Gradient Gibbs measures

U.A. Rozikov

V.I.Romanovskiy Institute of Mathematics, Tashkent, Uzbekistan.

Abstract

In the talk we define (gradient) Gibbs measures of physical models with a countable set of spin values. For SOS (solid-on-solid) model, with spin values from the set of all integers, on a Cayley tree we give some gradient Gibbs measures (GGMs) of the model. Such a measure corresponds to a boundary law (a function defined on vertices of Cayley tree) satisfying a functional equation. In the ferromagnetic SOS case we give several concrete GGMs which correspond to periodic boundary laws.

Preliminaries

 σ -algebra, Hamiltonian. The study of random functions ξ_X from a lattice \mathbb{L} (usually \mathbb{Z}^d or Γ^k) to a measure space (E,\mathcal{E}) is a central component of ergodic theory and statistical physics. In many classical models from physics (e.g., the Ising model, the Potts model), E is a finite set (i.e., with a finite underlying measure λ), and ξ_X has a physical interpretation as the spin of a particle at location X in a crystal lattice.

Since 2018 we interested to the models, where (E, \mathcal{E}) is a space with an infinite underlying measure λ (i.e. \mathbb{L} with counting measure) where \mathcal{E} is the Borel σ -algebra of E and ξ_X usually has a physical interpretation as the spatial position of a particle at location x in a lattice.

First such models were considered in¹.

The prime examples of unbounded spin systems are harmonic oscillators. Another example is the Ginzburg-Landau interface model; which is obtained from the anharmonic oscillators²

¹Funaki, T., Spohn, H. **Comm. Math. Phys**. 185 (1997), no. 1, 1–36.

²H.O. Georgii, Gibbs Measures and Phase Transitions, Berlin, 2011

Denote by Ω the set of functions from \mathbb{L} to E, such a function also is called a configuration.

Assume random field $(\xi_x)_{x\in\mathbb{L}}$ on Ω given as the projection onto the coordinate $x\in\mathbb{L}$:

$$\xi_{\mathsf{X}}(\omega) = \omega(\mathsf{X}) = \omega_{\mathsf{X}}, \ \omega \in \Omega.$$

If $\Lambda \subset \mathbb{L}$, we denote by \mathcal{F}_{Λ} the smallest σ -algebra with respect to which ξ_X is measurable for all $X \in \Lambda$. We write $\mathcal{T}_{\Lambda} = \mathcal{F}_{\mathbb{L} \setminus \Lambda}$.

A subset of Ω , is called a cylinder set if it belongs to \mathcal{F}_{Λ} for some finite set $\Lambda \subset \mathbb{L}$.

Let $\mathcal F$ be the smallest σ -algebra on Ω containing the cylinder sets.

We write \mathcal{T} for the tail- σ -algebra, i.e., intersection of \mathcal{T}_{Λ} over all finite subsets Λ of \mathbb{L} the sets in \mathcal{T} are called tail-measurable sets.

Assume that we are given a family of measurable potential functions $\Phi_{\Lambda}:\Omega\to\mathbb{R}\cup\{\infty\}$ (one for each finite subset Λ of \mathbb{L}) each Φ_{Λ} is \mathcal{F}_{Λ} measurable.

For each finite subset Λ of \mathbb{L} we also define a Hamiltonian:

$$\mathcal{H}_{\Lambda}(\sigma) = \sum_{\stackrel{\Delta \subset \mathbb{L}:}{\Delta \cup \Lambda
eq \emptyset}} \Phi_{\Delta}(\sigma),$$

where the sum is taken over finite subsets Δ .

Gibbs Measures.

To define Gibbs measures and gradient Gibbs measures, we will need some additional notation³.

Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be general measure spaces.

A function $\pi: \mathcal{X} \times Y \to [0, \infty]$ is called a probability kernel from (Y, \mathcal{Y}) to (X, \mathcal{X}) if

- 1. $\pi(\cdot|y)$ is a probability measure on (X, \mathcal{X}) for each fixed $y \in Y$, and
- 2. $\pi(A|\cdot)$ is \mathcal{Y} -measurable for each fixed $A \in \mathcal{X}$.

Such a kernel maps each measure μ , on (Y, \mathcal{Y}) to a measure $\mu\pi$ on (X, \mathcal{X}) by

$$\mu\pi(A) = \int \pi(A|\cdot)d\mu$$

³S. Sheffield, Random surfaces: Large deviations principles and gradient Gibbs measure classifications. Thesis (Ph.D.) Stanford University: 2003.

