Pair correlation of real sequences: metric results

Marc Munsch (Joint work with C. Aistleitner and D. El-Baz)

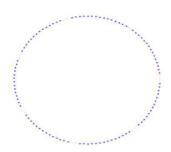
Institut für Analysis und Zahlentheorie, TU Graz

Uniform distribution modulo 1

A sequence of real numbers $(x_n)_{n\geq 1}$ is uniformly distributed modulo 1 (or shortly u. d.) if

$$\frac{\#\left\{n\leq N,\ \mathbf{1}_{A}(x_{n})=1\right\}}{N}\underset{N\rightarrow+\infty}{\longrightarrow}\mathsf{meas}(\mathsf{A})$$

for every interval $A \subset [0,1)$ where $\mathbf{1}_A$ is the indicator function of A, extended periodically with period 1.



Theorem (Weyl's criterion)

A sequence is u.d modulo 1 if and only if

$$\frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h x_n} \underset{N \to +\infty}{\longrightarrow} 0$$

Theorem (Weyl's criterion)

A sequence is u.d modulo 1 if and only if

$$\frac{1}{N}\sum_{n=1}^{N}e^{2i\pi hx_n} \underset{N\to+\infty}{\longrightarrow} 0$$

- Kronecker sequences $x_n = \{n\alpha\}$ for α irrational are u. d.
- Generalization $x_n = \{n^k \alpha\}$ for any $k \ge 2$ and α irrational
- The sequence $x_n = \{n^{\theta}\}$ for $\theta > 0$ non integer is u. d.
- Metric result (Weyl): $x_n = \{a_n \alpha\}$ with $\{a_n\}_{n \ge 1}$ integers is u d for almost all α (L^2 argument with Weyl sums).

Theorem (Weyl's criterion)

A sequence is u.d modulo 1 if and only if

$$\frac{1}{N}\sum_{n=1}^{N}e^{2i\pi hx_n} \underset{N\to+\infty}{\longrightarrow} 0$$

- Kronecker sequences $x_n = \{n\alpha\}$ for α irrational are u. d.
- Generalization $x_n = \{n^k \alpha\}$ for any $k \ge 2$ and α irrational.
- The sequence $x_n = \{n^{\theta}\}$ for $\theta > 0$ non integer is u. d.
- Metric result (Weyl): $x_n = \{a_n \alpha\}$ with $\{a_n\}_{n \ge 1}$ integers is u d for almost all α (L^2 argument with Weyl sums).

Theorem (Weyl's criterion)

A sequence is u.d modulo 1 if and only if

$$\frac{1}{N}\sum_{n=1}^{N}e^{2i\pi hx_n} \underset{N\to+\infty}{\longrightarrow} 0$$

- Kronecker sequences $x_n = \{n\alpha\}$ for α irrational are u. d.
- Generalization $x_n = \{n^k \alpha\}$ for any $k \ge 2$ and α irrational.
- The sequence $x_n = \{n^{\theta}\}$ for $\theta > 0$ non integer is u. d.
- Metric result (Weyl): $x_n = \{a_n \alpha\}$ with $\{a_n\}_{n \geq 1}$ integers is u. d for almost all α (L^2 argument with Weyl sums).

Theorem (Weyl's criterion)

A sequence is u.d modulo 1 if and only if

$$\frac{1}{N}\sum_{n=1}^{N}e^{2i\pi hx_n} \underset{N\to+\infty}{\longrightarrow} 0$$

- Kronecker sequences $x_n = \{n\alpha\}$ for α irrational are u. d.
- Generalization $x_n = \{n^k \alpha\}$ for any $k \ge 2$ and α irrational.
- The sequence $x_n = \{n^{\theta}\}$ for $\theta > 0$ non integer is u. d.
- Metric result (Weyl): $x_n = \{a_n \alpha\}$ with $\{a_n\}_{n \geq 1}$ integers is u. d for almost all α (L^2 argument with Weyl sums).

Gap distribution

Given a sequence of N elements x_1, \ldots, x_N in [0, 1), reorder them modulo 1 in the following way

$$0 \le \theta_{1,N} \le \theta_{2,N} \le \cdots \le \theta_{N,N} < 1.$$

The gap distribution is then defined for any interval $I\subset [0,+\infty)$ by

$$P_N(I; x_n) := \frac{\#\{j \le N, \theta_{j,N} - \theta_{j-1,N} \in N^{-1}I\}}{N}.$$

We say that the gap distribution of $\{x_n\}_{n\geq 1}$ is Poissonian if for any I we have

$$P_N(I; x_n) \underset{N \to +\infty}{\longrightarrow} \int_I e^{-s} ds.$$

Gap distribution

Given a sequence of N elements x_1, \ldots, x_N in [0, 1), reorder them modulo 1 in the following way

$$0 \leq \theta_{1,N} \leq \theta_{2,N} \leq \cdots \leq \theta_{N,N} < 1.$$

The gap distribution is then defined for any interval $I\subset [0,+\infty)$ by

$$P_N(I;x_n) := \frac{\#\{j \leq N, \theta_{j,N} - \theta_{j-1,N} \in N^{-1}I\}}{N}.$$

We say that the gap distribution of $\{x_n\}_{n\geq 1}$ is Poissonian if for any I we have

$$P_N(I;x_n) \underset{N\to+\infty}{\longrightarrow} \int_I e^{-s} ds.$$

Gap distribution

Given a sequence of N elements x_1, \ldots, x_N in [0, 1), reorder them modulo 1 in the following way

$$0 \le \theta_{1,N} \le \theta_{2,N} \le \cdots \le \theta_{N,N} < 1.$$

The gap distribution is then defined for any interval $I\subset [0,+\infty)$ by

$$P_N(I;x_n) := \frac{\#\{j \leq N, \theta_{j,N} - \theta_{j-1,N} \in N^{-1}I\}}{N}.$$

We say that the gap distribution of $\{x_n\}_{n\geq 1}$ is Poissonian if for any I we have

$$P_N(I; x_n) \underset{N \to +\infty}{\longrightarrow} \int_I e^{-s} ds.$$

A more local statistic: pair correlation

A sequence $(x_n)_{n\geq 1}$ is said to have Poissonian pair correlation if

$$R_2([-s,s],N) := \frac{1}{N} \sum_{\substack{1 \leq m,n \leq N, \\ m \neq n}} \mathbf{1}_{[-s/N,s/N]}(x_n - x_m) \underset{N \to +\infty}{\longrightarrow} 2s$$

for all real numbers s > 0.

