Stopping rules for accelerated gradient methods with additive noise in gradient and influence of relative inexactness.

Vasin Artem

Moscow Institute of Physics and Technology, MIPT

14 april 2021

We consider convex optimization problem on a convex (not necessarily bounded) set $Q \subset \mathbb{R}^n$

$$\min_{x \in Q} f(x)$$

We will use such designations:

$$(\forall x \in Q) \|\nabla f(x) - \tilde{\nabla} f(x)\|_{2} \leq \delta,$$

$$R = \|x_{start} - x^{*}\|_{2},$$

$$(\forall x, y \in Q) \|\nabla f(x) - \nabla f(y)\|_{2} \leq L\|x - y\|_{2}$$

We will also consider the strongly convex case:

$$(\forall x, y \in Q) f(x) + \langle \tilde{\nabla} f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2 \leqslant f(y)$$

Also will study the effect of relative imprecision:

$$\|\nabla f(x) - \tilde{\nabla} f(x)\|_2 \le \alpha \|\nabla f(x)\|_2$$

```
Algorithm 1 STM(L, \mu, \tau, x_{start}), \quad Q \subseteq \mathbb{R}^n
Input: Starting point x_{start}, number of steps N
Set \tilde{x}_0 = x_{start},
Set A_0 = \frac{1}{L},
Set \alpha_0 = \frac{1}{L},
\psi_0(x) = \frac{1}{2} \|x - \tilde{x}_0\|_2^2 + \alpha_0 \left(f(\tilde{x}_0) + \langle \tilde{\nabla} f(\tilde{x}_0), x - \tilde{x}_0 \rangle + \frac{\mu}{2} \|x - \tilde{x}_0\|_2^2\right),
Set x_0 = \arg\min_{y \in Q} \psi_0(y),
Set x_0 = z_0.
for k = 1 \dots N do
\alpha_k = \frac{1 + \mu_r A_{k-1}}{2L} + \sqrt{\frac{1 + \mu_r A_{k-1}}{4L^2} + \frac{A_{k-1}}{1 + \mu_r A_{k-1}}},
```

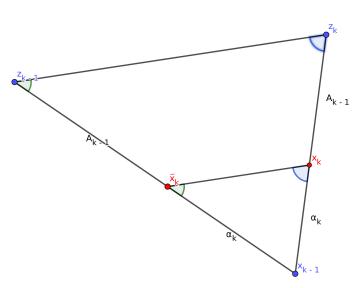
$$\begin{split} A_k &= A_{k-1} + \alpha_k, \\ \hat{x}_k &= \frac{A_{k-1}x_{k-1} + \alpha_k z_{k-1}}{A_k}, \\ \psi_k(x) &= \psi_{k-1}(x) + \alpha_k \left(\left(f(\hat{x}_k) + \langle \tilde{\nabla} f(\hat{x}_k), x - \hat{x}_k \rangle + \frac{\mu}{2} \|x - \hat{x}_k\|_2^2 \right), \\ z_k &= \underset{x}{\operatorname{argmin}}_y \in_{\mathbb{Q}} \psi_k(y), \end{split}$$

 $x_k = \frac{A_{k-1}x_{k-1} + \alpha_k z_k}{A_k}.$

Output: x_N.

Figure 5 describes the position of the vertices. On the sides, not their lengths are marked, but the relationships in the corresponding sides in the similarity of triangles. In the case $Q = \mathbb{R}^n$, we can simplify the step of the algorithm by replacing it with:

$$z_k = z_{k-1} - \frac{\alpha_k}{1 + A_k \mu_\tau} \left(\tilde{\nabla} f(\tilde{x}_k) + \mu_\tau (z_{k-1} - \tilde{x}_k) \right).$$



We will use the following functions for experiments.