The following is a probability kernel from $(\Omega, \mathcal{T}_{\Lambda})$ to (Ω, \mathcal{F}) :

$$\gamma_{\Lambda}(A,\omega) = Z_{\Lambda}(\omega)^{-1} \int \exp(-H_{\Lambda}(\sigma_{\Lambda}\omega_{\Lambda^c})) \mathbf{1}_{A}(\sigma_{\Lambda}\omega_{\Lambda^c}) \nu^{\otimes \Lambda}(d\sigma_{\Lambda}),$$

where $\nu = \{\nu(i) > 0, i \in E\}$ is a counting measure. We say σ has finite energy if $\Phi_{\Lambda}(\sigma) < \infty$ for all finite Λ . We say σ is Φ -admissible if each $Z_{\Lambda}(\sigma)$ is finite and non-zero. Given a measure μ on (Ω, \mathcal{F}) , we define a new measure $\mu\gamma_{\Lambda}$ by

$$\mu \gamma_{\Lambda}(A) = \int \gamma_{\Lambda}(A, \cdot) d\mu$$

Definition 1. A probability measure μ on (Ω, \mathcal{F}) is called a Gibbs measure if μ is supported on the set of Φ -admissible configurations in Ω and for all finite subset Λ we have

$$\mu \gamma_{\Lambda} = \mu$$
.

Gradient Gibbs measure

For any configuration $\omega = (\omega(x))_{x \in \mathbb{L}} \in E^{\mathbb{L}}$ and edge $b = \langle x, y \rangle$ of \mathbb{L} the *difference* along the edge b is given by $\nabla \omega_b = \omega_y - \omega_x$ and we also call $\nabla \omega$ the *gradient field* of ω .

The gradient spin variables are now defined by $\eta_{\langle x,y\rangle}=\omega_y-\omega_x$ for each $\langle x,y\rangle$.

The space of *gradient configurations* denoted by Ω^{∇} . The measurable structure on the space Ω^{∇} is given by σ -algebra

$$\mathcal{F}^{\nabla} := \sigma(\{\eta_{b} \mid b \in \mathbb{L}\}).$$

Note that \mathcal{F}^{∇} is the subset of \mathcal{F} containing those sets that are invariant under translations $\omega \to \omega + c$ for $c \in \mathcal{E}$. Similarly, we define

$$\mathcal{T}^\nabla_\Lambda = \mathcal{T}_\Lambda \cap \mathcal{F}^\nabla, \ \mathcal{F}^\nabla_\Lambda = \mathcal{F}_\Lambda \cap \mathcal{F}^\nabla.$$

Let Φ be an translation invariant gradient potential. Since, given any $A \in \mathcal{F}^{\nabla}$, the kernels $\gamma_{\Lambda}^{\Phi}(A,\omega)$ are \mathcal{F}^{∇} -measurable functions of ω , it follows that the kernel sends a given measure μ on $(\Omega, \mathcal{F}^{\nabla})$ to another measure $\mu\gamma_{\Lambda}^{\Phi}$ on $(\Omega, \mathcal{F}^{\nabla})$.

Definition 2. A measure μ on $(\Omega, \mathcal{F}^{\nabla})$ is called a gradient Gibbs measure if for all finite subset Λ we have

$$\mu \gamma_{\Lambda}^{\Phi} = \mu.$$

Note that, if μ is a Gibbs measure on (Ω, \mathcal{F}) , then its restriction to \mathcal{F}^{∇} is a gradient Gibbs measure.

A gradient Gibbs measure is said to be localized or smooth if it arises as the restriction of a Gibbs measure in this way. Otherwise, it is non-localized or rough.

It is known⁴ that many natural Gibbs measures are rough when $d \in \{1, 2\}$.

⁴H.O. Georgii, *Gibbs Measures and Phase Transitions*, Berlin, 2011

Construction of gradient Gibbs measure on Cayley tree.

Following⁵ we consider models where spin-configuration ω is a function from the vertices of the Cayley tree $\Gamma^k = (V, \vec{L})$ to the set $E = \mathbb{Z}$.