For a "random" sequence, any interval (x - s/N, x + s/N) should contain 2s points on average.

If $X_n:[0,1)\to[0,1)$ are uniformly distributed, independent random variables, then $X_n(\alpha)$ has almost surely Poissonian pair correlation (or shortly PPC).

A more local statistic: pair correlation

A sequence $(x_n)_{n\geq 1}$ is said to have Poissonian pair correlation if

$$R_2([-s,s],N) := \frac{1}{N} \sum_{\substack{1 \leq m,n \leq N, \\ m \neq n}} \mathbf{1}_{[-s/N,s/N]}(x_n - x_m) \underset{N \to +\infty}{\longrightarrow} 2s$$

for all real numbers $s \ge 0$.

For a "random" sequence, any interval (x - s/N, x + s/N) should contain 2s points on average.

If $X_n : [0,1) \to [0,1)$ are uniformly distributed, independent random variables, then $X_n(\alpha)$ has almost surely Poissonian pair correlation (or shortly PPC).

A more local statistic: pair correlation

A sequence $(x_n)_{n\geq 1}$ is said to have Poissonian pair correlation if

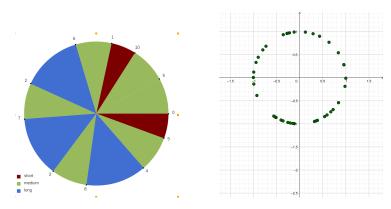
$$R_2([-s,s],N) := \frac{1}{N} \sum_{\substack{1 \leq m,n \leq N, \\ m \neq n}} \mathbf{1}_{[-s/N,s/N]}(x_n - x_m) \underset{N \to +\infty}{\longrightarrow} 2s$$

for all real numbers $s \ge 0$.

For a "random" sequence, any interval (x - s/N, x + s/N) should contain 2s points on average.

If $X_n:[0,1)\to[0,1)$ are uniformly distributed, independent random variables, then $X_n(\alpha)$ has almost surely Poissonian pair correlation (or shortly PPC).

"Poissonian" versus "non Poissonian"



Kronecker sequences $\{n\alpha\}$ have at most 3 gaps

Polynomial sequence $\{n^6\sqrt{3}\}$

- "Diophantine" = not too well approximated by rationals, true for almost all α .
- Under some extra conditions on α , they prove PPC along subsequences.
- Further partial results by Heath-Brown and Truelsen: link with questions on average of divisor functions in artihmetic progressions.

- "Diophantine" = not too well approximated by rationals, true for almost all α .
- Under some extra conditions on α , they prove PPC along subsequences.
- Further partial results by Heath-Brown and Truelsen: link with questions on average of divisor functions in artihmetic progressions.

- "Diophantine" = not too well approximated by rationals, true for almost all α .
- Under some extra conditions on α , they prove PPC along subsequences.
- Further partial results by Heath-Brown and Truelsen: link with questions on average of divisor functions in artihmetic progressions.

Theorem (Rudnick-Sarnak)

Theorem (Rudnick-Sarnak)

- Not a single explicit α known.
- For d = 2, this implies a result for the energy levels of the "boxed oscillator", a special case of Berry and Tabor conjecture about integrable systems.
- The proof establishes a convergence in L^2 of the pair correlation function R_2 and bounds on Weyl's exponential sums $\sum_{n \le N} e(\alpha h n^k)$.

Theorem (Rudnick-Sarnak)

- Not a single explicit α known.
- For d=2, this implies a result for the energy levels of the "boxed oscillator", a special case of Berry and Tabor conjecture about integrable systems.
- The proof establishes a convergence in L^2 of the pair correlation function R_2 and bounds on Weyl's exponential sums $\sum_{n\leq N} e(\alpha h n^k)$.

Theorem (Rudnick-Sarnak)

- Not a single explicit α known.
- For d=2, this implies a result for the energy levels of the "boxed oscillator", a special case of Berry and Tabor conjecture about integrable systems.
- The proof establishes a convergence in L^2 of the pair correlation function R_2 and bounds on Weyl's exponential sums $\sum_{n \le N} e(\alpha h n^k)$.

Rudnick/Zaharescu criterion: Let $(u_n)_{n\geq 1}$ be a sequence of integers such that there are at most $O(MN^{2+\varepsilon})$ solutions to the equation

$$\underline{j_1}(u_{n_1}-u_{m_1})=\underline{j_2}(u_{n_2}-u_{m_2})$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le M$, $M \ll N^k$ for some k > 0.

m Idea of the proof: Metric result for Weyl exponential sums

Rudnick/Zaharescu criterion: Let $(u_n)_{n\geq 1}$ be a sequence of integers such that there are at most $O(MN^{2+\varepsilon})$ solutions to the equation

$$\underline{j_1}(u_{n_1}-u_{m_1})=\underline{j_2}(u_{n_2}-u_{m_2})$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le M$, $M \ll N^k$ for some k > 0. Then the sequence $\{\alpha u_n\}$ has PPC for almost all α .

Rudnick/Zaharescu criterion: Let $(u_n)_{n\geq 1}$ be a sequence of integers such that there are at most $O(MN^{2+\varepsilon})$ solutions to the equation

$$\underline{j_1}(u_{n_1}-u_{m_1})=\underline{j_2}(u_{n_2}-u_{m_2})$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le M$, $M \ll N^k$ for some k > 0. Then the sequence $\{\alpha u_n\}$ has PPC for almost all α .

