The Hartogs extension phenomenon in toric varieties

S.V. Feklistov Siberian Federal University, Krasnoyarsk

Introduction

- ▶ The classical Hartogs extension theorem: Let $D \subset \mathbb{C}^n(n > 1)$ be a domain and $K \subset D$ be a compact set such that $D \setminus K$ is connected. Then the restriction homomorphism $H^0(D, \mathcal{O}) \to H^0(D \setminus K, \mathcal{O})$ is an isomorphism.
- A natural question arises if this is true for complex analytic varieties.
- Let (X, \mathcal{O}) be a connected complex analytic variety (It means that, locally, X is an analytic set A in a domain $D \subset \mathbb{C}^n$ and $\mathcal{O}|_A = \mathcal{O}_D/I_A$, where I_A is an ideal sheaf of A).

Definition

We say that a connected complex space X admits the Hartogs phenomenon if for any domain $D \subset X$ and a compact set $K \subset D$ such that $D \setminus K$ is connected, the restriction homomorphism $H^0(D, \mathcal{O}_X) \to H^0(D \setminus K, \mathcal{O}_X)$ is an isomorphism.

- In this or a similar formulation this phenomenon has been extensively studied in many situations, including Stein manifolds and spaces, (n-1)-complete normal complex spaces and so on.
- Our goal is to study the Hartogs phenomenon in toric varieties.

Toric varieties

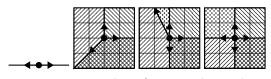
Let T_N be a complex algebraic torus associated with a lattice N (note: $T_N = N \otimes_{\mathbb{Z}} \mathbb{C}^* \cong (\mathbb{C}^*)^n$, here $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$)

Definition

A normal algebraic variety equipped with an algebraic action of the torus T_N is called toric variety if it contains an open T_N -orbit.

- ightharpoonup Ex: $(\mathbb{C}^*)^n$, \mathbb{C}^n , \mathbb{CP}^n .
- Toric varieties classified by fans.
- ▶ A strictly convex cone is a subset $\sigma = \mathbb{R}_{\geq} \langle n_i \mid i = 1, \cdots, s \rangle \subset N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$ for some $n_i \in N, i = 1, \cdots, s$
- ▶ A fan is a pair (Σ, N) where Σ is a finite set of strictly convex cone $\sigma \subset N_{\mathbb{R}}$ with the properties: 1) $\forall \sigma \in \Sigma \land \forall \tau < \sigma \Longrightarrow \tau \in \Sigma$; 2) $\forall \sigma, \sigma' \in \Sigma \Longrightarrow (\sigma \cap \sigma' < \sigma) \land (\sigma \cap \sigma' < \sigma')$
- ► The support of a fan Σ is a set $|Σ| := \bigcup_{\sigma \in Σ} \sigma$.

Examples of toric varieties



Puc.: \mathbb{CP}^1 , \mathbb{CP}^2 , \mathcal{H}_2 , $\mathbb{CP}^1 \times \mathbb{CP}^1$

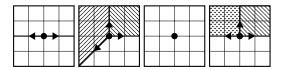


Рис.: $\mathbb{CP}^1 \times \mathbb{C}^*$, $\mathbb{CP}^2 \setminus \{ pt \}$, $(\mathbb{C}^*)^2$, $\mathbb{CP}^1 \times \mathbb{C}^1$

Two examples

For any cone $\sigma \in \Sigma$ corresponds an affine toric variety $U_{\sigma} = Spec(\mathbb{C}[\sigma^{\vee} \cap N^*])$ which is gluing together to a toric variety $X_{\Sigma} = \varinjlim_{\sigma \in \Sigma} U_{\sigma}$ (here inductive limit is taken with respect to a partial order "to be a face")

$$\begin{split} &\sigma_1 = \mathbb{R}_{\geq} \langle (1,0), (0,1) \rangle \\ &\sigma_2 = \mathbb{R}_{\geq} \langle (0,1), (-1,-1) \rangle \\ &\tau = \mathbb{R}_{\geq} \langle (0,1) \rangle \\ &U_{\sigma_1} = \mathbb{C}^2_{z_1,z_2}, U_{\sigma_2} = \mathbb{C}^2_{w_1,w_2}, \\ &U_{\tau} = \mathbb{C} \times \mathbb{C}^* \\ &U_{\sigma_1} \hookleftarrow U_{\tau} \hookrightarrow U_{\sigma_2} \\ &\text{Gluing map:} \end{split}$$

