Multidimensional Mellin Transforms: Fundamental Correspondence

Irina Antipova

Siberian Federal University

Multidimensional Residues and Tropical Geometry June 13-19, 2021 Sirius Mathematical Center

Outline

- Fundamental correspondence for Mellin transforms in dimension one.
- Inversion theorems for multidimensional Mellin transforms.
- Quasi-elliptic polynomials.
- Nilsson-Passare representation for the Mellin transform of the rational function.
- ► Alternative representations for the Mellin transform of the rational function.
- Fundamental correspondence in several variables.

Mellin transform (n = 1)

$$M[f](z) = \int_{0}^{+\infty} f(x)x^{z-1}dx \tag{1}$$

$$\begin{array}{rcl} f(x) & = & O(x^{\alpha}), \ x \to 0 \\ f(x) & = & O(x^{\beta}), \ x \to +\infty, \ \alpha > \beta \end{array}$$

The integral (1) converges in the fundamental strip

$$(-\alpha, -\beta) + i\mathbb{R}. \tag{2}$$

Example 1

Let f(x) be a function 1/g(x) where g(x) is a polynomial with the multiplicity μ at x=0 and the degree d. Then the fundamental strip for M[f](z) is as follows

$$(\mu, d) + i\mathbb{R}.$$

Remark: $[\mu,d]$ is the Newton polytope for the polynomial g(x).

Toric view

The Mellin transform may be represented as follows

$$M[f](z) = \int_{l} f(x)x^{z} \frac{dx}{x},$$

where l is a ray connecting points 0 and ∞ on the Riemann sphere, therefore l is a relative 1–cycle for the pair $(\overline{\mathbb{C}}, \{0, \infty\})$.

 $\overline{\mathbb{C}}$ is a toric variety and $\{0,\infty\}$ is a set of \mathbb{T} -invariant divisors on it.

Fundamental correspondence

Flajolet et al, 1995

There is a precise correspondence between individual terms in the asymptotic expansion of an original function f(x) and singularities of the transformed function M[f](z):

$$\begin{array}{cccc} x^k \ln^l x \text{ at } 0 & \longleftrightarrow & \frac{(-1)^l l!}{(z+k)^{l+1}} \\ x^k \ln^l x \text{ at } \infty & \longleftrightarrow & -\frac{(-1)^l l!}{(z+k)^{l+1}} \end{array}$$

Multidimensional Mellin transforms

▶ The Mellin transform of f(x) is defined by

$$M[f](z) = \int_{\mathbb{R}^n_{\perp}} f(x)x^{z-I}dx, \quad x^{z-I} = x_1^{z_1-1} \cdots x_n^{z_n-1}.$$
 (3)

▶ The inverse Mellin transform of F(z) is the integral

$$M^{-1}[F](x) = \frac{1}{(2\pi i)^n} \int_{a+i\mathbb{R}^n} F(z) x^{-z} dz,$$
 (4)

where $a \in \mathbb{R}^n$ is a fixed vector.

Classes M_{Θ}^{U} and W_{U}^{Θ}

convex domains $\Theta \subset \mathbb{R}^n$, $U \subset \mathbb{R}^n \longrightarrow \text{classes } M_\Theta^U$, W_U^Θ

 $\blacktriangleright \ M_\Theta^U$ is the vector space of functions $\Phi(x)$ holomorphic in

$$S_{k\Theta} = \{ x \in \mathcal{S} : \arg x \in k\Theta \}, \ k > 1,$$

$$|\Phi(x)| \leqslant C(a)|x^{-a}| \text{ for all } x \in S_{k\Theta}, \ a \in U,$$

▶ W_U^Θ is the vector space of functions F(z) = F(u+iv) holomorphic in $U+i\mathbb{R}^n$ and

$$|F(u+iv)| \leqslant K(u)e^{-kH_{\Theta}(v)}, \ k>1$$
 with supp. f. $H_{\Theta}(v)$.

Theorem 1 (A., 2007)

If
$$f(x)\in M_{\Theta}^U$$
, then $M[f](z)\in W_U^\Theta$, and $M^{-1}M[f]=I[f]$. If $F(z)\in W_U^\Theta$, then $M^{-1}[F](x)\in M_{\Theta}^U$, and $MM^{-1}[F]=I[F]$.