- Idea of the proof: Metric result for Weyl exponential sums
- Implies that the sequence $\{\alpha 2^n\}$ has PPC for almost all α .

Rudnick/Zaharescu criterion: Let $(u_n)_{n\geq 1}$ be a sequence of integers such that there are at most $O(MN^{2+\varepsilon})$ solutions to the equation

$$\underline{j_1}(u_{n_1}-u_{m_1})=\underline{j_2}(u_{n_2}-u_{m_2})$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le M$, $M \ll N^k$ for some k > 0. Then the sequence $\{\alpha u_n\}$ has PPC for almost all α .

- Idea of the proof: Metric result for Weyl exponential sums
- Implies that the sequence $\{\alpha 2^n\}$ has PPC for almost all α .

For any set S of real numbers, the additive energy of S is defined by

$$E(S) = \sum_{a+b=c+d} 1$$

where the sum is over quadruples $(a, b, c, d) \in S^4$. For a sequence $X = (x_n)_{n \ge 1}$, we denote by X_N the first N elements of X.

Theorem (Aistleitner-Larcher-Lewko)

Assume that $(x_n)_{n\geq 1}$ is a sequence of integers and $E(X_N) \ll N^{3-\varepsilon}$ for some $\varepsilon > 0$. Then for almost all α , the sequence $\{\alpha x_n\}$ has PPC.

For any set S of real numbers, the additive energy of S is defined by

$$E(S) = \sum_{a+b=c+d} 1$$

where the sum is over quadruples $(a, b, c, d) \in S^4$. For a sequence $X = (x_n)_{n \ge 1}$, we denote by X_N the first N elements of X.

Theorem (Aistleitner-Larcher-Lewko)

Assume that $(x_n)_{n\geq 1}$ is a sequence of integers and $E(X_N) \ll N^{3-\varepsilon}$ for some $\varepsilon > 0$. Then for almost all α , the sequence $\{\alpha x_n\}$ has PPC.

For any set S of real numbers, the additive energy of S is defined by

$$E(S) = \sum_{a+b=c+d} 1$$

where the sum is over quadruples $(a, b, c, d) \in S^4$. For a sequence $X = (x_n)_{n \ge 1}$, we denote by X_N the first N elements of X.

Theorem (Aistleitner-Larcher-Lewko)

Assume that $(x_n)_{n\geq 1}$ is a sequence of integers and $E(X_N)\ll N^{3-\varepsilon}$ for some $\varepsilon>0$. Then for almost all α , the sequence $\{\alpha x_n\}$ has PPC.

For any set S of real numbers, the additive energy of S is defined by

$$E(S) = \sum_{a+b=c+d} 1$$

where the sum is over quadruples $(a, b, c, d) \in S^4$. For a sequence $X = (x_n)_{n \ge 1}$, we denote by X_N the first N elements of X.

$\mathsf{Theorem}\;(\mathsf{Aistleitner} ext{-}\mathsf{Larcher} ext{-}\mathsf{Lewko})$

Assume that $(x_n)_{n\geq 1}$ is a sequence of integers and $E(X_N)\ll N^{3-\varepsilon}$ for some $\varepsilon>0$. Then for almost all α , the sequence $\{\alpha x_n\}$ has PPC.

Some comments

The proof relies on estimates by Bondarenko and Seip for GCD sums

$$\sum_{k,l=1}^{M} c_k c_l \frac{\gcd(n_k, n_l)}{\sqrt{n_k n_l}}$$

where n_i are any distinct integers and $(c_i)_{i=1..M}$ is such that $||c||_2 \le 1$.

- Using specific structure of the coefficients c_i , the energy estimate has been refined by Bloom and Walker.
- A converse theorem is true. Large energy ⇒ PPC is not true almost everywhere.

Some comments

The proof relies on estimates by Bondarenko and Seip for GCD sums

$$\sum_{k,l=1}^{M} c_k c_l \frac{gcd(n_k,n_l)}{\sqrt{n_k n_l}}$$

where n_i are any distinct integers and $(c_i)_{i=1..M}$ is such that $||c||_2 \le 1$.

- Using specific structure of the coefficients c_i , the energy estimate has been refined by Bloom and Walker.
- A converse theorem is true. Large energy ⇒ PPC is not true almost everywhere.

Some comments

The proof relies on estimates by Bondarenko and Seip for GCD sums

$$\sum_{k,l=1}^{M} c_k c_l \frac{\gcd(n_k, n_l)}{\sqrt{n_k n_l}}$$

where n_i are any distinct integers and $(c_i)_{i=1..M}$ is such that $||c||_2 \le 1$.

- Using specific structure of the coefficients c_i , the energy estimate has been refined by Bloom and Walker.
- lacksquare A converse theorem is true. Large energy \Longrightarrow PPC is not true almost everywhere.

What about real sequences?

Very little is known when $(x_n)_n$ is a sequence of reals.

Rudnick-Technau's criterion: Let $(x_n)_{n\geq 1}$ be a sequence of reals such that there are at most $O(N^{4-\delta})$ solutions to the inequality

$$|j_1(x_{n_1} - x_{m_1}) - j_2(x_{n_2} - x_{m_2})| < N^{\varepsilon}$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le N^{1+\varepsilon}$. Then the sequence $\{\alpha x_n\}$ has PPC for almost all α .

- Diophantine inequality appears in the variance computationnel.
 - while before only equality mattered for integers, in
- Apply to any real lacunary sequence
- Not easy to verify in general, can we do better?

What about real sequences?

Very little is known when $(x_n)_n$ is a sequence of reals.

Rudnick-Technau's criterion: Let $(x_n)_{n\geq 1}$ be a sequence of reals such that there are at most $O(N^{4-\delta})$ solutions to the inequality

$$|j_1(x_{n_1} - x_{m_1}) - j_2(x_{n_2} - x_{m_2})| < N^{\epsilon}$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le N^{1+\varepsilon}$.

