Geodesic scattering on hyperboloids and Knörrer's map

Alexander P. Veselov Loughborough, UK; MSU and Steklov Math Institute, Russia

Dynamical Systems and PDEs, Moscow-Paris, March 24, 2021

Geodesic scattering on hyperboloid

Question 1. Consider a geodesic on one-sheeted hyperboloid coming from infinity with, say, positive x_0 .

Will it be reflected back, or will it pass through to infinity with negative x_0 ? How many times will it rotate about the hyperboloid?

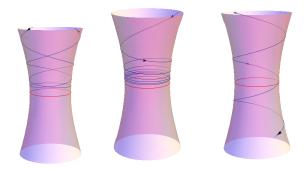


Figure: Geodesic scattering on one-sheeted hyperboloid

Question 2. What is an explicit relation between the values of asymptotic velocities at $\pm \infty$ in terms of the corresponding integrals?

Geodesics on quadrics

Consider a one-sheeted n-dimensional hyperboloid in the Euclidian space \mathbb{R}^{n+1} given by

$$Q(x) := (A^{-1}x, x) = 1 \tag{1}$$

where $A = diag(a_0, a_1, \cdots, a_n)$ with $a_0 < 0 < a_1 < \cdots < a_n$.

Geodesics on quadrics

Consider a one-sheeted *n*-dimensional hyperboloid in the Euclidian space \mathbb{R}^{n+1} given by

$$Q(x) := (A^{-1}x, x) = 1 \tag{1}$$

where $A = diag(a_0, a_1, \dots, a_n)$ with $a_0 < 0 < a_1 < \dots < a_n$.

The geodesics in arc length parameter s satisfy

$$x'' = -\lambda Bx, \quad \lambda = \frac{(Bx', x')}{(Bx, Bx)},$$

where $B = A^{-1}$ and λ is Lagrange multiplier determined by (Bx, x) = 1.

Joachimsthal 1843: The function

$$J(x,x')=(Bx,Bx)(Bx',x'),$$

is an integral of the geodesic problem.

Integrals

Let x=u+tv be a straight line in \mathbb{R}^{n+1} then it is tangent to the quadric (Bx,x)=1 iff

$$(1-(Bu,u))(Bv,v)+(Bu,v)^2=0.$$

Integrals

Let x=u+tv be a straight line in \mathbb{R}^{n+1} then it is tangent to the quadric (Bx,x)=1 iff

$$(1-(Bu,u))(Bv,v)+(Bu,v)^2=0.$$

The condition $\Phi_z(u, v) = 0$,

$$\Phi_z(x,y) = (1 + (R_z x, x))(R_z y, y) - (R_z x, y)^2, \quad R_z = (zI - A)^{-1}$$

means that the line x = u + tv is tangent to the confocal quadric

$$Q_z(x) := ((zI - A)^{-1}x, x) + 1 = 0.$$

Integrals

Let x=u+tv be a straight line in \mathbb{R}^{n+1} then it is tangent to the quadric (Bx,x)=1 iff

$$(1 - (Bu, u))(Bv, v) + (Bu, v)^{2} = 0.$$

The condition $\Phi_z(u, v) = 0$,

$$\Phi_z(x,y) = (1+(R_zx,x))(R_zy,y)-(R_zx,y)^2, \quad R_z = (zI-A)^{-1}$$

means that the line x = u + tv is tangent to the confocal quadric

$$Q_z(x) := ((zI - A)^{-1}x, x) + 1 = 0.$$

This function can be written as $\Phi_z(x,y) = \sum_{k=0}^n \frac{F_k(x,y)}{z-a_k}$, where

$$F_k(x,y) = y_k^2 + \sum_{j \neq k} \frac{(x_k y_j - x_j y_k)^2}{a_k - a_j}, \quad k = 0, 1, \dots, n.$$

Uhlenbeck, Devaney 1978; Moser 1980: The functions F_k are the involutive integrals of the geodesic flow, satisfying the relations:

$$\sum_{k=0}^{n} a_k^{-1} F_k = 0, \quad \sum_{k=0}^{n} F_k = |y|^2.$$

Chasles theorem

Geometrically, this means that a generic line is tangent to n confocal quadrics, such that the corresponding normals are perpendicular to each other, which follow from theorem of Chasles.