$$z_1 = \frac{1}{w_1}, z_2 = \frac{1}{w_1}w_2$$

$$\mathit{X}_{\Sigma} = \mathcal{O}_{\mathbb{CP}^1}(1) \text{ or } \mathbb{CP}^2 \setminus \{ \mathit{pt} \}$$

$$\begin{array}{l} \sigma_1 = \mathbb{R}_{\geq} \langle (1,0), (0,1) \rangle \\ \sigma_2 = \mathbb{R}_{\geq} \langle (0,1), (-1,1) \rangle \\ \tau = \mathbb{R}_{\geq} \langle (0,1) \rangle \\ U_{\sigma_1} = \mathbb{C}^2_{z_1,z_2}, U_{\sigma_2} = \mathbb{C}^2_{w_1,w_2}, \\ U_{\tau} = \mathbb{C} \times \mathbb{C}^* \\ U_{\sigma_1} \hookleftarrow U_{\tau} \hookrightarrow U_{\sigma_2} \end{array}$$
 Gluing map:

$$z_1 = \frac{1}{w_1}, z_2 = w_1 w_2$$

$$X_{\Sigma} = \mathcal{O}_{\mathbb{CP}^1}(-1) \text{ or } \mathrm{Bl}_0 \, \mathbb{C}^2$$

Smoothness and compactness

- A toric variety X_{Σ} is smooth (i.e. is a complex manifold) if and only if for every cone $\sigma \in \Sigma$ there exists a \mathbb{Z} -basis $\{n_1, \dots, n_r\}$ of the lattice N such that $\sigma = \operatorname{Cone}(n_1, \dots, n_s)$ for $s \leq r$
- ▶ A toric variety $X_Σ$ is compact if and only if $|Σ| := \bigcup_{σ ∈ Σ} σ = ℝ^n$.

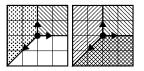


Рис.:
$$\mathbb{CP}^2 \setminus \{pt\}$$
, \mathbb{CP}^2

A noncompact toric variety admits torus equivariant compactification. In terms of fans it means that an incomplete fan can be completion by cones to a complete fan.

Orbit-cone correspondence

There is 1-1 correspondence between cones in a fan Σ and a set of T_N -orbit of X_{Σ} . Moreover

- $au \leq \sigma$ if and only if $O(\sigma) \subset \overline{O(\tau)}$;
- $U_{\sigma} = \bigsqcup_{\tau \leq \sigma} O(\tau).$

Example:

Let z_0, z_1, z_2 be a homogeneous coordinates in \mathbb{CP}^2 . $\sigma_1 = \mathbb{R}_\geq \langle e_1, e_2 \rangle \longleftrightarrow O(\sigma_1) = [1:0:0]$ $\sigma_2 = \mathbb{R}_\geq \langle e_1, -e_1 - e_2 \rangle \longleftrightarrow O(\sigma_2) = [0:1:0]$ $\sigma_3 = \mathbb{R}_\geq \langle e_2, -e_1 - e_2 \rangle \longleftrightarrow O(\sigma_3) = [0:0:1]$ $\tau_1 = \mathbb{R}_\geq \langle e_1 \rangle \longleftrightarrow O(\tau_1) = \{z_0z_1 \neq 0, z_2 = 0\}$ $\tau_2 = \mathbb{R}_\geq \langle e_2 \rangle \longleftrightarrow O(\tau_2) = \{z_0z_2 \neq 0, z_1 = 0\}$ $\tau_3 = \mathbb{R}_\geq \langle -e_1 - e_2 \rangle \longleftrightarrow O(\tau_3) = \{z_1z_2 \neq 0, z_0 = 0\}$ $O \longleftrightarrow (\mathbb{C}^*)^2 = \{z_0z_1z_2 \neq 0\}$ Note that $\tau_1 < \sigma_1$ if and only if $O(\sigma_1) = [1:0:0] \subset \overline{O(\tau_1)} = \{z_2 = 0\}$

