A regularity method for quantitative lower bounds on Lyapunov exponents of stochastic differential equations

Jacob Bedrossian joint work with Alex Blumenthal and Sam Punshon-Smith

University of Maryland, College Park
Department of Mathematics
Center for Scientific Computation and Mathematical Modeling

May 26, 2021

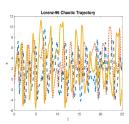
Chaos as positive Lyapunov exponent

■ The Lorenz 96 system for a periodic chain of *J* unknowns, given by

$$\partial_t u_m = (u_{m+1} - u_{m-2})u_{m-1} - \epsilon u_m + F_m$$

is a common benchmark for testing numerical and analytical methods in applied mathematics.

Observed numerically to be highly chaotic for ϵ small (equivalently F large).



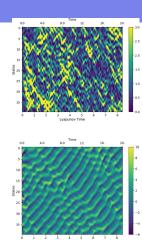


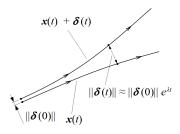
Figure: Left picture by Kang & Xu '18, right pictures Ryne Beeson & N. Sri Namachchivaya '20

Chaos as positive Lyapunov exponents

■ The top Lyapunov exponent is the simplest measure of sensitivity to initial condition. If $\Phi^t : \mathcal{M} \to \mathcal{M}$ is the flow then for a given initial condition x.

$$\lambda_1 = \liminf_{t \to \infty} \frac{1}{t} \log |D_x \Phi^t(x)|.$$

- If $\lambda_1 > 0$ for a.e. x, then we're going to call the system chaotic (at least for this talk).
- It is extremely hard in general to verify this condition for deterministic systems, and is only known for a few examples (Lorenz 63, Axiom A systems, contact Anosov flows...)



 This is quite frustrating because chaos is so ubiquitous in nature!

SDEs as a random dynamical system (RDS)

- Moving to the random dynamical systems framework opens up significant mathematical possibilities.
- Let M be an n-dimensional, smooth, connected, orientable Riemannian manifold (possibly unbounded); consider the Stratonovich SDE for a stochastic process $x_t \in M$, $t \ge 0$

$$\mathrm{d} x_t = X_0(x_t)\,\mathrm{d} t + \sum_{k=1}^r X_k(x_t)\circ\mathrm{d} W_t^k$$

where $\{X_k\}_{k=0}^r$ are a family of smooth vector fields (potentially unbounded) on M and $\{W^k\}_{k=1}^r$ are independent standard Wiener processes with respect to a canonical stochastic basis $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbf{P})$.

SDEs as a random dynamical system (RDS)

- Moving to the random dynamical systems framework opens up significant mathematical possibilities.
- Let M be an n-dimensional, smooth, connected, orientable Riemannian manifold (possibly unbounded); consider the Stratonovich SDE for a stochastic process $x_t \in M$, $t \ge 0$

$$\mathrm{d} x_t = X_0(x_t)\,\mathrm{d} t + \sum_{k=1}^r X_k(x_t)\circ\mathrm{d} W_t^k$$

where $\{X_k\}_{k=0}^r$ are a family of smooth vector fields (potentially unbounded) on M and $\{W^k\}_{k=1}^r$ are independent standard Wiener processes with respect to a canonical stochastic basis $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbf{P})$.

Assumption

 $\forall x \in M$, $\exists !$ global solution almost surely and the solution maps $x \mapsto x_t := \Phi^t_\omega(x)$ comprise a (stochastic) flow of diffeomorphisms.

Markov processes and stationary measures

■ Define the Markov kernel $P_t(x, A) = \mathbf{P}(x_t \in A | x_0 = x)$ and the Markov semigroups on observables and Borel probability measures

$$\mathcal{P}_t \varphi(x) = \mathbf{E}(\varphi(x_t)|x_0 = x) = \int_M \varphi(y) P_t(x, \mathrm{d}y)$$
$$\mathcal{P}_t^* \mu(A) = \int_M P_t(y, A) \mu(\mathrm{d}y).$$

■ The Markov semigroups solve PDEs $\partial_t \mathcal{P}_t = \mathcal{L} \mathcal{P}_t$ and $\partial_t \mathcal{P}_t^* = \mathcal{L}^* \mathcal{P}_t^*$ where

$$\begin{split} \mathcal{L}^* &= (X_0)^* + \frac{1}{2} \sum_{k=1}^r (X_k^*)^2 \\ \mathcal{L} &= X_0 + \frac{1}{2} \sum_{k=1}^r X_k^2, \end{split}$$

where I am using X_0 and X_k as vector fields/differential operators.

