→ (B,−A).

Taking into account these symmetries, we present only upper parts of the pictures.
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Phase-lock areas for f (t) = B + A cos ωt, ω = 2
Each phase-lock area Lr is an infinite chain (garland) of domains going to infinity,
separated by points of intersection ∂+Lr ∩ ∂−Lr .
The separation points with A 6= 0 are called constriction points (constrictions).
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Phase-lock areas for f (t) = B + A cos ωt, ω = 1

- infinitely many constrictions in every phase-lock area.
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Phase-lock areas for f (t) = B + A cos ωt,ω = 0.5

- infinitely many constrictions in every phase-lock areas.
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Phase-lock areas for f (t) = B + A cos ωt, ω = 0.3

- infinitely many constrictions in every phase-lock areas.
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Constrictions:= the separation points in Lr , r ∈ Z, with A 6= 0.

The constrictionsAr ,1,Ar ,2,Ar ,3, . . . with A > 0 are ordered by their A-coordinates.
.

Theorem 1 (quantization of constrictions) (Y.B., A.Glutsyuk): All the
constrictions Ar ,k lie in the line Λr := {B = rω} := the axis of the area Lr .

This is a confirmation of an experimental fact that was earlier discovered
in numerical simulations (Tertychnyi, Filimonov, Kleptsyn, Schurov, 2011).

Previous results (Filimonov, Glutsyuk, Kleptsyn, Schurov, 2014) Each
constriction Ar ,k lies in a line {B = `ω}, where ` ∈ [0, r ] and ` ≡ r(mod2Z).

Theorem 1 holds for ω ≥ 1.
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Definition. A priori possible types of constrictions:

Positive Negative Neutral

Theorem 2 (Y.B., A.Glutsyuk). Each constriction is positive.

Known: For every constriction ` := B
ω ∈ Z

(Filimonov, Glutsyuk, Kleptsyn, Schurov, 2014).

Definition. Ghost constriction:= a constriction satisfying one of two conditions:
- either the rotation number ρ 6= `,
- or the constriction is non-positive.

Theorems 1 and 2 state that there are no ghost constrictions.
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Plan of proof of main results: no ghost constrictions

Known properties of constrictions: ` := B
ω ∈ Z, ` ∈ [0, ρ], ` ≡ ρ(mod 2).

Ghost constriction:= either non-positive, or |`| < |ρ|

Theorem A. For every given ` ∈ Z each constriction (`ω,A;ω) can be deformed
to another constriction of the same type, `, ρ, with arbitrarily small ω.

=> Ghost constrictions are deformed to ghost constrictions with small ω.

Proof is based on equivalent description of the model by complex linear
equations on C and studying their isomonodromic deformations.

Theorem B. For every given ` ∈ Z and every ω > 0 small enough there are
no ghost constrictions with B = `ω.

Theorem B is proved by methods of theory of slow-fast families of dynam. systems.
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Equivalent description of model by linear systems on C.

dφ
dτ = 1

ω
(sinφ+ B + A cos τ) = sinφ

ω
+ `+ 2µ cos τ. (2)

V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi, 2004. The variable changes

z := e iτ , Φ := ie iφ

transforms (2) to Riccati equation

dΦ
dz = z−2((`z + µ(z2 + 1))Φ + z

2ω (Φ2 + 1)). (3)

Φ(z) is a solution of (3) <=> Φ(z) = v
u (z), where Y = (u, v)(z) is a solution of

Y ′ =
(

diag(−µ, 0)
z2 + R

z + diag(−µ, 0)
)
Y , R =

(
−` − 1

2ω1
2ω 0

)
, (4)

In other words, (3) is the projectivization of (4).
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dφ
dτ = 1

ω
(sinφ+ B + A cos τ) = sinφ

ω
+ `+ 2µ cos τ. (2)

Y ′ =
(

diag(−µ, 0)
z2 + R

z + diag(−µ, 0)
)
Y , R =

(
−` − 1

2ω1
2ω 0

)
, (4)

The monodromy operator M of system (4).
Acts on its local solution space C2 = C2 × {z0} at z0 ∈ C∗
by analytic extension along counterclockwise circuit around 0.