Then the sequence $\{\alpha x_n\}$ has PPC for almost all α .

Diophantine inequality appears in the variance computation while before only equality mattered for integers.

What about real sequences?

Very little is known when $(x_n)_n$ is a sequence of reals.

Rudnick-Technau's criterion: Let $(x_n)_{n\geq 1}$ be a sequence of reals such that there are at most $O(N^{4-\delta})$ solutions to the inequality

$$|j_1(x_{n_1} - x_{m_1}) - j_2(x_{n_2} - x_{m_2})| < N^{\epsilon}$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le N^{1+\varepsilon}$.

Then the sequence $\{\alpha x_n\}$ has PPC for almost all α .

What about real sequences?

Very little is known when $(x_n)_n$ is a sequence of reals.

Rudnick-Technau's criterion: Let $(x_n)_{n\geq 1}$ be a sequence of reals such that there are at most $O(N^{4-\delta})$ solutions to the inequality

$$|j_1(x_{n_1}-x_{m_1})-j_2(x_{n_2}-x_{m_2})| < N^{\varepsilon}$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le N^{1+\varepsilon}$.

Then the sequence $\{\alpha x_n\}$ has PPC for almost all α .

- Diophantine inequality appears in the variance computation while before only equality mattered for integers.
- Apply to any real lacunary sequence
- Not easy to verify in general, can we do better?

What about real sequences?

Very little is known when $(x_n)_n$ is a sequence of reals.

Rudnick-Technau's criterion: Let $(x_n)_{n\geq 1}$ be a sequence of reals such that there are at most $O(N^{4-\delta})$ solutions to the inequality

$$|j_1(x_{n_1}-x_{m_1})-j_2(x_{n_2}-x_{m_2})| < N^{\varepsilon}$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le N^{1+\varepsilon}$.

Then the sequence $\{\alpha x_n\}$ has PPC for almost all α .

- Diophantine inequality appears in the variance computation while before only equality mattered for integers.
- Apply to any real lacunary sequence
- Not easy to verify in general, can we do better?

What about real sequences?

Very little is known when $(x_n)_n$ is a sequence of reals.

Rudnick-Technau's criterion: Let $(x_n)_{n\geq 1}$ be a sequence of reals such that there are at most $O(N^{4-\delta})$ solutions to the inequality

$$|j_1(x_{n_1}-x_{m_1})-j_2(x_{n_2}-x_{m_2})| < N^{\varepsilon}$$

with $1 \le n_i \ne m_i \le N$ and $1 \le |j_i| \le N^{1+\varepsilon}$.

Then the sequence $\{\alpha x_n\}$ has PPC for almost all α .

- Diophantine inequality appears in the variance computation while before only equality mattered for integers.
- Apply to any real lacunary sequence
- Not easy to verify in general, can we do better?

An additive energy adapted for the real case

Let E_N^* denote the number of solutions (n_1, n_2, n_3, n_4) of the inequality

$$|x_{n_1}-x_{n_2}+x_{n_3}-x_{n_4}|<1,$$

subject to $n_i \leq N$, i = 1, 2, 3, 4.

Question: Can we prove that $E_N^* \ll N^{3-\varepsilon}$ implies that $\{\alpha x_n\}$ has PPC for almost all α ?

Answer: Not completely but we tried our best!

An additive energy adapted for the real case

Let E_N^* denote the number of solutions (n_1, n_2, n_3, n_4) of the inequality

$$|x_{n_1}-x_{n_2}+x_{n_3}-x_{n_4}|<1,$$

subject to $n_i \le N, i = 1, 2, 3, 4.$

Question: Can we prove that $E_N^* \ll N^{3-\varepsilon}$ implies that $\{\alpha x_n\}$ has PPC for almost all α ?

Answer: Not completely but we tried our best!

An additive energy adapted for the real case

Let E_N^* denote the number of solutions (n_1, n_2, n_3, n_4) of the inequality

$$|x_{n_1}-x_{n_2}+x_{n_3}-x_{n_4}|<1,$$

subject to $n_i \le N, i = 1, 2, 3, 4.$

Question: Can we prove that $E_N^* \ll N^{3-\varepsilon}$ implies that $\{\alpha x_n\}$ has PPC for almost all α ?

Answer: Not completely but we tried our best!

An easier criterion as in the case of real sequences?

Theorem (Aistleitner, El-Baz, Munsch (2020))

Assume that there exists some $\delta > 0$ such that $E_N^* \ll N^{220/91-\delta}$ as $N \to \infty$. Then the sequence $(x_n\alpha)_{n\geq 1}$ has Poissonian pair correlation for almost all $\alpha \in \mathbb{R}$.

An easier criterion as in the case of real sequences?

Theorem (Aistleitner, El-Baz, Munsch (2020))

Assume that there exists some $\delta > 0$ such that $E_N^* \ll N^{220/91-\delta}$ as $N \to \infty$. Then the sequence $(x_n \alpha)_{n \ge 1}$ has Poissonian pair correlation for almost all $\alpha \in \mathbb{R}$.

- The exponent $220/91 \approx 2.417$ comes from the order of magnitude of the Riemann zeta function $\zeta(1/2+it)$ for large t as well as estimates on the moments of ζ .
- Under the Lindelöf hypothesis, our bound for E_N^* can be relaxed to $E_N^* \ll N^{3-\varepsilon}$.

An easier criterion as in the case of real sequences?

Theorem (Aistleitner, El-Baz, Munsch (2020))

Assume that there exists some $\delta > 0$ such that $E_N^* \ll N^{220/91-\delta}$ as $N \to \infty$. Then the sequence $(x_n\alpha)_{n\geq 1}$ has Poissonian pair correlation for almost all $\alpha \in \mathbb{R}$.

- The exponent $220/91 \approx 2.417$ comes from the order of magnitude of the Riemann zeta function $\zeta(1/2+it)$ for large t as well as estimates on the moments of ζ .
- Under the Lindelöf hypothesis, our bound for E_N^* can be relaxed to $E_N^* \ll N^{3-\varepsilon}$.