• Operators are elliptic iff $\{X_k(x)\}_{k=1}^r$ span $T_xM \ \forall x \in M$.

Stationary measures

■ A measure μ is called *stationary* if $\mathcal{P}_t^*\mu = \mu$ for all $t \geq 0$ or, equivalently,

$$\int_{M} \mathcal{P}_{t} \varphi(x) \mu(\mathrm{d}x) = \int_{M} \varphi(x) \mu(\mathrm{d}x).$$

 $^{^{1}}$ for μ -a.e. initial condition at least

 $^{^{2}}P_{t}(x,A) > 0$ for all x, A open suffices but can get away with less. A = A = A = A

Stationary measures

■ A measure μ is called *stationary* if $\mathcal{P}_t^*\mu = \mu$ for all $t \geq 0$ or, equivalently,

$$\int_{M} \mathcal{P}_{t} \varphi(x) \mu(\mathrm{d}x) = \int_{M} \varphi(x) \mu(\mathrm{d}x).$$

Assumption

There is a unique stationary measure for (x_t) process, which we denote μ .

■ The pointwise ergodic theorem implies $\mathbf{P} \times \mu$ -a.e. (ω, u) ,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\phi(x_t)dt=\int_M\phi(z)d\mu(z).$$

- $\blacksquare \mu$ determines long time behavior of statistics 1 .
- The Doob-Khasminskii's theorem implies $\mathcal{P}_t: L^{\infty} \to C^0$ regularization + irreducibility² implies uniqueness of μ .
- Even if not elliptic, \mathcal{P}_t , \mathcal{P}_t^* could still be smoothing called *hypoellipticity*.

 $^{^{1}}$ for μ -a.e. initial condition at least

 $^{^{2}}P_{t}(x,A) > 0$ for all x, A open suffices but can get away with less. $(A \otimes A) \times (A \otimes A)$

The multiplicative ergodic theorem (MET)

• Under a very mild additional tail assumption on μ , the Multiplicative Ergodic Theorem of Oscledet '68 implies there exists a (deterministic) λ_1 such that for $\mathbf{P} \times \mu$ -a.e. (ω, x) , there holds

$$\lambda_1 = \lim_{t \to \infty} \frac{1}{t} \log |D\Phi_{\omega}^t(x)|,$$

and a (deterministic) λ_{Σ} such that for $\mathbf{P} \times \mu$ -a.e. (ω, x) , there holds

$$\lambda_{\Sigma} = \lim_{t \to \infty} \frac{1}{t} \log \left| \det D\Phi_{\omega}^{t}(x) \right|.$$

- These give asymptotic separation of trajectories and asymptotic compression/expansion of Lebesgue measure respectively.
- ...but how does one estimate these quantities??

The projective process

Define

$$v_t := \frac{D\Phi^t(x)v}{|D\Phi^t(x)v|},$$

which solves the SDE

$$\mathrm{d} v_t = V_{\nabla X_0(x_t)}(v_t) \mathrm{d} t + \sum_{k=1}^r V_{\nabla X_k(x_t)}(v_t) \circ \mathrm{d} W_t^k,$$

where ∇ denotes the covariant derivative and, for $x \in M$ and $A: T_xM \to T_xM$ linear, the vector field V_A on \mathbb{S}_xM is defined by

$$V_A(v) := Av - \langle v, Av \rangle v =: \Pi_v Av.$$

Projective process II

■ The projective process w = (x, v) evolves on SM (or equivalently PM the projective bundle by identifying antipodal points),

$$dw_t = \tilde{X}_0(w_t)dt + \sum_{k=1}^r \tilde{X}_k(w_t) \circ dW_t^k, \qquad (2.1)$$

with $\{\tilde{X}_k\}_{k=0}^r$ defined by³

$$\tilde{X}_k(x,v) := \begin{pmatrix} X_k(x) \\ V_{\nabla X_k(x)}(v) \end{pmatrix}.$$

■ Has its associated Kolmogorov equations $\partial_t \tilde{\mathcal{P}}_t = \tilde{\mathcal{L}} \tilde{\mathcal{P}}_t$ etc.

Assumption

There is a unique stationary measure for the (w_t) process, which we denote ν .