The corresponding zeros $z=0,c_1,\ldots,c_{n-1}$ of Φ_z are the confocal parameters of these quadrics:

$$\Phi_z(x,y) = \frac{z \prod_{i=1}^{n-1} (z-c_i)}{\prod_{k=0}^{n} (z-a_k)}.$$

Chasles theorem

Geometrically, this means that a generic line is tangent to n confocal quadrics, such that the corresponding normals are perpendicular to each other, which follow from theorem of Chasles.

The corresponding zeros $z=0,c_1,\ldots,c_{n-1}$ of Φ_z are the confocal parameters of these quadrics:

$$\Phi_z(x,y) = \frac{z \prod_{i=1}^{n-1} (z - c_i)}{\prod_{k=0}^{n} (z - a_k)}.$$

Jacobi (1837) showed that in the elliptic coordinates z_1, \ldots, z_n defined as the non-zero roots of the equation

$$((zI - A)^{-1}x, x) + 1 = 0$$

the variables in the Hamilton-Jacobi equation can be separated. Moreover, after some reparametrisation, the dynamics becomes linear at the Jacobi variety of the corresponding hyperelliptic curve

$$w^2 = -z \prod_{i=1}^{n-1} (z - c_i) \prod_{k=0}^{n} (z - a_k).$$

Answer to Question 1

Theorem

A geodesic on one-sheeted hyperboloid

$$\frac{x_0^2}{a_0}+\cdots+\frac{x_n^2}{a_n}=1$$

in \mathbb{R}^{n+1} with $a_0 < 0 < a_1 < \dots < a_n$ is crossing the neck ellipsoid with $x_0 = 0$ if and only if the integral

$$F_0 = y_0^2 + \sum_{j=1}^n \frac{(x_0 y_j - x_j y_0)^2}{a_0 - a_j} > 0.$$

When $F_0 < 0$ the geodesic is reflected back to infinity, while for $F_0 = 0$ the geodesic exponentially approaches a geodesic on the neck ellipsoid.

Knörrer theorem

Consider a geodesic on the hyperboloid $(Bx, x) = 1, B = A^{-1}$ satisfying the equations

$$x'' = -\lambda Bx, \ \lambda = \frac{(Bx', x')}{(Bx, Bx)}.$$

Assuming that the Joachimsthal integral $J \neq 0$ denote its sign as

$$\varepsilon = J/|J| = \pm 1.$$

Knörrer theorem

Consider a geodesic on the hyperboloid $(Bx, x) = 1, B = A^{-1}$ satisfying the equations

$$x'' = -\lambda Bx, \ \lambda = \frac{(Bx', x')}{(Bx, Bx)}.$$

Assuming that the Joachimsthal integral $J \neq 0$ denote its sign as

$$\varepsilon = J/|J| = \pm 1.$$

Let us change the length parameter s to τ such that

$$\frac{d\tau}{ds} = \alpha(s), \quad \alpha^2 = |\lambda| = \frac{|(Bx', x')|}{|Bx|^2} = \frac{|J|}{|Bx|^4}.$$

Knörrer, 1982: For any reparametrised geodesic $x(\tau)$ on the hyperboloid with $J \neq 0$ the normal vector $q = \frac{Bx}{|Bx|}$ satisfies the equations of Neumann problem on unit sphere S^n with the Hamiltonian

$$H = \frac{1}{2}|p|^2 + \frac{1}{2}\varepsilon(Bq, q), \quad \varepsilon = J/|J|.$$