Consequences and further comments

- The Diophantine inequality involves only terms of the sequence $\{x_n\}_{n\geq 1}$ and get rid of the coefficients in Rudnick-Technau's result.
- Recover the result of Rudnick-Technau about lacunary sequences.
- For any quadratic polynomial $P \in \mathbb{R}[x]$, $\{P(n)\alpha\}$ has PPC for almost all α . Ex: $\{(\sqrt{2}x^2 + \pi x + 1)\alpha\}$ has PPC almost surely.

Consequences and further comments

- The Diophantine inequality involves only terms of the sequence $\{x_n\}_{n\geq 1}$ and get rid of the coefficients in Rudnick-Technau's result.
- Recover the result of Rudnick-Technau about lacunary sequences.
- For any quadratic polynomial $P \in \mathbb{R}[x]$, $\{P(n)\alpha\}$ has PPC for almost all α . Ex: $\{(\sqrt{2}x^2 + \pi x + 1)\alpha\}$ has PPC almost surely.

Consequences and further comments

- The Diophantine inequality involves only terms of the sequence $\{x_n\}_{n\geq 1}$ and get rid of the coefficients in Rudnick-Technau's result.
- Recover the result of Rudnick-Technau about lacunary sequences.
- For any quadratic polynomial $P \in \mathbb{R}[x]$, $\{P(n)\alpha\}$ has PPC for almost all α . Ex: $\{(\sqrt{2}x^2 + \pi x + 1)\alpha\}$ has PPC almost surely.

A more precise result for the sequence $x_n = n^{ heta}$ with heta > 1

Theorem (Aistleitner, El-Baz, Munsch (2020))

$\overline{\mathsf{A}}$ more precise result for the sequence $\mathsf{x}_{\mathsf{n}} = \mathsf{n}^{ heta}$ with heta > 1

Theorem (Aistleitner, El-Baz, Munsch (2020))

- In another direction Technau and Yesha proved that n^{α} has PPC for almost all $\alpha > 7$.
- If the sequence grows linearly or slower, the variance cannot converge to 0, similarly the energy is too large and the result is in this sense optimal.
- Builds on the same idea as the previous Theorem but use more information on Diophantine inequalities.

A more precise result for the sequence $x_n = n^{\theta}$ with $\theta > 1$

Theorem (Aistleitner, El-Baz, Munsch (2020))

- In another direction Technau and Yesha proved that n^{α} has PPC for almost all $\alpha > 7$.
- If the sequence grows linearly or slower, the variance cannot converge to 0, similarly the energy is too large and the result is in this sense optimal.
- Builds on the same idea as the previous Theorem but use more information on Diophantine inequalities.

A more precise result for the sequence $x_n = n^{\theta}$ with $\theta > 1$

Theorem (Aistleitner, El-Baz, Munsch (2020))

- In another direction Technau and Yesha proved that n^{α} has PPC for almost all $\alpha > 7$.
- If the sequence grows linearly or slower, the variance cannot converge to 0, similarly the energy is too large and the result is in this sense optimal.
- Builds on the same idea as the previous Theorem but use more information on Diophantine inequalities.

Much finer inequalities and a result of Robert and Sargos

Theorem (Robert-Sargos)

Let $E(M, \gamma)$ denote the number of 4-tuples $(n_1, n_2, n_3, n_4) \in \{M+1, M+2, \dots, 2M\}^4$ for which

$$\left|n_1^{\theta}-n_2^{\theta}+n_3^{\theta}-n_4^{\theta}\right|\leq \gamma.$$

Then for every $\varepsilon > 0$,

$$E(M,\gamma) \ll M^{2+\varepsilon} + \gamma M^{4-\theta+\varepsilon}$$
.

This uniformity in γ can be incorporated in our argument to prove our result for $\theta > 1$ whereas our previous requirement on the energy would only allow to prove it for $\theta > 1.59$.

Much finer inequalities and a result of Robert and Sargos

Theorem (Robert-Sargos)

Let $E(M, \gamma)$ denote the number of 4-tuples $(n_1, n_2, n_3, n_4) \in \{M+1, M+2, \dots, 2M\}^4$ for which

$$\left| n_1^{\theta} - n_2^{\theta} + n_3^{\theta} - n_4^{\theta} \right| \leq \gamma.$$

Then for every $\varepsilon > 0$,

$$E(M,\gamma) \ll M^{2+\varepsilon} + \gamma M^{4-\theta+\varepsilon}$$
.

This uniformity in γ can be incorporated in our argument to prove our result for $\theta>1$ whereas our previous requirement on the energy would only allow to prove it for $\theta>1.59$.

As before the pair correlation function is

$$R_2([-s,s],\alpha,N) := \frac{1}{N} \sum_{\substack{1 \leq m,n \leq N, \\ m \neq n}} \mathbf{1}_{[-s/N,s/N]}(x_n \alpha - x_m \alpha).$$

We study the expectation and the variance of $\it R_{
m 2}$ and show

$$\mathbb{E}(R_2) := \int_0^1 R_2([-s,s],\alpha,N) d\alpha \sim 2s$$

and

$$Var(R_2) := \int_0^1 (R_2([-s,s],\alpha,N)-2s)^2 d\alpha \rightarrow 0.$$

Standard arguments imply almost everywhere convergence $R_2([-s,s],\alpha,N) \xrightarrow{N} 2s$.

As before the pair correlation function is

$$R_2([-s,s],\alpha,N) := \frac{1}{N} \sum_{\substack{1 \leq m,n \leq N, \\ m \neq n}} \mathbf{1}_{[-s/N,s/N]}(x_n \alpha - x_m \alpha).$$

We study the expectation and the variance of R_2 and show

$$\mathbb{E}(R_2) := \int_0^1 R_2([-s,s],\alpha,N) d\alpha \sim 2s$$

and

$$Var(R_2) := \int_0^1 (R_2([-s,s],\alpha,N)-2s)^2 d\alpha \rightarrow 0.$$

Standard arguments imply almost everywhere convergence $R_2([-s,s],\alpha,N) \xrightarrow[N \to \infty]{} 2s$.