Marciniak conjecture

In the context of toric varieties the Hartogs phenomenon was first studied by M.
A Marciniak

Theorem

Let X_{Σ} be a smooth toric surface. If the support $|\Sigma|$ of Σ is a strictly convex cone then for any compact set $K \subset X_{\Sigma}$ such that $X_{\Sigma} \setminus K$ is connected, the restriction homomorphism $H^0(X_{\Sigma}, \mathcal{O}) \to H^0(X_{\Sigma} \setminus K, \mathcal{O})$ is an isomorphism.

Example:

- ▶ Marciniak conjecture: Let X_{Σ} be a smooth toric variety. If the complement of $|\Sigma|$ has at least one **concave** connected component then for any compact set $K \subset X_{\Sigma}$ such that $X_{\Sigma} \setminus K$ is connected, the restriction homomorphism $H^0(X_{\Sigma}, \mathcal{O}) \to H^0(X_{\Sigma} \setminus K, \mathcal{O})$ is an isomorphism.
- ▶ What is **concave** connected component in dimension at least 3?

Main results

Theorem 1

Let $X_{\Sigma'}$ be a noncompact toric variety with the fan Σ' . Assume that the complement of the fan's support $C:=\mathbb{R}^p\setminus |\Sigma'|$ is connected, then $H^1_c(X_{\Sigma'},\mathcal{O})=0$ if and only if $\operatorname{conv}(\overline{C})=\mathbb{R}^p$.

Theorem 2

Let X_{Σ} be a noncompact toric variety with the complement $\mathbb{R}^p \setminus |\Sigma|$ being connected. The cohomology group $H^1_c(X_{\Sigma},\mathcal{O})$ is trivial if and only if X_{Σ} admits the Hartogs phenomenon.

This allows us to specify what concavity in the conjecture formulated above means.

Definition

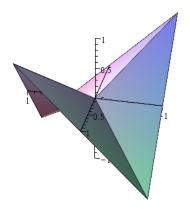
Let Σ be a fan in \mathbb{R}^p , and $\mathbb{R}^p \setminus |\Sigma| = \bigsqcup_j C_j$. A complement component C_j is called concave if $\operatorname{conv}(\overline{C_j}) = \mathbb{R}^p$.

Corollary

Let X_{Σ} be a noncompact toric variety with the fan Σ whose complement is $\mathbb{R}^p \setminus |\Sigma| = \bigsqcup_{i=1}^n C_j$. Then

- if at least one of C_j 's is concave then X_{Σ} admits the Hartogs phenomenon.
- if n=1 then the converse is also true, i.e. if X_{Σ} admits the Hartogs phenomenon then $\mathbb{R}^p \setminus |\Sigma|$ is concave.

A fan with concave components in complement



Theorem 1

Theorem 1: Let $X_{\Sigma'}$ be a noncompact toric variety with the fan Σ' . Assume that the complement of the fan's support $C := \mathbb{R}^{p} \setminus |\Sigma'|$ is connected, then $H^{1}_{c}(X_{\Sigma'}, \mathcal{O}) = 0$ if and only if $\operatorname{conv}(\overline{C}) = \mathbb{R}^{p}$.

Steps of the proof:

- 1. Let $X_{\Sigma''}$ be a toric compactification of $X_{\Sigma'}$. We describe $Z:=X_{\Sigma''}\setminus X_{\Sigma'}$ in terms of T_N -orbits and consider an open toric variety $X_\Sigma\subset X_{\Sigma''}$ such that $Z\subset X_\Sigma$ and with the following property: any neighborhood of Z intersect with all T_N -invariant divisors of X_Σ ;
- 2. We describe $H^1_c(X_{\Sigma'}, \mathcal{O})$ in terms of the ring $H^0(Z, \mathcal{O})$ of germs of holomorphic functions on Z:
- 3. We prove that any germ in $H^0(Z,\mathcal{O})$ can be represented by a Laurent series $\sum_{I\in A} a_I t^I$ which converges in a neighborhood of Z.
- 4. We show that the support A of the Laurent series contained in $\overline{C}^{\vee} \cap N^*$.