The corresponding trajectories $q(\tau)$ satisfy the relation $\Psi_0^{\varepsilon}(p,q)=0$, where

$$\Psi_u^{\varepsilon}(p,q) = (1 + (R_u p, p))(R_u q, q) - (R_u p, q)^2, \quad R_u = (uI - \varepsilon B)^{-1}.$$

Real spectral curve

Let d_1, \ldots, d_{n-1} be the non-zero roots of $\Psi_u^{\varepsilon}(p, q) = 0$:

$$\Psi_u^{\varepsilon}(p,q) = \frac{u\prod_{i=1}^{n-1}(u-d_i)}{\prod_{k=0}^{n}(u-b_k)}.$$

Then the corresponding spectral curve Γ is

$$w^2 = R(z), \quad R(z) = -z \prod_{i=1}^{n-1} (z - d_i) \prod_{k=0}^{n} (z - b_k).$$

Real spectral curve

Let d_1, \ldots, d_{n-1} be the non-zero roots of $\Psi_u^{\varepsilon}(p, q) = 0$:

$$\Psi_u^{\varepsilon}(p,q) = \frac{u \prod_{i=1}^{n-1} (u-d_i)}{\prod_{k=0}^{n} (u-b_k)}.$$

Then the corresponding spectral curve Γ is

$$w^2 = R(z), \quad R(z) = -z \prod_{i=1}^{n-1} (z - d_i) \prod_{k=0}^{n} (z - b_k).$$

Its real part consists of one unbounded component and n ovals $\alpha_1, \ldots, \alpha_n$, one of them α_n containing point (0,0).

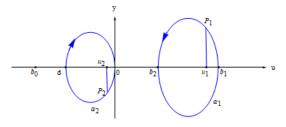
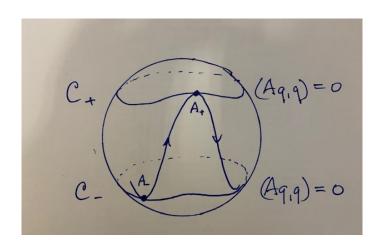


Figure: Real ovals of the spectral curve for n = 2

Neumann side



Real partial Abel map

Let $D=(P_1,\ldots,P_{n-1})$ be a set of points on the ovals $\alpha_1,\ldots,\alpha_{n-1}$ and define a real version of partial Abel map

$$\mathbb{A}: \alpha_1 \times \cdots \times \alpha_{n-1} \to \mathbb{T}^{n-1} = \mathbb{R}^{n-1}/\mathcal{L},$$

$$\mathbb{A}(D)_j := \sum_{i=1}^{n-1} \int_{-\infty}^{P_i} \omega_j, \quad \omega_j = \frac{u^{j-1} du}{\sqrt{R(u)}}, \quad j = 1, \ldots, n-1,$$

and the lattice \mathcal{L} is generated by the period vectors $\Omega_1, \ldots, \Omega_{n-1}$:

$$\Omega_j = (\oint_{\alpha_1} \omega_j, \ldots, \oint_{\alpha_{n-1}} \omega_j), \quad j = 1, \ldots, n-1.$$

Real partial Abel map

Let $D=(P_1,\ldots,P_{n-1})$ be a set of points on the ovals $\alpha_1,\ldots,\alpha_{n-1}$ and define a real version of partial Abel map

$$\mathbb{A}: \alpha_1 \times \cdots \times \alpha_{n-1} \to \mathbb{T}^{n-1} = \mathbb{R}^{n-1}/\mathcal{L},$$

$$\mathbb{A}(D)_j := \sum_{i=1}^{n-1} \int_{-\infty}^{P_i} \omega_j, \quad \omega_j = \frac{u^{j-1} du}{\sqrt{R(u)}}, \quad j = 1, \dots, n-1,$$

and the lattice \mathcal{L} is generated by the period vectors $\Omega_1, \ldots, \Omega_{n-1}$:

$$\Omega_j = (\oint_{\alpha_1} \omega_j, \ldots, \oint_{\alpha_{n-1}} \omega_j), \quad j = 1, \ldots, n-1.$$

Theorem

If all the roots of the polynomial R(u) are real and distinct, then period vectors $\Omega_1, \ldots, \Omega_{n-1}$ are linearly independent.