$$n = 2m + 1,$$

$$(\forall k \le \frac{1}{2}(n - 1))$$

$$f(x_k) - f(x^*) \ge \frac{3}{32} \frac{LR^2}{(k + 1)^2}$$

$$f(x) = \frac{L}{8} \left(x_1^2 + \sum_{k=1}^{2m} (x_k - x_{k+1})^2 + x_n^2 \right) - \frac{L}{4} x_1,$$

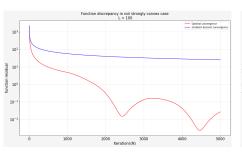
And for strongly convex case:

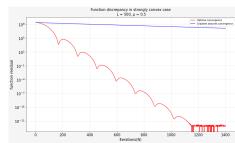
$$f(x) = \frac{\mu\left(\frac{L}{\mu} - 1\right)}{8} \left(x_1^2 + \sum_{k=1}^{\infty} (x_k - x_{k+1})^2 - 2x_1\right) + \frac{\mu}{2} ||x||_2^2,$$

$$\chi = \frac{L}{\mu},$$

$$f(x_N) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{\chi} - 1}{\sqrt{\chi} + 1}\right)^{2N}, \ N \ge 1,$$

Let us compare the convergence of gradient descent and the accelerated STM method.





$$\mu = 0 \Rightarrow f(x_k) - f(x^*) \leqslant \frac{4LR^2}{N^2},$$

$$\mu > 0 \Rightarrow f(x_k) - f(x^*) \leqslant LR^2 \exp\left(-\frac{1}{2}\sqrt{\frac{\mu}{L}}N\right)$$

Remind the conception:

$$\|\nabla f(x) - \tilde{\nabla} f(x)\|_2 \leqslant \delta$$

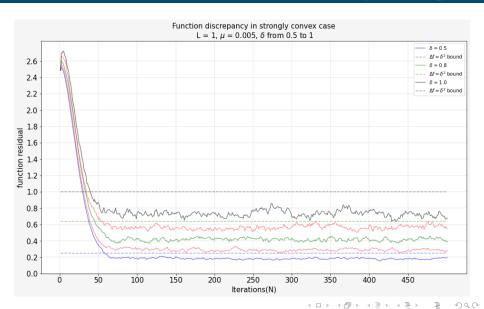
Also we will use:

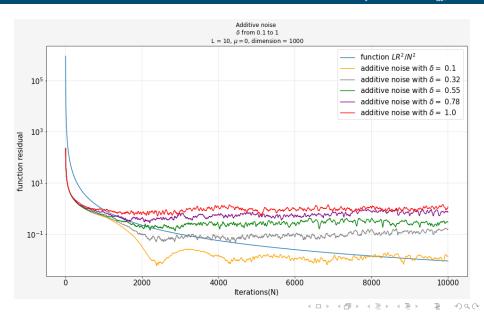
$$\tilde{R}_N = \max_{k \leqslant N} \{ \|x_k - x^*\|_2, \|z_k - x^*\|_2, \|\tilde{x}_k - x^*\|_2 \}$$

In the presence of the additive noise STM convergence:

$$f(x_N) - f(x^*) \leqslant \frac{4LR^2}{N^2} + N\frac{\delta^2}{2L} + 3\delta\tilde{R}_N,$$

$$f(x_N) - f(x^*) \leqslant LR^2 \exp\left(-\frac{1}{2}\sqrt{\frac{\mu}{2L}}N\right) + \left(1 + \sqrt{\frac{\mu}{2L}}\right)\left(\frac{\delta^2}{2L} + \frac{\delta}{\mu}\right)$$





Theorem

Assume that we know we value of $f(x^*)$ and such bound, R_* , that $||x^*|| \le R_*$. Using stopping rule $\forall \zeta > 0$

$$f(x_N) - f(x^*) \leqslant \frac{\delta^2}{2L}N + 3R_*\delta + \zeta$$

And it is guaranteed, that the criteria will reached in

$$N_{stop} = O\left(\frac{\sqrt{LR^2}}{\zeta}\right).$$

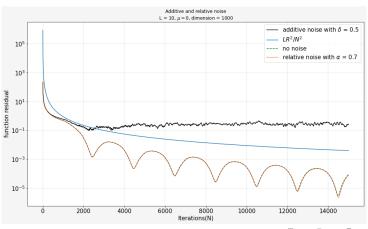
Choosing $\zeta \sim \varepsilon, \delta \sim \frac{\varepsilon}{R_*}$ we get estimation:

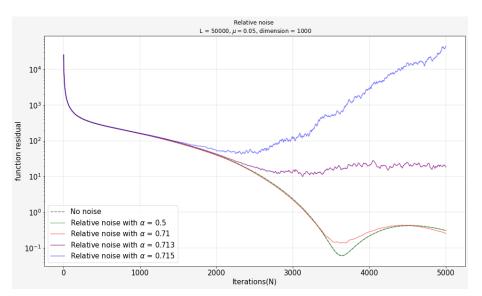
$$f(x_{N_{stop}}) - f(x^*) \le \varepsilon,$$

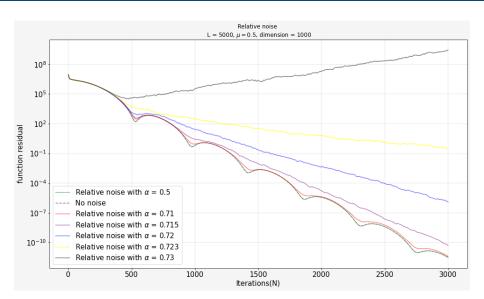
 $N_{stop} = O\left(\frac{\sqrt{LR^2}}{\varepsilon}\right)$

Remind the conception:

$$\|\nabla f(x) - \tilde{\nabla} f(x)\|_2 \le \alpha \|\nabla f(x)\|_2$$

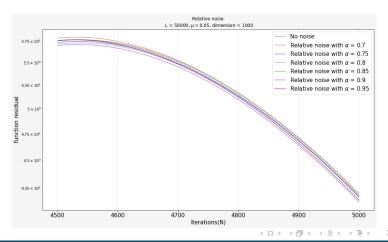




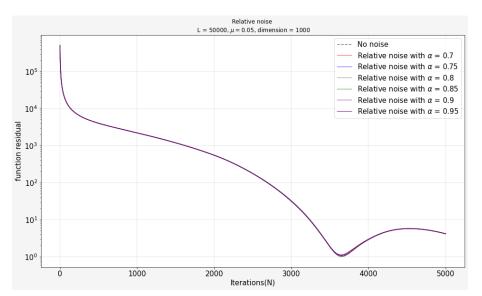


For boosting we can use gradient step in the end of each iteration:

$$x_k := x_k - \frac{1}{L} \tilde{\nabla} f(x_k)$$



Moscow Institute of Physics and Technology, MIPT



Theorem

If
$$\|\nabla f(\tilde{x}_k)\|_2 = O\left(\|\nabla f(x_k)\|_2\right)$$
 and $\mu > 0$. Then choosing $\alpha = O\left(\left(\frac{\mu}{L}\right)^{\frac{3}{4}}\right)$, we get:

$$f(x_k) - f(x^*) \leqslant \left(\frac{LR^2}{1 - \alpha^2} + \frac{3L\alpha^2}{2\mu(1 - \alpha^2)} \left(f(x_0) - f(x^*)\right)\right) \exp\left(-\frac{1}{6\sqrt{2}}\sqrt{\frac{\mu}{L}}k\right)$$

Also we can consider another condition

Theorem

If sequence \tilde{x}_k satisfies:

$$f(x_k) - f(x^*) \leqslant O\left(LR^2 exp\left(-\frac{1}{2}\sqrt{\frac{\mu}{2L}}k\right) + \left(1 + \sqrt{\frac{4L}{\mu}}\right)\left(\frac{\delta^2}{\mu} + \frac{\delta^2}{L}\right)\right)$$

We can obtain we same convergence for same α bound.