Fact. (B,A;ω) is a constriction <=> (4) has trivial monodromy: M = Id .
D.A.Filimonov, A.G., V.A.Kleptsyn, I.V.Schurov, 2014.
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Linear systems with irregular nonresonant singularities.
Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).

Y ′ =
(
K
z2 + R

z + N + O(z)
)
Y , Y =

(
u
v

)
∈ C2, (5)

Germ at 0; K ,R,N ∈ Mat2(C), K has distinct eigenvalues λ1 6= λ2.

Then we say that 0 is irregular non-resonant singularity of Poincaré rank 1.

Two germs (5), (5)’ are analytically equivalent, if there exists a germ of
holomorphic GL2(C)-valued function H(z) such that Y = H(z)Ỹ sends (5) to (5)’.

(5)'(5)’ formally, if this holds for a formal invertible matrix power series Ĥ(z).

Theorem. System (5) is formally equivalent to a unique formal normal form

Ỹ ′ =
(
K̃
z2 + R̃

z

)
Ỹ , K̃ = diag(λ1, λ2), R̃ = diag(b1, b2). (6)

Here K̃ = H−1KH for some H ∈ GL2(C); R̃ = the diagonal part of H−1RH.
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Linear systems with irregular nonresonant singularities.
Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).

Y ′ =
(
K
z2 + R

z + N + O(z)
)
Y (5)

is generically not analytically equivalent to its formal normal form

Ỹ ′ =
(
K̃
z2 + R̃

z

)
Ỹ , K̃ = diag(λ1, λ2), R̃ = diag(b1, b2) : (6)

for generic (5) the normalizing series Ĥ(z) diverges.

There exists a covering C∗ = S0 ∪ S1 by two sectors with vertex 0 and analytic
functions Hj : Sj ∩Dr → GL2(C), Hj ∈ C∞(S j ∩Dr ), s.t. Y = Hj(z)Ỹ : (5) 7→(6).

The matrix functions Hj are unique up to left multipl. by const diagonal matrices.

NF (6) has canonical solution basis, fund. matr. W (z) = diag(ỹ1(z), ỹ2(z)).

X j(z) := Hj(z)W (z) are canonical sectorial solution bases for system (5) in Sj .
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Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).
Example. Let λ1, λ2 ∈ R, λ1 − λ2 < 0.

         1,2
 0

iR

R

   0S

     1 S

                        
                                    0,1S S

On intersect. component Sj,j+1 two canonical solution bases X 0(z), X 1(z) of (5).

X 1(z) = X 0(z)C0 on S0,1; X 0(z) exp(2πi R̃) = X 1(z)C1 on S1,2 (7)

C0, C1 Stokes matrices. Unipotent; C0 is upper-triangular, C1 is lower-triang.

Theorem. (5) is analytically ' to form. norm. form (6) <=> C0 = C1 = Id ;
(5)'(5)’ anal. <=> (6)=(6)’, (C ′0,C ′1) = D(C0,C1)D−1 for some diag. matr. D.
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Linear systems on C. Monodromy–Stokes data.

Y ′ =
(
K
z2 + R

z + N
)
Y , K ,R,N ∈ End(C2), (8)

where each one of the matrices K and N at 0, ∞ has distinct real eigenvalues.

Fix a z0 ∈ S0, e.g., z0 = 1. Let M : C2 × {z0} → C2 × {z0} - monodromy.

In the sector S0 two fund. solution matrices X 0,0(z), X 0,∞(z): from 0 and ∞.
Their 4 columns f10(z), f20(z), f1∞(z), f2∞(z) are solutions of (8).

π : C2 \ {0} → CP1 = C tautological projection.

qkp := π(fkp(z0)) ∈ CP1 = C, q := (q10, q20, q1∞, q2∞) ∈ C4
.

(q,M) ' (q′,M ′) := if there exists an H ∈ GL2(C), H(q) = q′, H−1M ′H = M.

[q,M] = (q,M)/ ' := the monodromy–Stokes data.