The real partial Abel map \mathbb{A} is a diffeomorphism of two real tori.

Answer to Question 2

Consider the asymptotic hypersurfaces $C_{\pm} \subset S^n$ given by $(Aq,q)=0, |q|^2=1$. In the Neumann elliptic coordinates $u_1>u_2>\cdots>u_n$ which are the solutions of

$$((u-\varepsilon B)^{-1}q,q)=0,$$

they are simply the coordinate surfaces $u_n = 0$. We use the remaining u_1, \ldots, u_{n-1} as the coordinates on C and consider the corresponding divisor $D = (P_1, \ldots, P_{n-1}), \ P_j = (u_j, \sqrt{R(u_j)}).$

Answer to Question 2

Consider the asymptotic hypersurfaces $C_{\pm} \subset S^n$ given by $(Aq,q)=0, |q|^2=1$. In the Neumann elliptic coordinates $u_1>u_2>\cdots>u_n$ which are the solutions of

$$((u-\varepsilon B)^{-1}q,q)=0,$$

they are simply the coordinate surfaces $u_n = 0$. We use the remaining u_1, \ldots, u_{n-1} as the coordinates on C and consider the corresponding divisor $D = (P_1, \ldots, P_{n-1}), \ P_j = (u_j, \sqrt{R(u_j)}).$

Theorem

The geodesic scattering on the hyperboloid is described by the relation

$$\mathbb{A}(D_+) = \mathbb{A}(D_-) - \Delta, \quad \Delta_j = \oint_{lpha_{m{p}}} \omega_j, \quad j = 1, \dots, n-1.$$

The topological properties of the geodesic are completely determined by the position of the vector Δ with respect to the lattice \mathcal{L} .

Two-dimensional case

In that case the spectral curve $w^2 = R(u)$,

$$R(u) = -u(u-d)(u-b_0)(u-b_1)(u-b_2), \ d = b_0b_1b_2J,$$

the asymptotic curve C can be identified with the double cover of the oval α_1 :

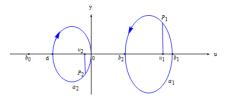


Figure: The ovals and position of roots in the reflection case

Two-dimensional case

In that case the spectral curve $w^2 = R(u)$,

$$R(u) = -u(u-d)(u-b_0)(u-b_1)(u-b_2), \ d = b_0b_1b_2J,$$

the asymptotic curve C can be identified with the double cover of the oval α_1 :

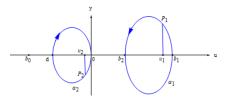


Figure: The ovals and position of roots in the reflection case

In particular, we see that the corresponding geodesic makes $N = \left[\frac{I_2}{2I_1}\right]$ full rotations about the hyperboloid before it is reflected back to infinity, where

$$I_1 = \oint_d^0 \frac{du}{\sqrt{R(u)}}, \quad I_2 = \oint_{b_1}^{b_2} \frac{du}{\sqrt{R(u)}}.$$

Cone case and flat billiard

In the case of cone given by

$$Q(x) = \frac{x_0^2}{a_0} + \frac{x_1^2}{a_1} + \frac{x_2^2}{a_2} = 0$$

the metric is flat and the geodesics become the billiard trajectories in the corresponding corner with

$$\alpha = \frac{4}{\sqrt{k_2}} \int_0^1 \sqrt{\frac{1 - k_1 t^2}{(1 - t^2)(1 - \frac{k_1}{k_2} t^2)}} dt, \quad k_1 = \frac{a_2 - a_1}{a_2}, \ k_2 = \frac{a_2 - a_0}{a_2}.$$