Tube domain $U + i\mathbb{R}^n$

The tube domain $U + i\mathbb{R}^n$ is an analog of the fundamental strip.

Example 2

$$f(x) = \frac{1}{1+x}$$
, $M[f](z) = \Gamma(z)\Gamma(1-z)$, $0 < \text{Re}z < 1$, $U = (0;1)$.

Example 3

$$f(x_1, x_2) = \frac{1}{1 + x_1 + x_2}, \quad M[f](z_1, z_2) = \Gamma(z_1)\Gamma(z_2)\Gamma(1 - z_1 - z_2)$$

is holomorphic in the tube domain $U+i\mathbb{R}^2$, where $U=\{\operatorname{Re} z_1>0,\operatorname{Re} z_2>0,\operatorname{Re} (z_1+z_2)<1\}.$

Mellin transform of a rational function

$$M[1/Q](z) = \int_{\mathbb{R}^n_+} \frac{x^{z-I}}{Q(x)} dx,$$
 (5)

$$Q(x) = \sum_{\alpha \in \mathbb{N}^n} c_\alpha x^\alpha, \ \operatorname{supp} Q = \{\alpha \in \mathbb{N}^n : c_\alpha \neq 0\}$$

- Convergence of multiple integrals for rational functions with quasi-elliptic denominators were studied by Ermolaeva and Tsikh [SbMath, 1996].
- ▶ The Newton polytope Δ of the polynomial Q is defined to be the convex hull of suppQ in \mathbb{R}^n .
- For each covector $a \in \mathbb{R}^{n*}$ we introduce the **truncated** polynomial

$$Q_a = \sum_{\alpha \in \Delta^a} c_\alpha x^\alpha, \text{ where } \Delta^a = \{k \in \Delta : \langle a, k \rangle = \min_{l \in \Delta} \langle a, l \rangle \}$$

is the corresponding face of Δ .

Quasi-elliptic polynomials

Definition 1 (Ermolaeva - Tsikh, 1996)

A polynomial Q is said to be **quasi-elliptic** if for any nonzero covector $a \in \mathbb{R}^{n*}$ the truncated polynomial Q_a does not vanish in $(\mathbb{R} \setminus \{0\})^n$.

Remark

The $(\mathbb{R}\setminus\{0\})^n$ is a group with the coordinate—wise mutiplication. It has 2^n connected components. The component \mathbb{R}^n_+ is a subgroup. So we can define the notion of quasi-ellipticity on the \mathbb{R}^n_+ , assuming that Q_a does not vanish in \mathbb{R}^n_+ .

Quasi-elliptic polynomials: examples

- A polynomial Q is quasi-elliptic if all its monomials $c_{\alpha}x_1^{\alpha_1}\dots x_n^{\alpha_n}$ have positive coefficients c_{α} and even degrees α_i in each variable x_i .

 For instance, the polynomial $Q(x)=1+x_1^4+x_1^8x_2^2$ is quasi-elliptic.
- Any elliptic polynomial that does not vanish on \mathbb{R}^n is quasi-elliptic; moreover, the Newton polytope $\Delta(Q)$ is the n-dimensional simplex spanned by the vertices $\alpha^0=(0,\dots,0), \alpha^i=(0,\dots,q,\dots,0), \ i=1,\dots,n,$ where $q=\deg Q.$

Quasi-ellipticity and hypoellipticity

Definition 2 (Hörmander)

A polynomial Q(x) is said to be $\mbox{hypoelliptic}$ if for any multi-index $\alpha \neq 0$

$$\frac{Q^{(\alpha)}(x)}{Q(x)} \to 0$$

when $\parallel x \parallel \rightarrow \infty$.

Theorem 2 (Zubchenkova)

If a polynomial Q(x) is quasi-elliptic and its Newton polytope Δ is full, then Q(x) is hypoelliptic.

Remark

The fullness of a polytope means that its projections onto all coordinate hyperplanes belong to it.

Example 4

The polynomial $Q(x)=(x_1^2-1)^2+x_2^4$ is hypoelliptic, but it is not quasi-elliptic, since $Q_{(0,1)}=(x_1^2-1)^2$ vanishes in $(\mathbb{R}\setminus 0)^2$.