³The canonical Sasaki metric on the sphere bundle provides the natural decomposition $T_w \mathbb{S} M = T_v M \oplus T_v (\mathbb{S}_v M)$

Stationary measures on projective space

 This process knows about stretching and compression in the flow map: consider the projective process for the simple ODE

$$\frac{d}{dt}y_t = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} y_t.$$

- The only stationary measures of the projective process are the Dirac deltas at (1,0) and (0,1),
- If you consider the Markov semigroup associated with $y_t/|y_t|$ for this problem \widetilde{P}_t^* , then $\widetilde{P}_t^*\mu \to \delta_{(1,0)}$ as long as μ is mutually singular with $\delta_{(0,1)}$.
- Stationary measures of the (wt) process encode statistics about what directions are undergoing stretching and compression in the flow map.

Furstenberg-Khasminskii

Lyapunov exponents as 'average' volume compression in projective bundle:

Theorem (Furstenberg-Khasminskii)

Define,

$$Q(x):=\operatorname{div} X_0(x)+\frac{1}{2}\sum_{k=1}^r X_k\operatorname{div} X_k(x)$$

$$\tilde{Q}(w) := \operatorname{div} \tilde{X}_0(w) + \frac{1}{2} \sum_{k=1}^r \tilde{X}_k \operatorname{div} \tilde{X}_k(w).$$

Suppose that (w_t) has a unique stationary measure ν on $\mathbb{S}M$ that projects to μ on M, and that $Q \in L^1(\mu)$ and $\tilde{Q} \in L^1(\nu)$. Then,

$$\lambda_{\Sigma} = \int_{M} Q \, \mathrm{d}\mu, \quad n\lambda_{1} - 2\lambda_{\Sigma} = -\int_{\mathbb{S}M} \tilde{Q} \, \mathrm{d}\nu.$$

Problem: Q and \tilde{Q} are not sign definite and its hard to get precise information about ν or μ outside of some simple examples.

Relative entropy à la Furstenberg

Lyapunov exponents as relative entropy growth between the stationary measure and its random push-forwards:

Theorem (Baxendale '89)

Denote $d\nu(x,v)=d\nu_x(v)d\mu(x)$ the disintegration of ν , $\forall t>0$ there holds under suitable conditions⁴

$$\mathbf{E} \int_{M} H(D\Phi_{\omega}^{t}(x)_{*}\nu_{x}|\nu_{\Phi_{\omega}^{t}(x)}) d\mu(x) = t (n\lambda_{1} - \lambda_{\Sigma}),$$

where H denotes the relative entropy of defined for two measure measures $\eta \ll \lambda$ by

$$H(\eta|\lambda) := \int \log\left(\frac{\mathrm{d}\eta}{\mathrm{d}\lambda}\right) \,\mathrm{d}\eta$$
.

Proved by an identity on how matrix action deforms volume on projective space, the ergodic theorem, and a bit of trickery.

⁴More generally, one often gets the lower bound <.

à la Furstenberg

- KEY consequence: $n\lambda_1 = \lambda_{\Sigma}$ if and only if we have the *almost-sure* degeneracy $(D\Phi_{\omega}^t)_*\nu_x = \nu_{\Phi_{\omega}^t(x)}$.
- Ideas using this almost-sure degeneracy are called à la Furstenberg, after his seminal 1968 paper. For example it implies a lot of rigidity, easily ruled out in some cases:

Theorem (Baxendale '89, and similar work by Furstenberg, Ledrappier, Carverhill, Virtser, Royer, and others...)

If $n\lambda_1 = \lambda_{\Sigma}$ then one of two possibilities hold:

- (a) \exists a continuous family of inner products $\langle \cdot, \cdot \rangle_x$ such that $D_{xn} \phi^t$ is almost **surely** an isometry $\langle \cdot, \cdot \rangle_{x_0} \to \langle \cdot, \cdot \rangle_{x_t}$.
- (b) \exists continuous families of proper linear subspaces $L^{i}(x)$, $i \leq p$ such that almost surely

$$D_{x_0}\phi^t(\bigcup_{i=1}^p L^i(x_0)) = \bigcup_{i=1}^p L^i(x_t)$$

- Powerful: We used an infinite dimensional variant to prove "Lagrangian chaos" for stochastic Navier-Stokes.
- **Problems**: not quantitative and, great if $\lambda_{\Sigma} = 0$, but otherwise, it doesn't give positivity.