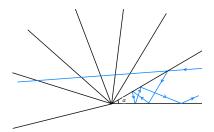


Figure: Geodesic scattering on cone and billiard in the corner

Quantum case

In the simplest symmetric case

$$\frac{x^2 + y^2}{a^2} - \frac{z^2}{c^2} = 1$$

in parametrisation

$$x=a\sqrt{1+\rho^2}\cos\phi,\ \ y=a\sqrt{1+\rho^2}\sin\phi,\ \ z=c\rho,$$

the quantum Hamiltonian is the Laplace-Beltrami operator

$$\hat{H} = -\frac{1}{2} \left[\frac{1+\rho^2}{c^2+b^2\rho^2} \frac{\partial^2}{\partial \rho^2} + \frac{1}{\mathsf{a}^2(1+\rho^2)} \frac{\partial^2}{\partial \phi^2} \right].$$

Quantum case

In the simplest symmetric case

$$\frac{x^2 + y^2}{a^2} - \frac{z^2}{c^2} = 1$$

in parametrisation

$$x = a\sqrt{1+
ho^2}\cos\phi, \ \ y = a\sqrt{1+
ho^2}\sin\phi, \ \ z = c
ho,$$

the quantum Hamiltonian is the Laplace-Beltrami operator

$$\hat{H} = -\frac{1}{2} \left[\frac{1+\rho^2}{c^2+b^2\rho^2} \frac{\partial^2}{\partial \rho^2} + \frac{1}{\mathbf{a}^2(1+\rho^2)} \frac{\partial^2}{\partial \phi^2} \right].$$

Separation of variables leads to the equation

$$\mathcal{L}_k \psi_1(\rho) = E \psi_1(\rho), \quad \mathcal{L}_k = \frac{1}{2} \left[-\frac{1+\rho^2}{c^2+b^2\rho^2} \frac{d^2}{d\rho^2} + \frac{k^2}{\mathsf{a}^2(1+\rho^2)} \right]$$

and, after the Liouville transformation, to the Schrödinger equation

$$\left(-\frac{d^2}{d\tau^2} + V(\tau)\right)\varphi = E\varphi, \quad V = \frac{k^2}{2a^2(1+\rho^2)} - \frac{a^2[6b^2\rho^4 + (3b^2 + c^2)\rho^2 - 2c^2]}{8(c^2 + b^2\rho^2)^3(1+\rho^2)}$$

with

$$au = \int \sqrt{rac{2(c^2+b^2
ho^2)}{1+
ho^2}} d
ho.$$

Knörrer's map and projective equivalence

Recall that two metrics on a manifold are *projectively equivalent* if they have the same set of geodesics, possibly in different parametrisation.

Let $\mathcal E$ be the ellipsoid

$$b_0x_0^2 + \cdots + b_nx_n^2 = 1, \ b_i > 0$$

with the standard metric ds_1^2 induced from the Euclidean metric on \mathbb{R}^{n+1} .

Knörrer's map and projective equivalence

Recall that two metrics on a manifold are *projectively equivalent* if they have the same set of geodesics, possibly in different parametrisation.

Let ${\mathcal E}$ be the ellipsoid

$$b_0x_0^2 + \cdots + b_nx_n^2 = 1, \ b_i > 0$$

with the standard metric ds_1^2 induced from the Euclidean metric on \mathbb{R}^{n+1} .

Knörrer's change of time and the form of the Lagrange multiplier $\lambda = \frac{(Bx',x')}{(Bx,Bx)}$ suggest the following conformally flat metric given in the affine coordinates by

$$ds_2^2 = \frac{1}{|Bx|^2} (Bdx, dx) = \frac{b_0 dx_0^2 + b_1 dx_1^2 + \dots + b_n dx_n^2}{b_0^2 x_0^2 + b_1^2 x_1^2 + \dots + b_n^2 x_n^2}.$$

Knörrer's map and projective equivalence

Recall that two metrics on a manifold are *projectively equivalent* if they have the same set of geodesics, possibly in different parametrisation.