Meromorphic continuation of M[1/Q](z)

Theorem 3 (Nilsson-Passare, 2013)

If the polynomial Q is quasi-elliptic on \mathbb{R}^n_+ and its Newton polytope Δ is of full dimension, then the Mellin transform M[1/Q](z) admits a meromorphic continuation of the form

$$M[1/Q](z) = \Phi(z) \prod_{k=1}^{N} \Gamma(\nu^k - \left\langle \mu^k, z \right\rangle),$$

where Φ is an entire function, $\mu^k \in \mathbb{Z}^n$ are outward normal vectors of the facets of Δ , and $\nu^k \in \mathbb{Z}$.

Alternative representations for M[1/Q](z)

Theorem 4 (A-Efimov-Shchuplev-Tsikh)

Assume that Q is a quasi-elliptic polynomial on \mathbb{R}^n_+ . For each normal vector μ^k of the Newton polytope Δ the Mellin transform M[1/Q](z) admits the following representation

$$M_k(z) = \Gamma\left(-\left\langle \mu^k, z \right\rangle\right) \Gamma\left(1 + \left\langle \mu^k, z \right\rangle\right) e^{-i\pi \left\langle \mu^k, z \right\rangle} \Phi_k(z)$$

with

$$\Phi_k(z) = v.p. \int_{V_k} \text{Res } \omega,$$

where Res ω is the Lerey residue form of the integrand $\omega = \frac{x^{z-1}}{Q(x)} dx$ in the Mellin transform (5) and v.p. is the principal value respectively singular points of V_k .

Sketch of proof: torus automorphisms

$$M[1/Q](z) = \int_{\mathbb{R}^n_+} \frac{x^{z-I}}{Q(x)} dx$$

- ▶ The orthant \mathbb{R}^n_+ is a group with respect to the coordinate-wise multiplication.
- ▶ The \mathbb{R}^n_+ is a connected component of the real torus $(\mathbb{R} \setminus 0)^n$.
- Any automorphism of the torus is defined by a monomial transform $x = y^A$, given by an integer unimodular matrix A.
- For each outward normal vector $\mu^k = (\mu_1^k, \dots, \mu_n^k)$ of the Newton polytope $\Delta(Q)$, we define a one-parameter subgroup

$$\gamma^k = (y_1^{\mu_1^k}, \dots, y_1^{\mu_n^k}), \ y_1 \in \mathbb{R}_+.$$

▶ Thus, one fibers the \mathbb{R}^n_+ into shifts

$$c \odot \gamma^k = (c_1 y_1^{\mu_1^k}, \dots, c_n y_1^{\mu_n^k}).$$

Sketch of proof: sets V_k

Remark

The set of all shifts can be represented as $c=(y')^{\eta'}$, where $y'=(y_2,\ldots,y_n)$ and η' is a $(n\times(n-1))$ -matrix s.t. the matrix $\eta=(\mu^k,\eta')$ is unimodular.

Consider the complex hypersurface

$$V = \{x \in (\mathbb{C} \setminus 0)^n : Q(x) = 0\}.$$

 \blacktriangleright Consider sections of V by the family of shifts of one-parameter subgroups γ^k

$$V_{k} = \bigcup_{y^{'} \in \mathbb{R}^{n-1}_{+}} \left(V \cap \left\{ x = y_{1}^{\mu^{k}} \odot \left(y^{'} \right)^{\eta^{'T}} : y_{1} \in \mathbb{C} \setminus 0 \right\} \right).$$

Example 5: sets V_k

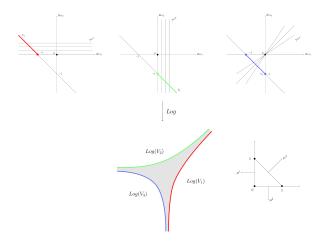


Figure:
$$V = \{x \in (\mathbb{C} \setminus 0)^2 : 1 + x_1 + x_2 = 0\}$$
.