Fisher information formula

The following seems to be a new identity, in terms of a Fisher information (let q be the Lebesgue measure on SM)

Theorem (JB/Blumenthal/Punshon-Smith '20)

Let $\nu = f dq$, $\mu = \rho dx$ and $\nu_x(v) = f(x, v)/\rho(x)$. Then,

$$\frac{1}{2}\sum_{k=1}^{r}\int_{M}\frac{|X_{k}^{*}\rho|^{2}}{\rho}\mathrm{d}x:=FI(\rho)=-\lambda_{\Sigma}$$

$$\frac{1}{2}\sum_{k=1}^r\int_M\frac{\left|\tilde{X}_k^*f\right|^2}{f}\mathrm{d}q:=FI(f)=n\lambda_1-2\lambda_\Sigma.$$

and (dv here denotes Lebesgue measure on \mathbb{S}^{d-1})

$$FI(f) - FI(\rho) = \frac{1}{2} \sum_{k=1}^r \int_M \left(\int_{\mathbb{S}_x M} \frac{|(X_k - V_{\nabla X_k(x)}^*) \nu_x(v)|^2}{\nu_x(v)} dv \right) d\mu(x) = n\lambda_1 - \lambda_{\Sigma}.$$

Proof from Furstenberg-Khasminskii

Our original argument came from formally computing $\lim_{t\to 0} \frac{1}{t} \mathbf{E} \int_M H(D\Phi^t(x)_* \nu_x | \nu_{\Phi^t(x)}) \, \mathrm{d}\mu(x) = FI(f) - FI(\rho).$

Proof from Furstenberg-Khasminskii

- Our original argument came from formally computing $\lim_{t\to 0} \frac{1}{t} \mathbf{E} \int_M H(D\Phi^t(x)_* \nu_x | \nu_{\Phi^t(x)}) \, \mathrm{d}\mu(x) = FI(f) FI(\rho).$
- Easier proof from the Furstenberg-Khasminskii and the Kolmogorov equation:

$$\tilde{\mathcal{L}}^* f = \tilde{X}_0^* f + \frac{1}{2} \sum_{j=1}^r (\tilde{X}_j^*)^2 f = 0.$$

Formal: pair with log f and integrate by parts: $(\tilde{X}^*g = -\tilde{X}g - (\operatorname{div}\tilde{X})g)$

$$-\frac{1}{2}\sum_{k=1}^r\int_{\mathbb{S}M}(\log f)(\tilde{X}_k^*)^2f\,\mathrm{d}q=FI(f)+\frac{1}{2}\sum_{k=1}^r\int_{\mathbb{S}M}(\tilde{X}_k\operatorname{div}\tilde{X}_k)f\,\mathrm{d}q,$$

and

$$\int (\log f) ilde{X}_0^* f \mathrm{d}q = \int ilde{X}_0 f \mathrm{d}q = - \int (\mathrm{div}\, ilde{X}_0) f \mathrm{d}q.$$

This yields the identity $FI(f) = n\lambda_1 - 2\lambda_{\Sigma}$ by Furstenberg-Khasminskii. Proof of λ_{Σ} is similar but on ρ instead of f. Conditional variant a consequence thereof after a tricky calculation.

The Fisher information formula: why it is a useful identity

- It is stated in terms of a non-negative quantity (unlike Furstenberg-Khasminskii)
- It is time-infinitesimal directly on the stationary measure (unlike the relative entropy formula)

$$\frac{1}{2}\sum_{k=1}^r\int_{\mathbb{S} M}\frac{\left|\tilde{X}_k^*f\right|^2}{f}\mathrm{d}q:=FI(f)=n\lambda_1-2\lambda_{\Sigma}.$$

Relates partial regularity of f to Lyapunov exponents. Note specifically that for $g \in C_c^{\infty}$,

$$\left|\left|\tilde{X}_{k}^{*}g\right|\right|_{L^{1}} \leq \left|\left|g\right|\right|_{L^{1}}^{1/2} \left(\int_{\mathbb{S}M} \frac{\left|\tilde{X}_{k}^{*}g\right|^{2}}{g} \mathrm{d}q\right)^{1/2}$$

which is basically $W^{1,1}$ in the forcing directions.

Quantitative estimates in small-noise limits

■ This will be most useful for small noise limits:

$$\mathrm{d} x_t^\epsilon = X_0^\epsilon \big(x_t \big) \, \mathrm{d} t + \sqrt{\epsilon} \sum_{k=1}^r X_k^\epsilon \big(x_t \big) \circ \mathrm{d} W_t^k \,,$$

(note we are allowing X_k^{ϵ} to be parameterized by ϵ as well).