Let $\mathcal E$ be the ellipsoid

$$b_0x_0^2 + \cdots + b_nx_n^2 = 1, \ b_i > 0$$

with the standard metric ds_1^2 induced from the Euclidean metric on \mathbb{R}^{n+1} .

Knörrer's change of time and the form of the Lagrange multiplier $\lambda = \frac{(Bx',x')}{(Bx,Bx)}$ suggest the following conformally flat metric given in the affine coordinates by

$$ds_2^2 = \frac{1}{|Bx|^2} (Bdx, dx) = \frac{b_0 dx_0^2 + b_1 dx_1^2 + \dots + b_n dx_n^2}{b_0^2 x_0^2 + b_1^2 x_1^2 + \dots + b_n^2 x_n^2}.$$

Tabachnikov, Matveev-Topalov 1998: The restrictions of metrics ds_1^2 and ds_2^2 on ellipsoid \mathcal{E} are projectively equivalent.

Geometry of the second metric

Theorem

The ellipsoid \mathcal{E} is totally geodesic submanifold of \mathbb{R}^{n+1} with metric ds_2^2 . The geodesics of the second metric coincide with the usual geodesics after Knörrer reparametrisation.

Geometry of the second metric

Theorem

The ellipsoid $\mathcal E$ is totally geodesic submanifold of $\mathbb R^{n+1}$ with metric ds_2^2 . The geodesics of the second metric coincide with the usual geodesics after Knörrer reparametrisation.

The proof is based on the following

Lemma

The involution $\sigma: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ defined by $y = \sigma(x) := \frac{x}{(Bx,x)}$ preserves the metric ds_2^2 and leaves the ellipsoid \mathcal{E} as fixed point set.

Geometry of the second metric

Theorem

The ellipsoid \mathcal{E} is totally geodesic submanifold of \mathbb{R}^{n+1} with metric ds_2^2 . The geodesics of the second metric coincide with the usual geodesics after Knörrer reparametrisation.

The proof is based on the following

Lemma

The involution $\sigma: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ defined by $y = \sigma(x) := \frac{x}{(Bx,x)}$ preserves the metric ds_2^2 and leaves the ellipsoid \mathcal{E} as fixed point set.

Proof.

$$dy = \frac{dx}{(Bx, x)} - \frac{2x(Bx, dx)}{(Bx, x)^2},$$

$$(Bdy, dy) = \frac{(Bdx, dx)}{(Bx, x)^2} - \frac{4(Bx, dx)^2}{(Bx, x)^3} + \frac{4(Bx, x)(Bx, dx)^2}{(Bx, x)^4} = \frac{(Bdx, dx)}{(Bx, x)^2},$$

$$\frac{(Bdy, dy)}{|By|^2} = \frac{(Bdx, dx)}{(Bx, x)^2} \frac{(Bx, x)^2}{|Bx|^2} = \frac{(Bdx, dx)}{|Bx|^2} = ds_2^2.$$

Projective closure of hyperboloids

Consider now the projective closure \mathcal{H} of hyperboloid given in $\mathbb{R}P^{n+1}$ with projective coordinates $\xi_0:\cdots:\xi_n:\xi_{n+1}$ by the equation

$$b_0\xi_0^2 + \cdots + b_n\xi_n^2 = \xi_{n+1}^2.$$

Projective closure of hyperboloids

Consider now the projective closure \mathcal{H} of hyperboloid given in $\mathbb{R}P^{n+1}$ with projective coordinates $\xi_0:\cdots:\xi_n:\xi_{n+1}$ by the equation

$$b_0\xi_0^2 + \cdots + b_n\xi_n^2 = \xi_{n+1}^2.$$

The standard Euclidean metric $ds_1^2 = \sum_{k=0}^n dx_k^2 = (dx, dx)$ on the \mathbb{R}^{n+1} in the projective coordinates has the form (singular when $\xi_{n+1} = 0$)

$$ds_1^2 = \sum_{k=0}^n \frac{\xi_{n+1} d\xi_k^2 - 2\xi_k d\xi_k d\xi_{n+1}}{\xi_{n+1}^3} + \frac{|\xi|^2 d\xi_{n+1}^2}{\xi_{n+1}^4}, \ |\xi|^2 = \sum_{k=0}^n \xi_k^2.$$

Projective closure of hyperboloids

Consider now the projective closure \mathcal{H} of hyperboloid given in $\mathbb{R}P^{n+1}$ with projective coordinates $\xi_0:\cdots:\xi_n:\xi_{n+1}$ by the equation

$$b_0\xi_0^2 + \cdots + b_n\xi_n^2 = \xi_{n+1}^2$$
.

