GENERALIZED METRIC SPACES AND THE SPACE OF *G*-PERMUTATION DEGREE

R.M.Zhuraev

March 22, 2021

Introduction

In 1981 on the Prague topological symposium V.V.Fedorchuk put forward the following common problems in the theory of covariant functors, which determined a new direction of research in the field of topology: Let P be some geometrical property and F - some covariant functor. If topological space X has a property P, then F(X) has the same property P? Or on the contrary, i.e. for what functors F, if F(X) possesses a property P, it follows that X possesses the same property P? In our case $F = SP_G^n$ and $X \in T_1$ [1].

1.V.V. Fedorchuk, Covariant functors in the category of compacts, absolute retracts and Q-manifolds // Uspekhi Matem. Nauk. 36:3 (1981). P.177-195.

Let X^n be the n-th power of a compact X. The permutation group S_n of all permutations, acts on the n-th power X^n as permutation of coordinates. The set of all orbits of this action with quotient-topology we denote by SP^nX . Consider as a quotient mapping

$$\pi_n^s: X^n \to SP^nX$$

corresponding the point $x=(x_1,x_2,...,x_n)\in X^n$ with the orbit of this point. Thus, points of the space SP^nX are finite subsets (equivalence classes) of the product X^n . Thus two points $(x_1,x_2,...,x_n), (y_1,y_2,...,y_n)$ are considered to be equivalent if there is a permutation $\sigma\in S_n$ such that $y_i=x_{\sigma(i)}$ for all i=1,2,...,n.

The space SP^nX is called the nth permutation degree of a space X. Equivalence relations by which we obtained spaces SP^nX and \exp_nX is called the symmetric and hypersymmetric equivalence relations, respectively. Any symmetrically equivalent points X^n are hypersymmetrically equivalent. But inverse is not correct. So, for $x \neq y$ points (x, x, y), $(x, y, y) \in X^3$ are hypersymmetrically equivalent, but not symmetrically equivalent.

Let $f: X \to Y$ be a continuous mapping. For a class equivalence $[(x_1, x_2, ..., x_n)] \in SP^nX$ put

$$SP^n f[(x_1, x_2, ..., x_n)] = [(f(x_1), f(x_2), ..., f(x_n))].$$

Thereby, a mapping is defined

$$SP^nf: SP^nX \to SP^nY$$
.

It is easy to check that the operation SP^n so constructed is a covariant functor in the category of compacts. This functor is called the functor of n-th permutation degree [2].

2.V.V. Fedorchuk, V.V. Filippov, Topology of hyperspaces and its applications// Moscow: Mathematica, cybernetica. 4 (1989) P.48.

The concept of a permutation degree has generalizations. Let G be any subgroup of the group S_n . Then it also acts on X^n as permutation group of coordinates. Consequently, it generates a G-symmetric equivalence relation on X^n . The quotient space of the product X^n under the G-symmetric equivalence relation, is called G-permutation degree of the space X and is denoted by SP_G^nX . The operation SP_G^n is also the covariant functor in the category of compacts and is said to be a functor of G-permutation degree. If $G = S_n$ then $SP_G^n = SP^n$. If the group G consists only of unique element then $SP_G^n = \Pi^n$. Moreover, if $G_1 \subset G_2$ for subgroups G_1 , G_2 of the permutation group S_n then we get a sequence of the factorization of functors [2]

$$\Pi^n \to SP^n_{G_1} \to SP^n_{G_2} \to SP^n.$$

2.V.V. Fedorchuk, V.V. Filippov, Topology of hyperspaces and its applications// Moscow: Mathematica, cybernetica. 4 (1989) P.48.

In this case quotient map $\pi_{n,G}^s:X^n\to SP_G^nX$ is determined in the following way:

$$\pi_{n,G}^{s}(x_1,x_2,...,x_n) = [x_1,x_2,...,x_n]_{G}.$$

Preliminaries

A continuous mapping $f: X \to Y$ is called *closed (open)* if for every closed (open) set $A \subset X$ the image f(A) is closed (open) in Y. Mappings which are simultaneously closed and open are called *closed-and-open* mappings [3].

