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Plan of the talk:

Rotation number, phase-lock areas.

Josephson effect and dynamical system modeling it.
Properties of phase-lock areas.

Main results: theorems A and B.

Ideas of the theorem A proof: application of isomonodromic deformations
and Paineleve 3 equation.

@ Some open problems.

Alexey Glutsyuk and YB

On families of constrictions in model of overdamped Josephson junction and
Painlevé 3 equation

https://arxiv.org/abs/2011.07839v4
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Circle homeomorphisms and rotation number

S' .= R/2xZ oriented circle; f:S' — S* a positive homeomorphism.

Definition of the Poincaré rotation number p(f) € R/Z.
H.Poincaré. Sur les courbes définies par les équations
différentialles. J. Math. Pures App. | 167 (1885).

7 : R — S! := the universal covering projection: x — x(mod 27).
F := a continuous lifting of f to R.
Defined up to postcomposition

with translation by 2mm, m € 7Z.

R——R
T F (x)
p(F)(x) = limys o0 57 TFJ, ﬂl
51 4'() 51
The limit exists and is independent ! of x.
p(f) := p(F)(mod Z). Henri Poincaré (1854-1912)
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Rotation numbers: first examples

k
p(F)(x) = limg— 400 FzT(Xk)

p(f) := p(F)(mod Z).

1) f(x)=x+2wa => p(f)=a(modZ) for every a € R.
2) f(x) has a fixed point <=> p(f) = 0(modZ).
3) f(x) has a g-periodic point <=> p(f) = £(modZ) for some p € Z.

A family f = f(x, u) of positive circle homeomorphisms S! — S, x — f(x, u);
u := the parameter; u lies in a domain U C R".

The rotation number function: p(u) := p(f(.,u)): U — S' =R/Z. J
Main definition (a version of Arnold tongues)
Phase-lock areas: subsets {u € U | p(u) = r} C U with non-empty interiors. J
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Example. Consider a family f(x, u) of circle diffeomorphisms.
Let for some ug € U the diffeomorphism f,,(x) = f(x, up)
have a g-periodic point xo with (£7)'(x0) # 1. Then

p(uwo) = g for some p = p(up) € Z;

L% ={ue U] plu) = g} is a phase-lock area.

This example illustrates a classical fact: stability of the above g-periodic point.

Rotation number and Poincaré map of flow on 2-torus
Differential equation on 2-torus T? := R(2¢_T)/27TZ2
(_
{d) 1((;577—) fecCt, flop+2n,7)="F(p,7+2m)="r(¢,7).
T =

Solution ¢ = ¢(7) € R. Uniquely defined by ¢o = ¢(0).
If ¢(7) is a solution, then ¢(7 + 27) is also a solution.
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Flow on torus

=1

{(ZB:%’T) feCl, f(¢+2m1)="f(¢,7+2r)=1(4,7).

Rotation number of flow:

p:= lim $(27k)

R.
k—+oo 2wk €

The Poincaré map of the circle S' = R, /27Z = S} x {0} C ’H‘@J):

h: Sy — Sg, (6(0),0) — (¢(27),0).

Properties of the rotation number p:

1) Independent on choice of the initial condition ¢g = ¢(0).
2) the rotation number of flow mod Z, equals

the rotation number of the Poincaré map.

Y.Bibilo, A.A.Glutsyuk Application of Painlevé 3 equations to dynamical sysi



Phase-lock areas in family of dynamical systems on 2-torus

o _
{¢ 1(¢’T' u) ; u€ UCR"is the parameter. (B)
T =
The rotation number function p: U — R:
. ¢(2mk; u)
p(u) = lim ———

eR.
k—+o00 2wk

Phase-lock areas: subsets {u € U | p(u) = r} C U with non-empty interiors. )

Example. Let for u = uy (B) have an attracting (or repelling) periodic orbit
(<=> h have attracting (repelling) g-periodic point). Then

Period of the orbit =27q, q € Z; p(ug) = g € Q for some p € Z;

Le := {ue U] p(u) = S} is a phase-lock area.

Goal: study phase-lock areas in a model of Josephson junction
(superconductivity).
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Superconductivity

Phenomenon, when the electric resistance becomes exactly zero.
Occurs in some metals at temperature T < Tt

The resistance jumps to zero, once T becomes less than T_;

The Josephson effect

Let two superconductors Sy, S, be separated

by a very narrow dielectric

or a very narrow metal layer,

thickness < 10~5cm (<< distance in Cooper pair).
There exists a supercurrent /s through the dielectric.

S 1 2

? Born in UK in 1940.
LT

Nobel Prize in 1973
5 S for “the discovery of

tunnelling supercurrents”.
Supercurrent is carried by coherent Cooper pairs of electrons.
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Josephson effect

Quantum mechanics. State of S;: wave function V; = |W;|e/;

X; are the phases, ¢ := x1 — x2 is the phase difference.