For nearest-neighboring interaction potential $\Phi = (\Phi_b)_b$, where bonds are denoted $b = \langle x, y \rangle$, define symmetric transfer matrices Q_b by

$$Q_b(\omega_b) = e^{-\left(\Phi_b(\omega_b) + |\partial x|^{-1}\Phi_{\{x\}}(\omega_x) + |\partial y|^{-1}\Phi_{\{y\}}(\omega_y)\right)}.$$

Define the Markov (Gibbsian) specification as

$$\gamma_{\Lambda}^{\Phi}(\sigma_{\Lambda} = \omega_{\Lambda}|\omega) = (Z_{\Lambda}^{\Phi})(\omega)^{-1} \prod_{b \cap \Lambda \neq \emptyset} Q_b(\omega_b).$$

⁵C. Külske, P. Schriever. *Gradient Gibbs measures and fuzzy transformations on trees*, **Markov Process. Relat. Fields**, 23, (2017), 553-590.

If for any bond $b=\langle x,y\rangle$ the transfer operator $Q_b(\omega_b)$ is a function of gradient spin variable $\zeta_b=\omega_y-\omega_x$ then the underlying potential Φ is called a *gradient interaction potential*.

Introduce a notion of *boundary laws* that allows to describe the Gibbs measures that are Markov chains on trees.

Definition 3. A family of vectors $\{I_{xy}\}_{\langle x,y\rangle\in\vec{L}}$ with $I_{xy}=\{I_{xy}(i):i\in\mathbb{Z}\}\in(0,\infty)^{\mathbb{Z}}$ is called a *boundary law for the transfer operators* $\{Q_b\}_{b\in\vec{L}}$ if for each $\langle x,y\rangle\in\vec{L}$ there exists a constant $c_{xy}>0$ such that the consistency equation

$$I_{xy}(i) = c_{xy} \prod_{z \in \partial x \setminus \{y\}} \sum_{j \in \mathbb{Z}} Q_{zx}(i,j) I_{zx}(j)$$
 (1)

holds for every $i \in \mathbb{Z}$.

A boundary law is called *q-periodic* if $I_{xy}(i+q) = I_{xy}(i)$ for every oriented edge $\langle x, y \rangle \in \vec{L}$ and each $i \in \mathbb{Z}$.

It is known that there is a one-to-one correspondence between boundary laws and tree-indexed Markov chains if the boundary laws are *normalisable* in the sense of Zachary⁶:

Definition 4. A boundary law *I* is said to be *normalisable* if and only if

$$\sum_{i\in\mathbb{Z}} \left(\prod_{z\in\partial x} \sum_{j\in\mathbb{Z}} Q_{zx}(i,j) I_{zx}(j) \right) < \infty$$
 (2)

at any $x \in V$.

⁶S. Zachary, Countable state space Markov random fields and Markov chains on trees, Ann. Probab. 11(4) (1983), 894–903□ → ⟨⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩ → ⟨⟨⟨⟩⟩⟩⟩ → ⟨⟨⟨⟩⟩

The correspondence now reads the following:

Theorem 1 (Zachary) For any Markov specification γ with associated family of transfer matrices $(Q_b)_{b\in L}$ we have

• Each *normalisable* boundary law $(I_{xy})_{x,y}$ for $(Q_b)_{b\in L}$ defines a unique tree-indexed Markov chain $\mu \in \mathcal{G}(\gamma)$ via the equation given for any connected set $\Lambda \in \mathcal{S}$

$$\mu(\sigma_{\Lambda \cup \partial \Lambda} = \omega_{\Lambda \cup \partial \Lambda}) = (Z_{\Lambda})^{-1} \prod_{y \in \partial \Lambda} I_{yy_{\Lambda}}(\omega_y) \prod_{b \cap \Lambda \neq \emptyset} Q_b(\omega_b), (3)$$

where for any $y \in \partial \Lambda$, y_{Λ} denotes the unique n.n. of y in Λ .

② Conversely, every tree-indexed Markov chain $\mu \in \mathcal{G}(\gamma)$ admits a representation of the form (3) in terms of a normalisable boundary law (unique up to a constant positive factor).