Definition. A family of systems (8) is isomonodromic, if [q,M] = const.
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Method of proof of Theorem A (i.e., reduction to small ω).

Y ′ =
(

diag(−µ, 0)
z2 + R

z + diag(−µ, 0)
)
Y , R =

(
−` − 1

2ω1
2ω 0

)
(Jos)

lie in the 4-dimensional family of normalized R+-Jimbo type linear systems:

Y ′ =
(
τ

z2G
(
− 1

2 0
0 0

)
G−1 + 1

z

(
−` −R21
R21 0

)
+ τ

(
− 1

2 0
0 0

))
Y , τ ∈ R+,

(J(R+))
K ,R,N are real 2x2-matrices, R21 > 0, ` ∈ R,

where G ∈ SL2(R), G−1RG =
(
−` ∗
∗ 0

)
; the elements ∗ are arbitrary.

Family J(R+) is foliated by isomonodromic families parametrized by τ , obtained
from well-known Jimbo isomonodromic families via variable changes.
In isom. families ` ≡ const, and w(τ) := − R12(τ)

τK12(τ) satisfies Painlevé 3 equation:

w ′′ = (w ′)2

w − w ′
τ

+ w3 − 2`w
2

τ
− 1

w + (2`− 2) 1
τ

(P3)
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Method of proof of Theorem A (i.e., reduction to small ω).

Key argument 1. Systems Jos correspond to 1st order poles with res= 1 of
solutions w(τ) := − R12(τ)

τK12(τ) of P3: K12 = 0 and R12 6= 0 on Jos.

=> Jos is a local cross-section to the isomonodromic foliation of J(R+).

Σ` := {systems in J(R+) with trivial monodromy and given ` ∈ Z}.

Key argument 2. Σ` is a 2-dim. submanifold foliated by isomonodromic leaves.

With submersive projection R : Σ` → RP1 = R∪ {∞} constant along the leaves.

R is the cross-ratio of (q10, q20, q1∞, q2∞); an analytic invariant of lin. system.

Constr` := Σ` ∩ Jos = constrictions with B = `ω;
Non-trivial fact: R(Constr`) lies in R: does not contain ∞.

Corollary of 1 and 2. Constr` is local cross-section to isomon. foliation of Σ`

=> each component C in Constr` is 1-to-1 parametr. by interval (a, b) = R(C).
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R := (q10 − q1∞)(q20 − q2∞)
(q10 − q2∞)(q20 − q1∞) .

For each component C in Constr` one has

R : C → R(C) = (a, b) ⊂ R is an analytic diffeomorphism.

The inverse: (R|C)−1 : x ∈ (a, b) 7→ C(x) ∈ C.

Theorem. For every c ∈ {a, b} \ {0} there exists a sequence xk ∈ (a, b), xk → c,
such that ωk := ω(C(xk))→ 0.

This allows to deform analytically a ghost constriction (if it exists)
to another one, with arbitrarily small ω.
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Open problems

’Key argument 1’ means that if one can obtain constriction points via poles
of a solution w(τ) of Painlevé 3

w ′′ = (w ′)2

w − w ′
τ

+ w3 − 2`w
2

τ
− 1

w + (2`− 2) 1
τ
.

What real solutions have an infinite lattice of simple poles with residue 1
converging to +∞?
(It is known that Painlevé 3 of the above form has a one-dimentional family
of Bessel solutions and recent numerical experience has shown that their
small deformations have an infinite lattice of poles too.)

For what ` Painlevé 3 has solutions with no real poles, (smth like the
tronquée solutions)?
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Open problems

Theorem 2(Buchstaber-Glutsyuk) A point in the parameter space of the
Josephson system lies in the boundary of a phase-lock area ⇐⇒ the
corresponding Josepson system monodromy either has Jordan cell type, or is
the identity.
So ’Key argument 1’ works for the boundaries as well. Calculate improved
asymptotics for boundaries.

Study geometry of the three-dimensional phase-lock area portrait of family.

Study geometry of phase-lock areas for generalized Josephson systems.
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