As before the pair correlation function is

$$R_2([-s,s],\alpha,N) := \frac{1}{N} \sum_{\substack{1 \leq m,n \leq N, \\ m \neq n}} \mathbf{1}_{[-s/N,s/N]}(x_n \alpha - x_m \alpha).$$

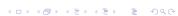
We study the expectation and the variance of R_2 and show

$$\mathbb{E}(R_2) := \int_0^1 R_2([-s,s],\alpha,N) d\alpha \sim 2s$$

and

$$Var(R_2) := \int_0^1 (R_2([-s,s],\alpha,\mathsf{N}) - 2s)^2 d\alpha \to 0.$$

Standard arguments imply almost everywhere convergence $R_2([-s,s],\alpha,N) \xrightarrow[N]{} 2s$.



As before the pair correlation function is

$$R_2([-s,s],\alpha,N) := \frac{1}{N} \sum_{\substack{1 \leq m,n \leq N, \\ m \neq n}} \mathbf{1}_{[-s/N,s/N]}(x_n \alpha - x_m \alpha).$$

We study the expectation and the variance of R_2 and show

$$\mathbb{E}(R_2) := \int_0^1 R_2([-s,s],\alpha,N) d\alpha \sim 2s$$

and

$$Var(R_2) := \int_0^1 (R_2([-s,s],\alpha,\mathsf{N}) - 2s)^2 d\alpha \to 0.$$

Standard arguments imply almost everywhere convergence $R_2([-s,s],\alpha,N) \xrightarrow[N]{\longrightarrow} 2s$.

From variance to counting problem

More or less bounding the variance amounts to bound

$$\sum_{\substack{1 \leq n_1, n_2, n_3, n_4 \leq N, \ 1 \leq j_1, j_2 \leq N \\ n_1 > n_2, \ n_3 > n_4}} \sum_{1 \leq j_1, j_2 \leq N} \mathbf{1} \big(|j_1(x_{n_1} - x_{n_2}) - j_2(x_{n_3} - x_{n_4})| < 1 \big).$$

Introduce the set of differences $z_M=x_n-x_m$ and the number of representations $r(z):=\sum_{i=1}^n 1$.

Integer case: $|j_1z_1 - j_2z_2| < 1$ is the same as $j_1z_1 - j_2z_2 = 0$ This boils down to bound

$$\sum_{z_1, z_2} r(z_1) r(z_2) \frac{\gcd(z_2, z_1)}{\sqrt{z_1 z_2}}$$

From variance to counting problem

More or less bounding the variance amounts to bound

$$\sum_{\substack{1 \leq n_1, n_2, n_3, n_4 \leq N, \ 1 \leq j_1, j_2 \leq N \\ n_1 > n_2, \ n_3 > n_4}} \sum_{1 \leq j_1, j_2 \leq N} \mathbf{1} \big(|j_1(x_{n_1} - x_{n_2}) - j_2(x_{n_3} - x_{n_4})| < 1 \big).$$

Introduce the set of differences $z_M = x_n - x_m$ and the number of representations $r(z) := \sum_{n \neq m} 1$.

Integer case: $|j_1z_1-j_2z_2|<1$ is the same as $j_1z_1-j_2z_2=0$.

This boils down to bound

$$\sum_{z_1, z_2} r(z_1) r(z_2) \frac{\gcd(z_2, z_1)}{\sqrt{z_1 z_2}}$$

From variance to counting problem

More or less bounding the variance amounts to bound

$$\sum_{\substack{1 \leq n_1, n_2, n_3, n_4 \leq N, \ 1 \leq j_1, j_2 \leq N \\ n_1 > n_2, \ n_3 > n_4}} \sum_{1 \leq j_1, j_2 \leq N} \mathbf{1} \big(|j_1(x_{n_1} - x_{n_2}) - j_2(x_{n_3} - x_{n_4})| < 1 \big).$$

Introduce the set of differences $z_M = x_n - x_m$ and the number of representations $r(z) := \sum_{n \neq m} 1$.

Integer case: $|j_1z_1 - j_2z_2| < 1$ is the same as $j_1z_1 - j_2z_2 = 0$. This boils down to bound

$$\sum_{z_1,z_2} r(z_1) r(z_2) \frac{\gcd(z_2,z_1)}{\sqrt{z_1 z_2}}.$$

A way to detect the inequality

We can assume $2^{u-1} \le j_1, j_2 \le 2^u$. This forces z_1 and z_2 to be of comparable size. Say we want to count solutions when $z_i \ge N$,

$$\left| \frac{j_1 z_1}{j_2 z_2} - 1 \right| < \frac{1}{2^u N}.$$

Set $T=2^uN^{1-arepsilon}$. Defining $\Phi(t)=e^{-t^2}$, the solutions can be bounded by

$$\sum_{j_1,j_2} \sum_{z_1,z_2} \Phi\left(T \log\left(\frac{j_1 z_1}{j_2 z_2} - 1\right)\right).$$

A way to detect the inequality

We can assume $2^{u-1} \le j_1, j_2 \le 2^u$. This forces z_1 and z_2 to be of comparable size. Say we want to count solutions when $z_i \ge N$, then we have

$$\left|\frac{j_1z_1}{j_2z_2}-1\right|<\frac{1}{2^uN}.$$

Set $T=2^uN^{1-arepsilon}.$ Defining $\Phi(t)=e^{-t^2},$ the solutions can be bounded by

$$\sum_{j_1,j_2} \sum_{z_1,z_2} \Phi\left(T \log\left(\frac{j_1 z_1}{j_2 z_2} - 1\right)\right).$$

A way to detect the inequality

We can assume $2^{u-1} \le j_1, j_2 \le 2^u$. This forces z_1 and z_2 to be of comparable size. Say we want to count solutions when $z_i \ge N$, then we have

$$\left|\frac{j_1z_1}{j_2z_2}-1\right|<\frac{1}{2^uN}.$$

Set $T=2^uN^{1-\varepsilon}$. Defining $\Phi(t)=e^{-t^2}$, the solutions can be bounded by

$$\sum_{j_1,j_2} \sum_{z_1,z_2} \Phi\left(T \log\left(\frac{j_1 z_1}{j_2 z_2} - 1\right)\right).$$

What it has to do with the Riemann zeta function?