Remark

The Markov chain μ defined in (3) has the transition probabilities

$$P_{xy}(i,j) = \mu(\sigma_y = j \mid \sigma_x = i) = \frac{I_{yx}(j)Q_{yx}(j,i)}{\sum_{s} I_{yx}(s)Q_{yx}(s,i)}.$$
 (4)

The expressions (4) may exist even in situations where the underlying boundary law $(I_{xy})_{x,y}$ is not normalisable. However, the Markov chain given by 4, in general, does not have an invariant probability measure. Thus, there is no obvious extension of Theorem 1 to non-normalisable boundary laws.

Therefore in⁷ the non-normalisable boundary laws are used to give gradient Gibbs measures.

- C. Külske, P. Schriever. Markov Process. Relat. Fields, 23, (2017), 553-590.
- F. Henning, C. Külske, A. LeNy, U. Rozikov. Elect. Jour. Probab. 24, (2019), 1–23.

SOS model.

Now we give some results of above mentioned papers. Consider a model on Cayley tree $\Gamma^k = (V, \vec{L})$, where the spin takes values in the set of all integer numbers \mathbb{Z} . The set of all configurations is $\Omega := \mathbb{Z}^V$.

The (formal) Hamiltonian of the SOS model is

$$H(\omega) = -J \sum_{\{x,y\} \in L} |\omega_x - \omega_y|, \ \omega \in \Omega,$$
 (5)

where $J \in \mathbb{R}$ is a constant and $\{x, y\}$ denotes nearest neighbor vertices.

Then fix a site $w \in \Lambda$. If the boundary law I is assumed to be q-periodic, then take $s \in \mathbb{Z}_q$ and define probability measure $\nu_{w,s}$ on $\mathbb{Z}^{\{b \in \vec{L} | b \subset \Lambda\}}$ by

$$\nu_{w,s}(\eta_{\Lambda\cup\partial\Lambda} = \zeta_{\Lambda\cup\partial\Lambda}) =$$

$$Z_{w,s}^{\Lambda} \prod_{y \in \partial\Lambda} I_{yy_{\Lambda}} \left(T_q(s + \sum_{b \in \Gamma(w,y)} \zeta_b) \right) \prod_{b \cap \Lambda \neq \emptyset} Q_b(\zeta_b),$$

where $Z_{w,s}^{\Lambda}$ is a normalization constant, $\Gamma(w,y)$ is the unique path from w to y and $T_q: \mathbb{Z} \to \mathbb{Z}_q$ denotes the coset projection. In⁸ the following theorem is proved:

⁸C. Külske, P. Schriever. **Markov Process. Relat. Fields**, 23, (2017), 553-590.

Theorem 2. (Külske, Schriever) Let $(I_{\langle xy \rangle})_{\langle x,y \rangle \in \vec{L}}$ be any q -periodic boundary law to some gradient interaction potential. Fix any site $w \in V$ and any class label $s \in \mathbb{Z}_q$. Then

$$\nu_{w,s}(\eta_{\Lambda\cup\partial\Lambda} = \zeta_{\Lambda\cup\partial\Lambda}) =$$

$$Z_{w,s}^{\Lambda} \prod_{y \in \partial\Lambda} I_{yy_{\Lambda}} \left(T_q(s + \sum_{b \in \Gamma(w,y)} \zeta_b) \right) \prod_{b \cap \Lambda \neq \emptyset} Q_b(\zeta_b), \tag{6}$$

gives a consistent family of probability measures on the gradient space Ω^{∇} . Here Λ with $w \in \Lambda \subset V$ is any finite connected set, $\zeta_{\Lambda \cup \partial \Lambda} \in \mathbb{Z}^{\{b \in \vec{L} | b \subset (\Lambda \cup \partial \Lambda)\}}$ and $Z_{w,s}^{\Lambda}$ is a normalization constant. The measures $\nu_{w,s}$ will be called pinned gradient measures.

If q-periodic boundary law and the underlying potential are translation invariant then it is possible to obtain probability measure ν on the the gradient space by mixing the pinned gradient measures:

Theorem 3.(Külske, Schriever) Let a q-periodic boundary law l and its gradient interaction potential are translation invariant. Let $\Lambda \subset V$ be any finite connected set and let $w \in \Lambda$ be any vertex. Then the measure ν with marginals given by

$$\nu(\eta_{\Lambda\cup\partial\Lambda}=\zeta_{\Lambda\cup\partial\Lambda})=Z_{\Lambda}\left(\sum_{s\in\mathbb{Z}_{q}}\prod_{y\in\partial\Lambda}I(s+\sum_{b\in\Gamma(w,y)}\zeta_{b})\right)\prod_{b\cap\Lambda\neq\emptyset}Q(\zeta_{b}),$$
(7)

where Z_{Λ} is a normalisation constant, defines a translation invariant gradient Gibbs measure on Ω^{∇} .