The standard Euclidean metric $ds_1^2 = \sum_{k=0}^n dx_k^2 = (dx, dx)$ on the \mathbb{R}^{n+1} in the projective coordinates has the form (singular when $\xi_{n+1} = 0$)

$$ds_1^2 = \sum_{k=0}^n \frac{\xi_{n+1} d\xi_k^2 - 2\xi_k d\xi_k d\xi_{n+1}}{\xi_{n+1}^3} + \frac{|\xi|^2 d\xi_{n+1}^2}{\xi_{n+1}^4}, \ |\xi|^2 = \sum_{k=0}^n \xi_k^2.$$

APV 2008: The restriction of metric ds_2^2 to the projective closure of hyperboloids is a regular metric (which is Riemannian in two-sheeted case and pseudo-Riemannian of signature (n, 1) in one-sheeted case).

Projective Knörrer map

Define now the following projective version of Knörrer's map $\nu: \mathcal{H} \to \mathbb{R}P^n$. In the affine chart with $\xi_{n+1} \neq 0$ it is given by the formula

$$\nu(x) = [Bx], \quad x \in \mathcal{H},$$

where $[Bx] \in \mathbb{R}P^n$ is the line defined by vector Bx, and then extend it to the whole \mathcal{H} by continuity.

Since Neumann system on S^n is invariant under antipodal map $\sigma: v \to -v$ it can be reduced to the quotient $\mathbb{R}P^n = S^n/\sigma$.

Projective Knörrer map

Define now the following projective version of Knörrer's map $\nu: \mathcal{H} \to \mathbb{R}P^n$. In the affine chart with $\xi_{n+1} \neq 0$ it is given by the formula

$$\nu(x) = [Bx], \quad x \in \mathcal{H},$$

where $[Bx] \in \mathbb{R}P^n$ is the line defined by vector Bx, and then extend it to the whole \mathcal{H} by continuity.

Since Neumann system on S^n is invariant under antipodal map $\sigma: v \to -v$ it can be reduced to the quotient $\mathbb{R}P^n = S^n/\sigma$.

APV-LW 2020: The projective Knörrer's map maps the non-isotropic geodesics on $\mathcal H$ with restricted metric ds_2^2 to the solutions of the Neumann system on $\mathbb RP^n$, satisfying the relation $\Psi_0^\varepsilon(p,q)=0$.

References

- C.G.J. Jacobi Vorlesungen über Dynamik. In Gesammelte Werke, Supplement band, Berlin, 1884.
- J. Moser Various aspects of integrable Hamiltonian systems. Progr. Math. 8 (1980), 233-289.
- J. Moser *Geometry of quadrics and spectral theory.* In: Chern Symposium 1979, Springer Verlag,1980, 147-188.
- H. Knörrer Geodesics on quadrics and a mechanical problem of C. Neumann. J. Reine Angew. Math. **334** (1982), 69–78.
- S. Tabachnikov *Projectively equivalent metrics, exact transverse line fields and the geodesic flow on the ellipsoid.* Comm. Math. Helv. **74:2** (1999), 306–321.
- V.S. Matveev, P. Topalov *Trajectory equivalence and corresponding integrals*. Regul. Chaotic Dyn. **3** (1998), 30–45.
- A.P. Veselov, L. Wu Geodesic scattering on hyperboloids and Knörrer's map. arXiv:2008.12524.