The first Josephson relation: /s = /.sin ¢, I. = const. )
Josephson voltage relation: V/(t) = L¢. |

General mathematical model

2
c:;t(f —1—5262(;5 +sin¢g = f(t); e1,e2 = const.

In physical works this equation is called the Langevin equation.

Our main, special "overdamped" case: ¢; =0, e, =1, f(t) = B+ Acoswt.

% = —sin¢g + B+ Acoswt.

= = = — S Neu(
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d
7(5 = —sin¢g + B+ Acoswt.

V.M.Buchstaber, 0.V.Karpov, S.l.Tertychnyi (2004): the model is equivalent
to a family of dynamical systems on two-torus T%qs,f) =R2?/2772%, T = wt:

b= L(—sing+ B+ AcosT) (1)
=1 '

Our main problem: Describe the rotation number p of the flow (1)

as a function on the space (B, A; w) with fixed w > 0. J

Phase-lock area:= a level set {p = r} if it has a non-empty interior.

Quantization effect (Buchstaber, Karpov, Tertychnyi, 2010):

phase-lock areas exist only for integer rotation values. J
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¢=21(—sing+ B+ AcosT)
. : (1)
T=1

Many works concern systems (1)

A subfamily of these systems occurred in the work by Yu.S.llyashenko,
J.Guckenheimer (2001) from the slow-fast system point of view. J

In a paper by R. Foote, M. Levi, S. Tabachnikov (2013) it was noticed that
family (1) arises

in the investigation of some systems with non-holonomic connections. )

In Prytz planimeter model and in cinematics of bicycle moving J

Analogous equation describes the observed direction to a given point at infinity
while moving along a geodesic in the hyperbolic plane. J
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Boundaries of phase-lock areas




Boundaries of phase-lock areas

1). There exist functions 1, +(A) analytic in A € R such that
the boundary 0L, is the union of their graphs:

oL, =0, L, UO_L,, Orl, :={B=1,+(A)}.

In |A|
A

¥,,+(A) have asymptotics of Bessel type rw & J,(—4) + O( ), as A — oo.

Observed by S.Shapiro, A.Janus, S.Holly (1964);
Confirmed numerically by V.M.Buchstaber. 0.V.Karpov, S.l.Tertychnyi (2005).

Proved by A.V.Klimenko and O.L.Romaskevich (2014).
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2) Each L, is an infinite chain (garland) of domains going to infinity,
separated by points of intersection 0. L, NO_L,. }

Observed numerically by Buchstaber, Karpov, Tertychnyi.
Proved by Klimenko and Romaskevich (2014).

The separation points with A # 0 are called constriction points (constrictions).

The separation points of L, with A = 0 exist for r 75 0, are called growth points
and their abscissas B, satisfy the equation B? — r’w? = 1. J

The phase-lock area Ly has no growth points; it intersects the B-axis by [—1,1]. J

We present pictures of phase-lock areas for different values of w. They are
symmetric with respect to coord. axes: (B, A) — (=B, A); (B, A) — (B, —A). J

Taking into account these symmetries, we present only upper parts of the pictures.
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Phase-lock areas for f(t) = B+ Acoswt, w =2

Each phase-lock area L, is an infinite chain (garland) of domains going to infinity,
separated by points of intersection 0, L, N 0_L,.
The separation points with A # 0 are called constriction points (constrictions).

period=3.14159 omega=2.

15

-
o

dimensionless sine amplitude
ul
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Phase-lock areas for f(t) = B+ Acoswt, w =1

- infinitely many constrictions in every phase-lock area.
period=6.28319 omega=1.

8

dimensionless sine amplitude

dimensionless dc bias
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Phase-lock areas for f(t) = B+ Acoswt,w = 0.5

- infinitely many constrictions in every phase-lock areas.

Y.Bibilo, A.A.Glutsyuk

dimensionless sine amplitude

w
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o

period=12.5664 omega=0.5
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Phase-lock areas for f(t) = B+ Acoswt, w = 0.3

- infinitely many constrictions in every phase-lock areas.
period=20.944 omega=0.3

= N w

dimensionless sine amplitude

o

dimensionless dc bias

Y.Bibilo, A.A.Glutsyuk Application of Painlevé 3 equations to dynamical sysi



Constrictions:= the separation points in L,, r € Z, with A # 0.

The constrictions A, 1, A, 2, Ar 3, ... with A > 0 are ordered by their A-coordinates.

Theorem 1 (quantization of constrictions) (Y.B., A.Glutsyuk): A/l the
constrictions A, i lie in the line A, :== {B = rw} := the axis of the area L,. J

This is a confirmation of an experimental fact that was earlier discovered
in numerical simulations (Tertychnyi, Filimonov, Kleptsyn, Schurov, 2011).