We define a "Dirichlet polynomial" P(t) supported on z_n such that

$$\int_{\mathbb{R}} |P(t)|^2 \Phi(t/T) dt \ll TE_N^*. \tag{1}$$

Recall the approximation

$$\zeta(1/2+it) = \sum_{n \le T} n^{-1/2-it} + O(T^{-1/2})$$
 for $t \approx T$.

Expanding the squares we see that our counting problem reduces to the twisted moment of zeta

$$\frac{1}{T} \int_{\mathbb{R}} |\zeta(1/2 + it)|^2 |P(t)|^2 \Phi(t/T) dt$$

What it has to do with the Riemann zeta function?

We define a "Dirichlet polynomial" P(t) supported on z_n such that

$$\int_{\mathbb{R}} |P(t)|^2 \Phi(t/T) dt \ll TE_N^*. \tag{1}$$

Recall the approximation

$$\zeta(1/2+it) = \sum_{n \leq T} n^{-1/2-it} + O(T^{-1/2})$$
 for $t \approx T$.

Expanding the squares we see that our counting problem reduces to the twisted moment of zeta

$$\frac{1}{T} \int_{\mathbb{R}} |\zeta(1/2 + it)|^2 |P(t)|^2 \Phi(t/T) dt$$

What it has to do with the Riemann zeta function?

We define a "Dirichlet polynomial" P(t) supported on z_n such that

$$\int_{\mathbb{R}} |P(t)|^2 \Phi(t/T) dt \ll TE_N^*. \tag{1}$$

Recall the approximation

$$\zeta(1/2 + it) = \sum_{n \le T} n^{-1/2 - it} + O(T^{-1/2})$$
 for $t \approx T$.

Expanding the squares we see that our counting problem reduces to the twisted moment of zeta

$$\frac{1}{T}\int_{\mathbb{R}}|\zeta(1/2+it)|^2|P(t)|^2\Phi(t/T)dt.$$

For any integer $k \ge 0$, set

$$b_k = \sum_{m=1}^{M} \mathbf{1}(z_m \in [k, k+1)).$$
 (2)

Let
$$I_h=\left[\left(1+rac{1}{T}
ight)^h,\left(1+rac{1}{T}
ight)^{h+1}
ight)$$
 , and set $a_h=\left(\sum_{k\in I_h}b_k^2
ight)^{1/2}$. Define

$$P(t) = \sum_{h=0}^{\infty} a_h \left(1 + \frac{1}{T} \right)^{iht}. \tag{3}$$

$$\int_{\mathbb{R}} |P(t)|^2 \Phi(t/T) dt \ll T \sum_{h=0}^{\infty} a_h^2 = T E_N^*.$$
 (4)

For any integer $k \geq 0$, set

$$b_k = \sum_{m=1}^{M} \mathbf{1}(z_m \in [k, k+1)).$$
 (2)

Let
$$I_h = \left[\left(1 + \frac{1}{T}\right)^h, \left(1 + \frac{1}{T}\right)^{h+1}\right)$$
, and set $a_h = \left(\sum_{k \in I_h} b_k^2\right)^{1/2}$.

Define

$$P(t) = \sum_{h=0}^{\infty} a_h \left(1 + \frac{1}{T} \right)^{tht}. \tag{3}$$

$$\int_{\mathbb{R}} |P(t)|^2 \Phi(t/T) dt \ll T \sum_{h=0}^{\infty} a_h^2 = T E_N^*. \tag{4}$$

For any integer $k \geq 0$, set

$$b_k = \sum_{m=1}^{M} \mathbf{1}(z_m \in [k, k+1)).$$
 (2)

Let
$$I_h = \left[\left(1 + \frac{1}{T} \right)^h, \left(1 + \frac{1}{T} \right)^{h+1} \right)$$
, and set $a_h = \left(\sum_{k \in I_h} b_k^2 \right)^{1/2}$. Define

$$P(t) = \sum_{h=0}^{\infty} a_h \left(1 + \frac{1}{T} \right)^{iht}. \tag{3}$$

$$\int_{\mathbb{R}} |P(t)|^2 \Phi(t/T) dt \ll T \sum_{h=0}^{\infty} a_h^2 = T E_N^*. \tag{4}$$

For any integer $k \ge 0$, set

$$b_k = \sum_{m=1}^{M} \mathbf{1}(z_m \in [k, k+1)).$$
 (2)

Let
$$I_h = \left[\left(1 + \frac{1}{T} \right)^h, \left(1 + \frac{1}{T} \right)^{h+1} \right)$$
, and set $a_h = \left(\sum_{k \in I_h} b_k^2 \right)^{1/2}$. Define

$$P(t) = \sum_{h=0}^{\infty} a_h \left(1 + \frac{1}{T} \right)^{iht}. \tag{3}$$

$$\int_{\mathbb{R}} |P(t)|^2 \Phi(t/T) dt \ll T \sum_{h=0}^{\infty} a_h^2 = T E_N^*. \tag{4}$$

One major difficulty is the choice of T.

- The sum over j_i could be too short to approximate properly $\zeta(1/2+it), t \approx T$.
- To overcome this, we use a convolution formula to overcount without much loss.
- Working with $\sum_n z_n^{it}$ would restrict ourselves to choose T.
- T has to be chosen large enough to balance the contribution of $|P(0)|^2$ and small enough to detect solutions of the inequality.
- In the case of n^{θ} we define a more localized version of P(t) to take advantage of the uniform bounds of Robert-Sargos.