■ The Fisher information identity becomes

$$\textit{FI}(f^{\epsilon}) := \frac{1}{2} \sum_{k=1}^r \int_{\mathbb{S}M} \frac{|(\tilde{X}_k^{\epsilon})^* f^{\epsilon}|^2}{f^{\epsilon}} \, \mathrm{d}q = \frac{n \lambda_1^{\epsilon} - 2 \lambda_{\Sigma}^{\epsilon}}{\epsilon}.$$

- Note however that the identity only contains derivatives in the directions on which the forcing acts.
- For most⁵ choices of $\{X_k\}_{k=1}^r$, $\{\tilde{X}_k\}_{k=1}^r$ will not span $T_w \mathbb{S} M$.

⁵In fact, it isn't so easy to find *any* example where $\left\{\tilde{X}_k\right\}_{k=1}^r$ spans $T_w \mathbb{S}M$ but it is possible with a big enough set of nonlinear $\left\{X_k\right\}_{k=1}^r$.

Hörmander's hypoelliptic spanning condition

■ Hörmander codified an essentially sharp condition for *hypoellipticity* in Kolmogorov equations – that is, regularity without $\{X_1, ..., X_r\}$ spanning the tangent space.

Definition (Hörmander spanning condition)

Given a collection of vector fields Z_0, Z_1, \ldots, Z_r on a manifold \mathcal{M} , we define collections of vector fields $\mathscr{X}_0 \subseteq \mathscr{X}_1 \subseteq \ldots$ recursively by

$$\begin{aligned} \mathscr{X}_0 &= \{Z_j \,:\, j \geq 1\}, \\ \mathscr{X}_{k+1} &= \mathscr{X}_k \cup \{[Z_j, Z] \,:\, Z \in \mathscr{X}_k, \quad j \geq 0\}. \end{aligned}$$

We say that $\{Z_i\}_{i=0}^r$ satisfies the *parabolic Hörmander condition* if exists k such that for all $w \in \mathcal{M}$,

$$\operatorname{span}\left\{Z(w):Z\in\mathscr{X}_{k}\right\}=T_{w}\mathcal{M}.\tag{4.2}$$

Projective hypoellipticity

- By Hörmander's theorem, spanning implies \mathcal{P}_t and \mathcal{P}_t^* are instantly smoothing, i.e. $L^\infty \to C^\infty$ and $L^1 \to C^\infty$ for t > 0 (and similarly for projective spanning).
- Projective hypoellipticity would almost certainly be used in any proof of uniqueness of ν .

Theorem (JB/Blumenthal/Punshon-Smith '20)

Assume that $\{\tilde{X}_0^{\epsilon},...,\tilde{X}_r^{\epsilon}\}$ are uniformly bounded in C_{loc}^k $\forall k$ and (uniform) projective spanning holds. Then, $\exists s_* \in (0,1)$ such that for any bounded, open set $U \subset \mathbb{S}M$, $\exists C = C_U > 0$ such that $\forall \epsilon \in (0,1]$

$$||f^{\epsilon}||_{W^{s_*,1}(U)} \leq C\left(1+\sqrt{FI(f^{\epsilon})}\right).$$

Key: No constants depend on ϵ ! By the Fisher information identity we get the regularity estimate:

$$||f^{\epsilon}||_{W^{s_*,1}(U)} \leq C \left(1 + \left(\frac{n\lambda_1^{\epsilon} - 2\lambda_{\Sigma}^{\epsilon}}{\epsilon}\right)^{1/2}\right).$$

■ The regularity s_{*} is explicitly related to how many generations of brackets (and what kinds) are required until spanning.

- This theorem has nothing to do with sphere bundles etc, its a general L^1 -type (uniform) hypoelliptic regularity estimate on Kolmogorov equations on an orientable manifold \mathcal{M} .
- It was easiest to go back to Hörmander's 1967 proof, which is very robust...