Previous results (Filimonov, Glutsyuk, Kleptsyn, Schurov, 2014) Each
constriction A, x lies in a line {B = w}, where £ € [0, r] and ¢ = r(mod2Z).

Theorem 1 holds for w > 1.
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Definition. A priori possible types of constrictions:

Positive Negative Neutral

Theorem 2 (Y.B., A.Glutsyuk). Each constriction is positive. )

Known: For every constriction ¢ := g ez
(Filimonov, Glutsyuk, Kleptsyn, Schurov, 2014).

Definition. Ghost constriction:= a constriction satisfying one of two conditions:
- either the rotation number p # /,
- or the constriction is non-positive.

Theorems 1 and 2 state that there are no ghost constrictions.
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Plan of proof of main results: no ghost constrictions

Known properties of constrictions: £:= £ € Z, £ € [0, p], £ = p(mod 2).

Ghost constriction:= either non-positive, or [¢| < |p| )

Theorem A. For every given ¢ € Z each constriction (4w, A; w) can be deformed
to another constriction of the same type, ¢, p, with arbitrarily small w. J

=> Ghost constrictions are deformed to ghost constrictions with small w.

Proof is based on equivalent description of the model by complex linear
equations on C and studying their isomonodromic deformations. J
Theorem B. For every given ¢ € Z and every w > 0 small enough there are

no ghost constrictions with B = {w. J

Theorem B is proved by methods of theory of slow-fast families of dynam. systems.
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Equivalent description of model by linear systems on C.

d 1 i
¢ = —(sing+ B+ AcosT) = sin ¢
dr  w w

V.M.Buchstaber, O.V.Karpov, S.l.Tertychnyi, 2004. The variable changes

+ ¢+ 2ucosT. 2)

transforms (2) to Riccati equation

do

=2 (2 4+ u(F + )0+ i(qﬂ +1)). (3)

®(z) is a solution of (3) <=> ®(z) = {(z), where Y = (u, v)(z) is a solution of

z z

+diag(—u,0)) Y, R=<_f _gt) (4)

2w

In other words, (3) is the projectivization of (4).
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do 1
i
Y/ — (diag(_ua 0)

R . —/ —%
= +;+d|ag(—u,0) Y, R= i OW , 4

sin¢+B+Acosr):¥+E+2ucosr. (2)

The monodromy operator M of system (4).
Acts on its local solution space C2 = C2 x {z} at z € C*
by analytic extension along counterclockwise circuit around 0.

Fact. (B, A;w) is a constriction <=> (4) has trivial monodromy: M = /d.
D.A.Filimonov, A.G., V.A.Kleptsyn, 1.V.Schurov, 2014.
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Linear systems with irregular nonresonant singularities.
Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).

K R
Y/—<2++N+O(z))Y, Y—(“)e@, (5)
V4 y4 v
Germ at 0; K,R,N € Maty(C), K has distinct eigenvalues \; # \,.

Then we say that 0 is irregular non-resonant singularity of Poincaré rank 1. )

Two germs (5), (5)' are analytically equivalent, if there exists a germ of
holomorphic GLy(C)-valued function H(z) such that Y = H(z)Y sends (5) to (S)J

(5)=(5)" formally, if this holds for a formal invertible matrix power series i-\l(z) J

Theorem. System (5) is formally equivalent to a unique formal normal form

y' = (K + f) Y, K = diag(\1, ), R = diag(by, bo). (6)

Z2

Here K = H1KH for some H € GL,(C); R = the diagonal part of H-!RH.

v,
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Linear systems with irregular nonresonant singularities.
Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).

K R
Y’_(Z2+Z+N+O(z)>Y (5)
is generically not analytically equivalent to its formal normal form
o (K R\e - _
Yi=| 5 +—-|Y, K=diag(\1,\2), R=diag(bs, b2) : (6)
V4 zZ

for generic (5) the normalizing series /t/(z) diverges.

There exists a covering C* = 5o U S; by two sectors with vertex 0 and analytic
functions H; : S;N D, — GL>(C), H; € C=(5;NDy), s.t. Y = H;j(z)Y: (5)—(6).

The matrix functions H; are unique up to left multipl. by const diagonal matrices.

NF (6) has canonical solution basis, fund. matr. W(z) = diag(ya(2), ¥2(2))-

XJ(z) := H;j(z)W(z) are canonical sectorial solution bases for system (5) in S;.

= =7

Y.Bibilo, A.A.Glutsyuk Application of Painlevé 3 equations to dynamical sysi



Classical theory (Birkhoff, Jurkat, Lutz, Peyerimhoff, Balser, Sibuya).
Example. Let A1, A2 € R, A\; — X2 < 0.

iR

On intersect. component S; ;1 two canonical solution bases X°(z), X(z) of (5).
X'(2) = X°(2)Go on So1; X°(2) exp(2miR) = X'(2)C; on S12 (7)

Co, C; Stokes matrices. Unipotent; (C is upper-triangular, C; is lower-triang.