The following theorem is known.

Theorem 1[4]

Let X be any topological space. Then the map $\pi^s_{n,G}:X^n\to SP^n_GX$ is closed-and-open

- 3.R.Engelking, General topology. Revised and completed edition. Berlin: Helderman, 1986, 752 p.
- 4. Wagner C.H., Symmetric, cyclic and permutation products of manifolds. Warszava: PWN, 1980, 48 p.

Theorem 2

Let X be a Hausdorff space. Then the space X is homeomorphic to a closed subspace of SP_G^nX .

Definition 1[5]

Recall that a space X is said to be Lašnev if it is the closed image of a metric space M.

5. Fucai Lin, Chuan Liu, The k-spaces property of the free Abelian topological groups over non-metrizable Lasnev spaces // Topology and its Applications 220 (2017), 31-42.

Main result

Proposition

An arbitrary subspace of a Lašnev space is also Lašnev space.

Corollary 1

Let X be a T_1 -space, n a positive integer and let G be an arbitrary subgroup of the permutation group S_n . If SP_G^nX is a Lašnev space, then so is X.

Introduction Preliminaries Main result A family $\mathcal{N} = \{M_s\}_{s \in S}$ of subsets of a topological space X is a *network* for X if for every point $x \in X$ and any neighbourhood U of x there exists an element $s \in S$ such that $x \in M_s \subset U$. A family $\{A_s\}_{s\in S}$ of subsets of a topological space X is called *locally finite* if for every point $x \in X$ there exists a neighbourhood U such that the set $\{s \in S : U \cap A_s \neq \emptyset\}$ is finite. If every point $x \in X$ has a neighbourhood that intersects at most one set of a given family, than we say that the family is discrete. A family of subsets is called σ -locally finite (σ -discrete) if it can be represented as a countable union of a locally finite (discrete) families [3].

3.R.Engelking, General topology. Revised and completed edition. Berlin: Helderman, 1986, 752 p.

Definition 2[6]

A topological space X is called σ -space if it has a σ -locally finite network.

6. J. Nagata, Modern general topology, second revised edition: North-Holland mathematical library, 1985, 522 p. We obtained the following result.

Theorem 3

Let X be a T_1 -space, n is a natural number, let and G is an arbitrary subgroup of permutation group S_n . A space X is σ -space if and only if SP_G^nX is σ -space.

Definition 3[7]

A space X is a (strong) Σ -space if there exists a pair $\{\mathcal{F},\mathcal{C}\}$ of families satisfying the following:

- (a) \mathcal{F} is a σ -discrete family of subsets of X;
- (b) C is a cover of X by (respectively compact) countably compact subsets of X;
- (c) If $C \in \mathcal{C}$ and U is an open subset of X such that $C \subset U$, then $C \subset F \subset U$ for some $F \in \mathcal{F}$.
- 7. T.Mizokami, On hyperspaces of generalized metric spaces // Topology and its Applications 76 (1997), 169-173.

A topological space X is called a *paracompact space* if X is a Hausdorff space and every open cover of X has a locally finite open refinement [3].

Remark

There exists a paracompact space X^* such that SP^2X^* is not a paracompact space.

Construction. Consider the space "One arrow" P.S.Alexandroffs $X^* = [0,1)$ the base of which is formed by subsets of the form $[\alpha,\beta)$, where $0 \le \alpha < \beta \le 1$. It is clear that the space X^* is a paracompact. In this case a space SP^2X^* is not a paracompact space.

3.R.Engelking, General topology. Revised and completed edition. Berlin: Helderman, 1986, 752 p.

Theorem 4

Let X be a Hausdorff space, n be a positive integer and G be an arbitrary subgroup of the permutation group S_n . If X is a paracompact Σ -space, then SP_n^nX is also a paracompact Σ -space.

Corollary 2

Hausdorff space X is a paracompact σ -space iff SP_G^nX is paracompact σ -space.