- This theorem has nothing to do with sphere bundles etc, its a general L^1 -type (uniform) hypoelliptic regularity estimate on Kolmogorov equations on an orientable manifold \mathcal{M} .
- It was easiest to go back to Hörmander's 1967 proof, which is very robust...
- One starts with assuming you have a good bound on $||X_k^*f||_{L^1}$ for k=1,...,r. Hörmander left a hint:

$$\left| \int_{\mathcal{M}} \varphi X_0^* f \mathrm{d}q \right| \leq \frac{1}{2} \left| \int_{\mathcal{M}} \varphi (X_k^*)^2 f \mathrm{d}q \right| \leq \frac{1}{2} \sum_{k=1}^r ||X_k \varphi||_{L^\infty} \, ||X_k^* f||_{L^1} \, .$$

$$\mathfrak{D}(g) = \sup_{v \in \mathcal{C}_c^{\infty}: ||v||_{L^{\infty}} + \sum_{k=1}^r ||X_k v||_{L^{\infty}} \leq 1} \left| \int_{\mathcal{M}} v X_0^* g dq \right|.$$

For χf with χ a smooth cutoff to a bounded set, it isn't hard to check that

$$\mathfrak{D}(\chi f) \lesssim 1 + \sqrt{FI(f)}$$
.

lacksquare Main step: the "Hörmander inequality" $orall g \in \mathcal{C}^\infty_c(U)$

$$||g||_{W^{s_*,1}} \lesssim ||g||_{L^1} + \mathfrak{D}(g) + \sum_{k=1}^r ||X_k^*g||_{L^1}.$$

■ By easy variant of a Hörmander lemma, for s depending on $\{s_k\}$.

$$||g||_{W^{s,1}} \lesssim ||g||_{L^1} + \sum_{k=0}^r |g|_{X_k,s_k} := ||g||_{L^1} + \sum_{k=0}^r \sup_{|h| \leq 1} |h|^{-s_k} \left| \left| e^{hX_k} g - g \right| \right|_{L^1}.$$

Hörmander proved this using the CBH formula and some cleverness

$$e^{-tX}e^{-tY}e^{tX}e^{tY} = e^{\frac{t^2}{2}[X,Y]+...}$$

- The *really* hard part is to recover $|g|_{X_0,1/2}$. Hörmander used a delicate regularization and duality argument to get around this issue in the L^2 framework
- In the non-self-dual L^1 - L^∞ framework, we need an even more complicated regularization procedure...

A class of "Euler-like" nonlinear systems

Interested in a class of weakly damped SDE on \mathbb{R}^d : A symmetric positive definite, B bilinear with

$$dx_t = (B(x_t, x_t) - \epsilon A x_t) dt + \sum_{k=1}^r X_k dW_t^{(k)},$$

where X_k are constant ("additive noise"). We assume:

$$\nabla \cdot B(x,x) = 0, \qquad x \cdot B(x,x) = 0.$$

These conditions make the nonlinearity conserve volume in phase space and conserves the energy $E=\frac{1}{2}\left|x\right|^{2}$.

■ Will also impose the cancellation condition⁶ $B(e_k, e_k) = 0$.

 $^{^6}$ The $\{e_1,...,e_s\}$ can be any set of vectors which form a basis for span $\{X_1,...,X_r\}$, not necessarily canonical coordinate vectors, though for many examples, like L96 and Galerkin-Navier-Stokes they are.

A class of "Euler-like" nonlinear systems

Interested in a class of weakly damped SDE on \mathbb{R}^d : A symmetric positive definite, B bilinear with

$$dx_t = (B(x_t, x_t) - \epsilon A x_t) dt + \sum_{k=1}^r X_k dW_t^{(k)},$$

where X_k are constant ("additive noise"). We assume:

$$\nabla \cdot B(x,x) = 0, \qquad x \cdot B(x,x) = 0.$$

These conditions make the nonlinearity conserve volume in phase space and conserves the energy $E = \frac{1}{2} |x|^2$.

- Will also impose the cancellation condition $B(e_k, e_k) = 0$.
- There is no $\epsilon \to 0$ limit as the energy of the steady state increases like $\mathcal{O}(\epsilon^{-1})$. Need to rescale x and t:

$$dx_t = (B(x_t, x_t) - \epsilon A x_t) + \sqrt{\epsilon} \sum_{k=1}^r X_k dW_t^{(k)},$$

 $^{^6}$ The $\{e_1,...,e_s\}$ can be any set of vectors which form a basis for span $\{X_1,...,X_r\}$, not necessarily canonical coordinate vectors, though for many examples, like L96 and Galerkin-Navier-Stokes they are.

A first application: projective hypoellipticity implies chaos

A first application

Theorem (JB/Blumenthal/Punshon-Smith '20)

For the above "Euler-like" systems, projective hypoellipticity implies

$$\lim_{\epsilon \to 0} \frac{\lambda_1^\epsilon}{\epsilon} = \infty.$$

In particular, $\exists \epsilon_0 > 0$ such that for $\epsilon \in (0, \epsilon_0)$, the top Lyapunov exponent is strictly positive.