Theorem. (5) is analytically ~ to form. norm. form (6) <=> G, = G = [d;
(5)~(5)" anal. <=> (6)=(6)", (C}, C{) = D(Co, C1)D~? for some diag. matr. D.

A
— —r = — SaRew(
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Linear systems on C. Monodromy-Stokes data.

K R
Yy = (2 + =+ N) Y, K,R,N € End(C?), (8)
V4 z
where each one of the matrices K and N at 0, co has distinct real eigenvalues.

Fixa z € Sp, e.g., 20 =1. Let M : C%2 x {z} — C? x {z} - monodromy. )

In the sector Sy two fund. solution matrices X%%(z), X%>°(z): from 0 and oo.
Their 4 columns fio(z), f20(2), fico(2), frco(2) are solutions of (8). J

7 : C?\ {0} — CP* = C tautological projection.

— —4
Qo = 7(fip(20)) € CP* =T, q := (qu0, G20, G100; G200) € C .
(g, M) ~(g',M’) := if there exists an H € GL»(C), H(q) = q', H *M'H = M.
g, M] = (g, M)/ ~ := the monodromy—Stokes data.

Definition. A family of systems (8) is isomonodromic, if [q, M] = const. )
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Method of proof of Theorem A (i.e., reduction to small w).

diag(—,0) R —! =5
vi— (SO L R dagn0) v R= (30 F) wod

2w

lie in the 4-dimensional family of normalized R -Jimbo type linear systems:

1 1
b (T (% g L=t —Ra), (-} 0
Y‘(zzG(o 0>G +Z<R21 o )T o o))" TERs
(J(R4))
K, R, N are real 2x2-matrices, Rp; >0, £ € R,

{ %

where G € SLy(R), G'RG = <_* O) ; the elements = are arbitrary.

Family J(R,) is foliated by isomonodromic families parametrized by 7, obtained
from well-known Jimbo isomonodromic families via variable changes.

In isom. families £ = const, and w(7) := *5@(2) satisfies Painlevé 3 equation:
12 ! 2 1 1

W U T B ) e eV ¢ (P3)
w T T W T
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Method of proof of Theorem A (i.e., reduction to small w).

Key argument 1. Systems Jos correspond to 1st order poles with res= 1 of

solutions w(7) := —552((77)) of P3: K1 =0 and Ry # 0 on Jos.

=> Jos is a local cross-section to the isomonodromic foliation of J(R. ).

¥, = {systems in J(R;) with trivial monodromy and given ¢ € Z}.

Key argument 2. Y, is a 2-dim. submanifold foliated by isomonodromic leaves.

With submersive projection R : ¥, — RP* = RU {co} constant along the leaves.

R is the cross-ratio of (g10, 920, G100, G200 ); an analytic invariant of lin. system.

Constry :== Yy, N Jos = constrictions with B = {w;
Non-trivial fact: R(Constr,) lies in R: does not contain co.

Corollary of 1 and 2. Constr, is local cross-section to isomon. foliation of ¥,

=> each component C in Constry is 1-to-1 parametr. by interval (a, b) = R(C).
v
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(CI10 - qloo)(qZO - q2oo)

R = .
(910 — 9200) (G20 — G10)

For each component C in Constr; one has

R:C— R(C)=(a,b) CR is an analytic diffeomorphism.

The inverse: (R|c)™!: x € (a,b) — C(x) €C.

Theorem. For every ¢ € {a, b} \ {0} there exists a sequence xx € (a, b), xx — ¢,
such that wy 1= w(C(xx)) — 0.

This allows to deform analytically a ghost constriction (if it exists)
to another one, with arbitrarily small w.
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Open problems

'Key argument 1' means that if one can obtain constriction points via poles
of a solution w(7) of Painlevé 3
2 2
" (w") w’ 1 1

S A R R YA V)
w T T w

.

What real solutions have an infinite lattice of simple poles with residue 1
converging to +oo?

(It is known that Painlevé 3 of the above form has a one-dimentional family
of Bessel solutions and recent numerical experience has shown that their
small deformations have an infinite lattice of poles too.)

For what ¢ Painlevé 3 has solutions with no real poles, (smth like the
tronquée solutions)?
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Open problems

e Theorem 2(Buchstaber-Glutsyuk) A point in the parameter space of the
Josephson system lies in the boundary of a phase-lock area <= the
corresponding Josepson system monodromy either has Jordan cell type, or is
the identity.

So 'Key argument 1" works for the boundaries as well. Calculate improved
asymptotics for boundaries.

@ Study geometry of the three-dimensional phase-lock area portrait of family.

@ Study geometry of phase-lock areas for generalized Josephson systems.
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