Definition 4[8]

A topological space X is called a stratifiable space if X is T_1 -space and to each open $U \subset X$, one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of open subsets of X such that

- 1) $[U_n] \subset U$
- 2) $\bigcup_{n=1}^{\infty} U_n = U$
- 3) $U_n \subset V_n$ whenever $U \subset V$ for each $n \in N$.
- 8. C.R.Borges, On stratifiable spaces // Pacific Journal of Mathematics 17(1966), 1-16.

Theorem 5

Let X be a T_1 -space, n be a positive integer and G be an arbitrary subgroup of the permutation group S_n . A space X is stratifiable if and only if SP_G^nX is a stratifiable space.

Definition 5[5]

A family $\mathcal P$ of subsets of a space X is called k-network if for every compact subset K of X and an arbitrary open set U containing K in X there is a finite subfamily $\mathcal P' \subset \mathcal P$ such that $K \subset \cup \mathcal P' \subset U$.

A regular space has a σ -locally finite (resp. countable) k-network is called \aleph -space (resp. \aleph_0 -space).

5. Fucai Lin, Chuan Liu, The k-spaces property of the free Abelian topological groups over non-metrizable Lasnev spaces // Topology and its Applications 220 (2017), 31–42.

Theorem 6

Let X be a T_1 -space, $n \in N$ and G be an arbitrary subgroup of the permutation group S_n . A space X is an \aleph -space (\aleph_0 -space) if and only if SP_G^nX is an \aleph -space (\aleph_0 -space).

Corollary 3

Hausdorff space X is a paracompact \aleph -space iff SP_G^nX is paracompact \aleph -space.

Definition 6[9]

A topological space X is semi-stratifiable if, to each open set $U \subset X$, one can assign a sequence $\{F_n\}_{n=1}^{\infty}$ of closed subsets of X such that

- $1. \bigcup_{i=1}^{\infty} F_n = U;$
- 2. $F_n \subset G_n$ whenever $U \subset V$ for each $n \in N$, where $\{G_n\}_{n=1}^{\infty}$ is the sequence assigned to V.
- 9. G.D. Creede. Concerning semi-stratifiable spaces // Pacific Journal of Mathematics. Vol. 32, No. 1, 1970, p.47-54.

It is obviously the following theorem.

Theorem 7[9]

The closed image of a semi-stratifiable space is semi-stratifiable. The class of semi-stratifiable spaces is hereditary and countably productive.

From theorem 7 [9] we obtain the following result:

Theorem 8

Let X be a T_1 -space, n be a positive integer and G be an arbitrary subgroup of the permutation group S_n . A topological space X is semi-stratifiable if and only if the space SP_G^nX is semi-stratifiable.

Definition 7[10]

A topological space X is called semi-metrizable if there exists a mapping $d: X \times X \to [0, \infty)$ such that

- 1. for all points $x, y \in X$ implies d(x, y) = d(y, x);
- 2. d(x, y) = 0 if and only if x = y;
- 3. a subset $V \subset X$ is open if and only if for each point $x \in V$ there exists $n \in N$ such that $B(n,x) = \{y \in X : d(x,y) < \frac{1}{n}\} \subset V$;
- 4. each B(n, x) is a neighborhood of x.
- 10. T.G.Rghavan and I.L.Reilly, On semi-metrizable-closed spaces // Indian Journal of Pure and Applied Mathematics, 18(3); 219–225, March 1987.

Give an example of a semi-metrizable but not metrizable space. One arrow P.S.Alexandroffs is not metrizable space, but it is semi-metrizable space.

Theorem 9[9]

A topological space $X \in T_1$ is semi-metrizable if and only if it is a first countable semi-stratifiable space.

9. G.D.Creede. Concerning semi-stratifiable spaces // Pacific Journal of Mathematics. Vol. 32, No. 1, 1970, p.47-54.

Theorem 10

A T_1 -space X is semi-metrizable if and only if SP_G^nX is semi-metrizable.