- The quantitative lower bound is expected to be far from optimal of course, but its the first one of its kind nevertheless.
- Previous quantitative estimates for simple 2d nonlinear oscillators (Baxendale-Goukasian '02) and a class of simple linear SDEs (Pinsky-Whihstutz '88). These require an almost exact understanding of ν^{ϵ} .
- Verifying projective hypoellipticity is neither impossible nor easy...

Basic idea of the proof

- Nice qualitative properties (existence, uniqueness, regularity of μ, ν for $\epsilon > 0$ etc) follow from projective hypoellipticity, the energy identity $x \cdot B = 0$, and geometric control theory⁷ to deduce projective irreducibility.
- Linear damping and $\nabla \cdot B = 0$ implies $\lambda_{\Sigma} = -\epsilon \text{tr} A$.

⁸Tightness is proved using tail control that comes from the energy identity again. 🔻 🗦 🔻 👙 🔌 🔾 🥍

⁷This is where the cancellation condition is used.

Basic idea of the proof

- Nice qualitative properties (existence, uniqueness, regularity of μ, ν for $\epsilon > 0$ etc) follow from projective hypoellipticity, the energy identity $x \cdot B = 0$, and geometric control theory⁷ to deduce projective irreducibility.
- Linear damping and $\nabla \cdot B = 0$ implies $\lambda_{\Sigma} = -\epsilon \text{tr} A$.
- The Fisher information formula and hypoellipticity theorem implies

$$||f^{\epsilon}||_{W^{s_*,1}(U)} \lesssim 1 + \left(\frac{n\lambda_1^{\epsilon} + 2\epsilon \operatorname{tr} A}{\epsilon}\right)^{1/2}.$$

- Assume for contradiction that $\lambda_1^{\epsilon}/\epsilon \lesssim 1$. Then we get uniform-in- ϵ regularity in $W_{loc}^{s,1}$.
- Compactness⁸ implies $f^{\epsilon} \to f$ strongly in L^1 to the density of an absolutely continuous invariant measure of the *deterministic* projective process $w_t = (x_t, v_t)$ satisfying

$$\frac{d}{dt}w_t = \tilde{X}_0 w_t.$$

⁷This is where the cancellation condition is used.

⁸Tightness is proved using tail control that comes from the energy identity again.

A neat identity from the structure of Euler-like systems

- \blacksquare A rigidity theorem⁹ shows that no such L^1 invariant measure can exist if there's any unbounded growth of $D\Phi^t$.
- The bilinearity and energy structure of the system gives a neat identity:

$$D\Phi^{t}(x)x = \Phi^{t}(x) + tB(\Phi^{t}(x), \Phi^{t}(x)),$$

■ By Poincaré recurrence and $B \neq 0$ a.e., this contradicts rigidity lemma.

⁹Basically Theorem 3.23 in Arnold/Nguen/Oseledets '99, which essentially shows that an absolutely continuous measure implies Case (a) in the à la Furstenberg dichotomy, i.e. that $D\Phi^t$ is an isometry in suitable inner products. 4 口 5 4 倒 5 4 至 5 4 至 5

A neat identity from the structure of Euler-like systems

- \blacksquare A rigidity theorem⁹ shows that no such L^1 invariant measure can exist if there's any unbounded growth of $D\Phi^t$.
- The bilinearity and energy structure of the system gives a neat identity:

$$D\Phi^{t}(x)x = \Phi^{t}(x) + tB(\Phi^{t}(x), \Phi^{t}(x)),$$

- By Poincaré recurrence and $B \neq 0$ a.e., this contradicts rigidity lemma.
- The same general argument for $\lambda_1^{\epsilon}/\epsilon \to \infty$ applies to all sorts of systems with at least unbounded growth and projective hypoellipticity.
- This is robust to lack of knowledge about the deterministic dynamics: you don't need to know about all the mechanisms for growth of $D\Phi^t$, it suffices to know something.
- Hopefully there is an opportunity for incremental improvements, as more dynamical 'motifs' are identified.