Toric view in several variables

n = 1:

$$M[f](z) = \int_{l} f(x)x^{z} \frac{dx}{x},$$

where l is a ray connecting points 0 and ∞ on the Riemann sphere, therefore l is a relative 1-cycle for the pair $(\overline{\mathbb{C}}, \{0, \infty\})$.

n > 1:

The toric view extends on Mellin transforms of rational functions in several variables. In this case toric compactifications for $(\mathbb{C}\setminus 0)^n$ play the role of the Riemann sphere $\overline{\mathbb{C}}$ and the set $\{0,\infty\}$.

Complex Toric Variety

There are two approaches to define the toric variety X.

Definition 3.1

A connected complex analytic variety X is said to be the **toric** variety if it has the atlas with monomial transition functions.

Definition 3.2

Consider the complex algebraic torus $\mathbb{T}^n=(\mathbb{C}\setminus 0)^n$ with a group operation

$$zw=(z_1w_1,\ldots,z_nw_n).$$

The **toric variety** is a normal variety X that contains the torus \mathbb{T}^n as a dense open subset together with an action $\mathbb{T}^n \times X \to X$ of \mathbb{T}^n on X that extends the natural action of \mathbb{T}^n on it itself.

\mathbb{T} – invariant divisors

Divisors on the toric variety X which are invariant with respect to the action of \mathbb{T}^n are called the \mathbb{T} -invariant divisors. Denote them T_1, \ldots, T_N .

Example 6

- $ightharpoonup \mathbb{CP}^2 = \mathbb{T}^2 \cup T_1 \cup T_2 \cup T_3$, where T_1 and T_2 complete \mathbb{T}^2 to \mathbb{C}^2 , T_3 is the infinite line in \mathbb{CP}^2
- $ightharpoonup \overline{\mathbb{C}} imes \overline{\mathbb{C}}$ has 4 \mathbb{T} -invariant divisors.

Real Toric variety

Consider the group $(\mathbb{R} \setminus 0)^n$.

- ▶ If divisors $T_1, ..., T_N$ are invariant with respect to the action of \mathbb{T}^n , then hypersurfaces $\mathcal{R}e\,T_1, ..., \mathcal{R}e\,T_N$ are invariant respectively the action of the group $(\mathbb{R}\setminus 0)^n$.
- ▶ Toric varieties X and ReX are compactifications of \mathbb{T}^n and $(\mathbb{R}\setminus 0)^n$ correspondingly.

Theorem 5

A polynomial Q(x) is quasi-elliptic if and only if the closure of the hypersurface $V=\{x\in\mathbb{T}^n:Q(x)=0\}$ in the toric compactification of \mathbb{T}^n does not intersect $\operatorname{\mathcal{R}\!\mathit{e}} T_1,\ldots,\operatorname{\mathcal{R}\!\mathit{e}} T_N.$

Remark

If the polynomial Q is quasi-elliptic, then the integral (5) defining the Mellin transform M[1/Q](z) converges in the tube domain $\Delta^\circ + i\mathbb{R}^n$, where Δ° is the interior of the Newton polytope $\Delta(Q)$ (Ermolaeva-Tsikh, 1996).

Example 7: $M_k(z)$

$$Q(x) = 2 - x_1 + x_1^2 - x_2 + x_2^2 - x_1 x_2,$$

$$M[1/Q] = \int_{\mathbb{R}^2_+} \frac{x_1^{z_1} x_2^{z_2}}{2 - x_1 + x_1^2 - x_2 + x_2^2 - x_1 x_2} \frac{dx}{x},$$

- ▶ $\Delta = \{\alpha_1 \ge 0\} \cap \{\alpha_2 \ge 0\} \cap \{\alpha_1 + \alpha_2 \le 2\},$
- $\mu^1 = (-1,0), \mu^2 = (0,-1), \mu^3 = (1,1),$
- $\gamma^{\mu^1} = (y_1^{-1}, 1), y_1 \in \mathbb{R}_+,$
- $V_1: x_1 = \left(\frac{y_2^2 + y_2 \pm iy_2 \sqrt{7y_2^2 6y_2 + 3}}{2(2y_2^2 y_2 + 1)}\right)^{-1}, x_2 = y_2^{-1},$
- $ightharpoonup M_1(z) = \Gamma(z_1)\Gamma(1-z_1)e^{i\pi z_1}\Phi_1(z)$, where