- One major difficulty is the choice of T.
- The sum over j_i could be too short to approximate properly $\zeta(1/2+it), t \approx T$.
- To overcome this, we use a convolution formula to overcount without much loss.
- Working with $\sum_n z_n^{it}$ would restrict ourselves to choose T.
- T has to be chosen large enough to balance the contribution of $|P(0)|^2$ and small enough to detect solutions of the inequality.
- In the case of n^{θ} we define a more localized version of P(t) to take advantage of the uniform bounds of Robert-Sargos.

- One major difficulty is the choice of T.
- The sum over j_i could be too short to approximate properly $\zeta(1/2+it), t \approx T$.
- To overcome this, we use a convolution formula to overcount without much loss.
- Working with $\sum_{n} z_{n}^{it}$ would restrict ourselves to choose T.
- T has to be chosen large enough to balance the contribution of $|P(0)|^2$ and small enough to detect solutions of the inequality.
- In the case of n^{θ} we define a more localized version of P(t) to take advantage of the uniform bounds of Robert-Sargos.

- One major difficulty is the choice of T.
- The sum over j_i could be too short to approximate properly $\zeta(1/2+it), t \approx T$.
- To overcome this, we use a convolution formula to overcount without much loss.
- Working with $\sum_n z_n^{it}$ would restrict ourselves to choose T.
- T has to be chosen large enough to balance the contribution of $|P(0)|^2$ and small enough to detect solutions of the inequality.
- In the case of n^{θ} we define a more localized version of P(t) to take advantage of the uniform bounds of Robert-Sargos.

- One major difficulty is the choice of T.
- The sum over j_i could be too short to approximate properly $\zeta(1/2+it), t \approx T$.
- To overcome this, we use a convolution formula to overcount without much loss.
- Working with $\sum_{n} z_n^{it}$ would restrict ourselves to choose T.
- T has to be chosen large enough to balance the contribution of $|P(0)|^2$ and small enough to detect solutions of the inequality.
- In the case of n^{θ} we define a more localized version of P(t) to take advantage of the uniform bounds of Robert-Sargos.

- One major difficulty is the choice of T.
- The sum over j_i could be too short to approximate properly $\zeta(1/2+it), t \approx T$.
- To overcome this, we use a convolution formula to overcount without much loss.
- Working with $\sum_{n} z_n^{it}$ would restrict ourselves to choose T.
- T has to be chosen large enough to balance the contribution of $|P(0)|^2$ and small enough to detect solutions of the inequality.
- In the case of n^{θ} we define a more localized version of P(t) to take advantage of the uniform bounds of Robert-Sargos.

- Find other interesting examples of applications of our Theorem, meaning sequences such that the $E_N^* \ll N^{2.41}$...
- Show that $\{x_n\alpha\}$ has PPC for almost all α under the weaker assumption $E_N^* \ll N^{3-\delta}$ for some $\delta > 0$.
- What can we say about sequences with linear or almost linear grow such as $n + \log n$ or $n \log n$.
- Let $\theta > 0$, and $\theta \neq 1$. Show that $(n^{\theta}\alpha)_{n\geq 1}$ has Poissonian pair correlation for almost all α .
- Can we prove converse results: large energy at suitable scale prevents to be PPC?

- Find other interesting examples of applications of our Theorem, meaning sequences such that the $E_N^* \ll N^{2.41}$...
- Show that $\{x_n\alpha\}$ has PPC for almost all α under the weaker assumption $E_N^* \ll N^{3-\delta}$ for some $\delta > 0$.
- What can we say about sequences with linear or almost linear grow such as $n + \log n$ or $n \log n$.
- Let $\theta > 0$, and $\theta \neq 1$. Show that $(n^{\theta}\alpha)_{n\geq 1}$ has Poissonian pair correlation for almost all α .
- Can we prove converse results: large energy at suitable scale prevents to be PPC?

- Find other interesting examples of applications of our Theorem, meaning sequences such that the $E_N^* \ll N^{2.41}$...
- Show that $\{x_n\alpha\}$ has PPC for almost all α under the weaker assumption $E_N^* \ll N^{3-\delta}$ for some $\delta > 0$.
- What can we say about sequences with linear or almost linear grow such as $n + \log n$ or $n \log n$.
- Let $\theta > 0$, and $\theta \neq 1$. Show that $(n^{\theta}\alpha)_{n\geq 1}$ has Poissonian pair correlation for almost all α .
- Can we prove converse results: large energy at suitable scale prevents to be PPC?

- Find other interesting examples of applications of our Theorem, meaning sequences such that the $E_N^* \ll N^{2.41}$...
- Show that $\{x_n\alpha\}$ has PPC for almost all α under the weaker assumption $E_N^* \ll N^{3-\delta}$ for some $\delta > 0$.
- What can we say about sequences with linear or almost linear grow such as $n + \log n$ or $n \log n$.
- Let $\theta > 0$, and $\theta \neq 1$. Show that $(n^{\theta}\alpha)_{n\geq 1}$ has Poissonian pair correlation for almost all α .
- Can we prove converse results: large energy at suitable scale prevents to be PPC?

- Find other interesting examples of applications of our Theorem, meaning sequences such that the $E_N^* \ll N^{2.41}$...
- Show that $\{x_n\alpha\}$ has PPC for almost all α under the weaker assumption $E_N^* \ll N^{3-\delta}$ for some $\delta > 0$.
- What can we say about sequences with linear or almost linear grow such as $n + \log n$ or $n \log n$.
- Let $\theta > 0$, and $\theta \neq 1$. Show that $(n^{\theta}\alpha)_{n\geq 1}$ has Poissonian pair correlation for almost all α .
- Can we prove converse results: large energy at suitable scale prevents to be PPC?

Merci de votre attention!