- Let $X_{\Sigma''}$ be a compactification of $X_{\Sigma'}$ and $Z:=X_{\Sigma''}\setminus X_{\Sigma'}$. Since the set Z is T_N -invariant, it follows that $Z=\bigcup_{\tau\in\Sigma'',\mathrm{relint}(\tau)\in\mathbb{R}^n\setminus|\Sigma'|}O(\tau)$.
- ▶ Denote by Σ the fan which consists of cones σ in Σ'' such that $\sigma \subset \mathbb{R}^n \setminus int(|\Sigma'|)$. Note that $\overline{C} = |\Sigma|$.
- Orbit-cone correspondence implies that: 1) the set Z and a small neighborhood of Z is contained in X_{Σ} ; 2) and any such neighborhood of Z intersect with all T_N -invariant divisors of X_{Σ} .

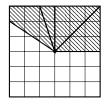


Рис.: Σ′

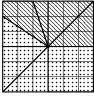


Рис.: Σ"

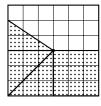
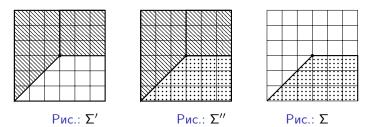


Рис.: Σ

Example:

- Let $X_{\Sigma'}=\mathbb{CP}^2\setminus\{pt\}$ and $X_{\Sigma''}=\mathbb{CP}^2$. Then $Z=\{pt\}$ is a 0-dimensional T_N -orbit corresponding to the cone $\sigma=\mathbb{R}_{\geq 0}\langle e_1,-e_1-e_2\rangle$ and $X_{\Sigma}=U_{\sigma}\cong\mathbb{C}^2$.
- ▶ The point Z is exactly a 0-dimensional T_N -orbit in U_σ and it corresponds to the origin in \mathbb{C}^2 . T_N -invariant divisors in U_σ correspond to coordinate lines in \mathbb{C}^2 .



We have a long exact sequence of cohomology groups

$$0 \longrightarrow H_c^0(X_{\Sigma'}, \mathcal{O}) \longrightarrow H_c^0(X_{\Sigma''}, \mathcal{O}) \longrightarrow H_c^0(Z, \mathcal{O}) \longrightarrow$$

$$\longrightarrow H^1_c(X_{\Sigma'}, \mathcal{O}) \longrightarrow H^1_c(X_{\Sigma''}, \mathcal{O}) \longrightarrow H^1_c(Z, \mathcal{O}) \longrightarrow \cdots$$

- Cohomology of toric variety: If $X_{\Sigma''}$ is a compact toric variety, then $H^i(X_{\Sigma''}, \mathcal{O}) = 0$ for all i > 0 and $H^0(X_{\Sigma''}, \mathcal{O}) = \mathbb{C}$.
- Since $X_{\Sigma'}$ is noncompact it follows that $H^0_c(X_{\Sigma'}, \mathcal{O}) = 0$.
- ► Thus $H^1_c(X_{\Sigma'}, \mathcal{O}) \cong H^0(Z, \mathcal{O})/\mathbb{C}$, here $H^0(Z, \mathcal{O}) = \varinjlim_{U \supset Z} H^0(U, \mathcal{O})$.