$$\Phi_1(z) = \int_0^\infty y_2^{1-z_2} \left(\frac{\left(y_2^2 + y_2 + iy_2\sqrt{7y_2^2 - 6y_2 + 3}\right)^{1-z_1}}{2\left(2y_2^2 - y_2 + 1\right)^{1-z_1} iy_2\sqrt{7y_2^2 - 6y_2 + 3}} - \frac{\left(y_2^2 + y_2 - iy_2\sqrt{7y_2^2 - 6y_2 + 3}\right)^{1-z_1}}{2\left(2y_2^2 - y_2 + 1\right)^{1-z_1} iy_2\sqrt{7y_2^2 - 6y_2 + 3}} \right) dy_2.$$

Example 7: amoeba \mathcal{A}_V and $\mathsf{Log}(V_k)$

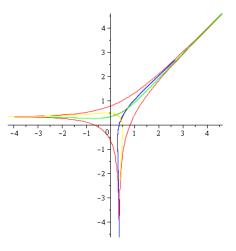


Figure: The contour of \mathcal{A}_V (red), $\mathsf{Log}(V_1)$ (blue), $\mathsf{Log}(V_2)$ (green), $\mathsf{Log}(V_3)$ (yellow).

Example 8: $M_k(z)$

$$Q(x) = 5 + x_1 + x_2 + x_1 x_2,$$

$$M[1/Q] = \int\limits_{\mathbb{R}^2_+} \frac{x_1^{z_1} x_2^{z_2}}{5 + x_1 + x_2 + x_1 x_2} \frac{dx}{x},$$

$$\Delta = \{ \alpha_1 \ge 0 \} \cap \{ \alpha_2 \ge 0 \} \cap \{ \alpha_1 \le 1 \} \cap \{ \alpha_2 \le 1 \},$$

$$\mu^1 = (-1,0), \mu^2 = (0,-1), \mu^3 = (1,0), \mu^4 = (0,1),$$

$$\gamma^{\mu^1} = (y_1^{-1}, 1), y_1 \in \mathbb{R}_+,$$

$$V_1$$
: $x_1 = -\frac{5y_2+1}{y_2+1}$, $x_2 = y_2^{-1}$,

$$M_1(z) = \Gamma(z_1)\Gamma(1-z_1)e^{i\pi z_1} \int_{0}^{\infty} (-1)^{-z_1} \frac{(1+y_2)^{-z_1}y_2^{-z_2}}{(5y_2+1)^{-z_1+1}} dy_2.$$

Example 8: amoeba \mathcal{A}_V and $\mathsf{Log}(V_k)$

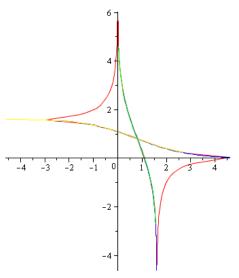


Figure: The contour of A_V , $Log(V_1)$, $Log(V_2)$, $Log(V_3)$, $Log(V_4)$.

Elaboration: entire function $\Phi(z)$

Theorem 6

If Q is a quasi-elliptic polynomial on \mathbb{R}^n_+ then the function $\Phi(z)$ in the Nilsson-Passare representation

$$M[1/Q](z) = \Phi(z) \prod_{k=1}^{N} \Gamma(\nu^{k} - \left\langle \mu^{k}, z \right\rangle),$$

is of exponential type:

$$|\Phi(z)| \le Ce^{A|z|}.$$

Singular expansions for M[1/Q]

Let C_v be the minimal cone with the vertex $v \in \text{Vert}\Delta$, $C_v \supset \Delta$.

Theorem 7

For each vertex $v\in \Delta$ the Mellin transform M[1/Q] admits the following representation

$$\prod_{k\in I_v}\Gamma(\nu_k-\langle\mu_k,z\rangle)\Phi_v(z),$$

where $I_v=\{k:\langle \mu_k,z\rangle=\nu_k \text{ intersects } -C_v\}$, the function $\Phi_v(z)$ is holomorphic in $(-C_v)^\circ+i\mathbb{R}^n$ and of the exponential growth at most.