

On perturbations of one-parameter semigroups determined by covariant operator valued measures on the half-axis G. G. Amosov, E. L. Baitenov.²

Keywords: perturbations of semigroups; covariant operator valued measures; the semigroup of shifts on the half-axis.

MSC2010 codes: 47D06, 46L51

A one-parameter family of contractions $T_t: X \to X$, $t \geq 0$, acting on a Banach space X is said to be a semigroup if $T_{t+s} = T_t T_s$, $t, s \geq 0$, and $T_0 = I$ (the identical transformation). If orbits of the semigroup $T = (T_t)$ are continuous in some topology then there exists a linear operator \mathcal{L} with the domain $\mathcal{D}(\mathcal{L})$ dense in X in the same topology such that $T_t = \exp(t\mathcal{L})$, $t \geq 0$. The operator \mathcal{L} is said to be a generator of the semigroup T [1]. For the case X = B(H) (the algebra of all bounded operators in a Hilbert space H) a perturbation of T of the semigroup T can be defined as a solution to the integral equation [2]

$$\breve{T}_t - \int_0^t \mathcal{M}(ds) \breve{T}_{t-s} = T_t, \ t \ge 0,$$

where \mathcal{M} is a measure on the half-axis taking values in the set of all completely positive maps on the algebra B(H). To define a semigroup the measure \mathcal{M} should be covariant with respect to the action of T in the sense

$$T_r \circ \mathcal{M}([t,s)) = \mathcal{M}([t+r,s+r)), \ r \ge 0, \ s \ge t \ge 0.$$

Let us go back to an arbitrary Banach space X. If we consider a perturbation of the generator \mathcal{L} by a bounded operator Δ in X, then the operator $\check{\mathcal{L}} = \mathcal{L} + \Delta$ having the same domain $\mathcal{D}(\check{\mathcal{L}}) = \mathcal{D}(\mathcal{L})$ is a generator of the semigroup that is a solution to the integral equation determined by the covariant measure

$$\mathcal{M}([t,s)) = \int_{t}^{s} T_r \Delta dr, \ s,t \ge 0.$$

More complicated cases that lead to a change of the domain of a generator are defined by non-trivial cohomologies of T. We consider two examples in which a crucial role is played by the semigroup $S = (S_t)$ consisting of right shifts in the Hilbert space $H = L^2(\mathbb{R}_+)$. In one example, perturbations of the semigroup S are introduced in [3-4]. The second example determines the construction of perturbation for the semigroup $T = (T_t)$ acting in X = B(F(H)) by the formula [5]

$$T_t(x) = \hat{S}_t x \hat{S}_t^*, \ x \in B(F(H)),$$

where \hat{S}_t acts in the antisymmetric Fock space $F(H) = \{\mathbb{C}\Omega\} \oplus H \oplus H^{\otimes_a^2} \oplus \cdots \oplus H^{\otimes_a^n} \oplus \cdots$ over one-particle Hilbert space $H = L^2(\mathbb{R}_+)$ by the formula

$$\hat{S}_t \Omega = \Omega, \ \hat{S}_t(f_1 \Lambda f_2 \Lambda \dots \Lambda f_n) = S_t f_1 \Lambda S_t f_2 \Lambda \dots \Lambda S_t f_n, \ t \ge 0, \ f_j \in H.$$

References:

[1] E. Hille, R.S. Phillips: Functional Analysis and Semi-Groups. — American Mathematical Society, 1975.

¹Steklov Mathematical Institute, Russia, Moscow. Email: gramos@mi-ras.ru

²Moscow Institute of Physics and Technology, Russia, Moscow. Email: baiteneg@mail.ru

- [2] A.S. Holevo. Excessive maps, "arrival times" and perturbation of dynamical semigroups // Izv. Math. 59:6 (1995) 1311–1325.
- [3] G.G. Amosov, E.L. Baitenov. On perturbations of the semigroup of shifts on the half-axis changing the domain of Its generator // Lobachevskii J. Math. 41:12 (2020) 2303–2309.
- [4] G.G. Amosov, E.L. Baitenov. On rank one perturbations of the semigroup of shifts on the half-axis // Ufa Mathematical J. (2021) in press.
- [5] G.G. Amosov. On perturbations of dynamical semigroups defined by covariant completely positive measures on the semi-axis // Anal. Math. Phys. 11:1 (2021) Paper N 27. 13 PP.