- Assume that X_{Σ} is a **smooth** toric variety. It admits an open covering $X_{\Sigma} = \bigcup_{\sigma \in \Sigma(p)} U_{\sigma}$, where $U_{\sigma} \cong \mathbb{C}^n$ is an affine chart corresponding to a cone $\sigma \in \Sigma(n)$ of dimension n.
- ▶ A set $Z \cap U_{\sigma} = \bigcup_{\tau < \sigma, \mathrm{relint}(\tau) \in \mathrm{int}(|\Sigma|)} O(\tau) \subset U_{\sigma}$ is a union of coordinate subspaces of U_{σ} .
- ▶ Consider equivalence class $[f, V] \in H^0(Z, \mathcal{O})$ that is a function f is holomorphic in a neighborhood V of Z.
- ▶ A function $f|_{U_{\sigma} \cap V} \in H^0(U_{\sigma} \cap V, \mathcal{O})$ can be represented as a convergent power series in a sufficiently small neighborhood W_{σ} of $Z \cap U_{\sigma}$.
- ▶ Choose a neighborhood D of Z such that $D \subset \bigcup_{\sigma \in \Sigma(n)} W_{\sigma}$ and $D \cap U_{\sigma} \subset W_{\sigma}$.
 - So, $f|_D = \sum_{I \in A} a_I t^I$, where $t = (t_1, \dots, t_n)$ are coordinates in the torus T_N .
- ► Thus $[f, V] = [\sum_{I \in A} a_I t^I, D]$.

- Since the order of vanishing of a Laurent monimial t^I along a T_N -invariant divisor $V(\rho), \rho \in \Sigma(1)$ is equal to $\langle u_\rho, I \rangle$, it follows that $A \subset |\Sigma|^\vee \cap N^*$ (here u_ρ is a primitive generator of 1-dimension cone ρ).
- ▶ Since $\overline{C} = |\Sigma|$, it follows that $H^0(Z, \mathcal{O}) = \{ [\sum_{I \in A} a_I t^I, D] \mid \text{ series converges in } D, A \subset \overline{C}^{\vee} \cap N^* \}$. Moreover $H^0(Z, \mathcal{O}) = \mathbb{C}$ if and only if $\overline{C}^{\vee} = O$
- Note that if A is a closed (but not necessarily convex) cone, then conv(A) = A^{∨∨}.
- We obtain that $\operatorname{conv}(\overline{C}) = \mathbb{R}^p$ if and only if $\overline{C}^{\vee} = O$.

Theorem 2

Theorem 2: Let X_{Σ} be a noncompact toric variety with the complement $\mathbb{R}^{p} \setminus |\Sigma|$ being connected. The cohomology group $H^{1}_{c}(X_{\Sigma}, \mathcal{O})$ is trivial if and only if X_{Σ} admits the Hartogs phenomenon.

The proof of Theorem 2 is based of the following lemmas Let (X, \mathcal{O}) be a noncompact connected complex analytic variety.

- 1. If $H^1_c(X,\mathcal{O})=0$, then for any compact set $K\subset X$ such that $X\setminus K$ is connected, the restriction homomorphism $H^0(X,\mathcal{O})\to H^0(X\setminus K,\mathcal{O})$ is an isomorphism.
- 2. Suppose X admits a compactification X' such that X' is a compact connected complex analytic variety and $H^1(X',\mathcal{O})=0$. If $H^1_c(X,\mathcal{O})=0$ then the Hartogs phenomenon holds in X.
- 3. Suppose X admits a compactification X' as in (2) and a compact exhaustion $\{V_n\}_{n\in\mathbb{N}}$, such that $X\setminus V_n$ is connected. If for any $n\in\mathbb{N}$ the restriction homomorphism $H^0(X,\mathcal{O})\to H^0(X\setminus V_n,\mathcal{O})$ is an isomorphism, then the natural homomorphism $H^1_c(X,\mathcal{O})\to H^1(X',\mathcal{O})$ is monomorphism.

Conclusion

Corrected Marciniak conjecture: Let X_Σ be a noncompact toric variety. If the complement of $|\Sigma|$ has at least one concave connected component then the Hartogs phenomenon holds in X_Σ

Theorems 1 and 2 implies the validity of the corrected Marciniak conjecture.

Corollary

Let X_{Σ} be a non-compact toric variety with the fan Σ whose complement is

$$\mathbb{R}^p \setminus |\Sigma| = \bigsqcup_{j=1}^n C_j$$
. Then

- if at least one of C_j 's is concave then X_{Σ} admits the Hartogs phenomenon.
- if n=1 then the converse is also true, i.e. if X_{Σ} admits the Hartogs phenomenon then $\mathbb{R}^{p} \setminus |\Sigma|$ is concave.