Now using Theorem 3 and following⁹ we give some gradient Gibbs measures.

Let $\beta>0$ be inverse temperature and $\theta:=\exp(-\beta)<1$. The transfer operator Q then reads $Q(i-j)=\theta^{|i-j|}$ for any $i,j\in\mathbb{Z}$, and a translation invariant boundary law, denoted by \mathbf{z} , is any positive function on \mathbb{Z} solving the consistency equation, whose values we will denote by z_i instead of z(i). By definition of the boundary law it is only unique up to multiplication with any positive prefactor. Hence we may choose this constant in a way such that we have $z_0=1$.

Set $\mathbb{Z}_0:=\mathbb{Z}\setminus\{0\}.$ Then the boundary law equation reads

$$z_{i} = \left(\frac{\theta^{|i|} + \sum_{j \in \mathbb{Z}_{0}} \theta^{|i-j|} z_{j}}{1 + \sum_{j \in \mathbb{Z}_{0}} \theta^{|j|} z_{j}}\right)^{k}, \quad i \in \mathbb{Z}_{0}.$$
 (8)

⁹F. Henning, C. Külske, A. LeNy, U. Rozikov. **Elect. Jour. Probab.** 24, (2019), 1–23.

Let $\mathbf{z}(\theta) = (z_i = z_i(\theta), i \in \mathbb{Z}_0)$ be a solution to (8). Denote

$$I_{i} \equiv I_{i}(\theta) = \sum_{j=-\infty}^{-1} \theta^{|i-j|} z_{j}, \quad r_{i} \equiv r_{i}(\theta) = \sum_{j=1}^{\infty} \theta^{|i-j|} z_{j}, \quad i \in \mathbb{Z}_{0}.$$
 (9)

Note that each I_i and r_i can be a finite positive number or $+\infty$. **Lemma.** For each $i \in \mathbb{Z}_0$ we have

- $I_i < +\infty$ if and only if $I_0 < +\infty$;
- $r_i < +\infty$ if and only if $r_0 < +\infty$.

In what follows, we will assume that $l_0 < +\infty$ and $r_0 < +\infty$.

Denote $u_i = \sqrt[k]{z_i}$ and assume $u_0 = 1$.

Then we have the following

Proposition. If $z_0 = 1$ (i.e. $u_0 = 1$) then the equation (8) is equivalent to the following

$$u_i^k = \frac{u_{i-1} + u_{i+1} - \tau u_i}{u_{-1} + u_1 - \tau}, \quad i \in \mathbb{Z},$$
 (10)

where $\tau = \theta^{-1} + \theta$.

The following theorem is proved for k = 2 and 4-periodic boundary laws:

Theorem 4. For the SOS model (5) on the binary tree (i.e. k = 2) with parameter $\tau = \theta + \theta^{-1}$ the following assertions hold

- 1. If $\tau \leq$ 4 then there is precisely one GGM associated to a 4-periodic boundary law.
- 2. If $4 < \tau \le 6$ then there are precisely two GGMs.
- 3. If $6 < \tau < 2 + 2\sqrt{5}$ then there are precisely three GGMs.
- 4. If $\tau \ge 2 + 2\sqrt{5}$ then there are precisely four such measures.

The following theorem is proved for any $k \ge 2$ and 3-periodic boundary laws.

Denote

$$\tau_0:=\frac{2k+1}{k-1}.$$

Theorem 5. For the SOS-model on the k-regular tree, $k \geq 2$, with parameter τ there is τ_c such that $0 < \tau_c < \tau_0$ and the following holds:

- 1. If $\tau < \tau_c$ then there are no GGM corresponding to nontrivial 3-periodic boundary.
- 2. At $\tau = \tau_c$ there is a unique GGM corresponding to a nontrivial 3-periodic boundary law.
- 3. For $\tau > \tau_c$, $\tau \neq \tau_0$ (resp. $\tau = \tau_0$) there are exactly two such (resp. one) GGMs.

The GGMs described above are all different from the GGMs mentioned in Theorem 4.

Thank you!