⁹Basically Theorem 3.23 in Arnold/Nguen/Oseledets '99, which essentially shows that an absolutely continuous measure implies Case (a) in the à la Furstenberg dichotomy, i.e. that $D\Phi^t$ is an isometry in suitable inner products. < □ > → □ > → □ > → □ > → □ = □

Projectve spanning for Euler-like systems

For Euler-like systems with additive noise, we can reduce projective spanning to question about matrix Lie algebras.

Lemma (JB/Blumenthal/Punshon-Smith '20)

Suppose that $\{\partial_{x_k}\}_{k=1}^n$ in span of finitely many brackets¹⁰ of $\{X_0, X_1, \dots, X_r\}$. Define for each $k = 1, \dots n$ the following constant matrices ,

$$H^k := \partial_{\mathsf{x}_k} \nabla B \in \mathfrak{sl}_n(\mathbb{R})$$

and let $\mathrm{Lie}(H^1,\ldots,H^n)$ be the matrix Lie sub-algebra of $\mathfrak{sl}_n(\mathbb{R})$ generated by $H^1,\ldots H^n$. Then projective spanning holds if

$$\operatorname{Lie}(H^1,\ldots,H^n)=\mathfrak{sl}_n(\mathbb{R}).$$
 (5.3)

- Note that this doesn't involve the noise anymore, it is purely a property of the nonlinearity!
- Says essentially that everywhere, it is possible to move in x infinitesimally in order to deform the linearization in any direction.

¹⁰ not too hard to check for Lorenz 96, Galerkin-Navier-Stokes, and the shell models GOY and SABRA, for example.

Chaos for stochastically driven Lorenz 96

Recall we have J unknowns in a periodic array (i.e. $u_k = u_{k+nJ}$)

$$du_{\ell} = (u_{\ell+1} - u_{\ell-2})u_{\ell-1}dt - \epsilon u_{\ell}dt + \sqrt{\epsilon}q_{\ell}dW_{t}^{\ell}.$$

Theorem (JB/Blumenthal/Punshon-Smith '20)

If $J \ge 7$ and q_1 and q_2 are both non-zero, then

$$\lim_{\epsilon \to 0} \frac{\lambda_{\epsilon}^1}{\epsilon} = \infty.$$

- Unfortunately, we didn't use a robust method, we basically just played around with commutators until we found the set of elementary matrices: $E^{1,2}, E^{2,3}, \ldots, E^{n,1}$, which is a generating set for $\mathfrak{sl}_n(\mathbb{R})$.
- (here an elementary matrix $E_{mn}^{i,j} = \delta_{(i,j)=(m,n)}$)

Galerkin-Navier-Stokes

■ The 2d NSE in vorticity form on 11 \mathbb{T}^2 for $w \in \mathbb{C}^{\mathbb{Z}^2_{\leq N}}$ satisfying

$$\partial_t w_{\ell} = \sum_{\ell=k+j} c_{j,k} w_j w_k - \epsilon |\ell|^2 + \sqrt{\epsilon} q_{\ell} dW_t^{(\ell)},$$

where $c_{j,k}$ is a rational function of j,k, $w_k=\overline{w_{-k}}$, and $\mathbb{Z}^2_{\leq N}=\left\{k\in Z^2:|k|_{\ell^\infty}\leq N\right\}$. Writing in real variables, one can check that this is an "Euler-like" system.

Theorem (JB/Punshon-Smith '21 (work in progress!))

For all N sufficiently large¹² projective hypoellipticity holds, and hence chaos for all ϵ sufficiently small.

- Much harder due to full coupling of unknowns.
- The proof uses some basic formalisms from complex geometry, ideas from bilinear control theory for dealing with matrix Lie algebras, and computational algebraic geometry...
- May provide a blueprint for deducing similar hypoelliptic results for other PDEs...

 $^{^{11}\}mathrm{The}$ results hold for all rectangular torii too, not just square.

Looking forward

- We haven't even used the full power of the lower bound we have... so there is a lot of work to be done and the results still leave a lot to be desired, but we are hoping its a reasonable start... There should be room for improvements in:
 - Even to use the compactness-rigidity: need more robust methods for proving growth of DΦ^t in deterministic dynamical systems;
 - Better hypoelliptic tools (better lower bounds by precision norms, more advantageous ϵ dependence, problem specific etc);
 - Using more information about the dynamics (i.e. more 'motifs') in order to get better lower bounds on $||f^{\epsilon}||_{W^{s,1}}$ and similar quantities;
- Infinite dimensions would be great, but there are a lot of challenges to this...

A class of weakly-damped, weakly-driven SDE

Looking forward

Thank you for your attention!