Analytical realization of the strong dual of a space of holomorphic functions with boundary smoothness. Applications.

I.Kh. Musin

Institute of Mathematics with Computer Centre of Ufa Scientific Centre of Russian Academy of Sciences; Chernyshevsky str., 112, Ufa, 450077, Russia

Sirius Mathematics Center, Multidimensional Residues and Tropical Geometry, June 13 - 19, 2021

On the problem

Let Ω be a convex bounded domain in \mathbb{C}^n , $A^{\infty}(\Omega)$ be the space of functions f holomorphic in Ω and s.t. all their partial derivatives $D^{\alpha}f$ can be continuously extended on $\overline{\Omega}$ with a topology defined by a system of norms $q_m(f) := \sup_{z \in \Omega} \frac{|C|}{|C|} \frac{|C|}{m} |C|$

Let
$$\mathcal{H} = \{h_m\}_{m=1}^{\infty}$$
 be a family of convex functions

$$h_m: \mathbb{R}^n \to [0,\infty)$$
 with $h_m(0) = 0$ s.t. for each $m \in \mathbb{N}$:

$$i_1$$
). $h_m(x) = h_m(|x_1|, \ldots, |x_n|), \ x = (x_1, \ldots, x_n) \in \mathbb{R}^n;$

$$i_2$$
). $\exists a_m > 0$ s.t. $h_m(x) \ge ||x|| \ln(1 + ||x||) - a_m ||x|| - a_m, \ x \in \mathbb{R}^n$;

$$i_3$$
). $\lim_{x\to\infty} (h_m(x) - h_{m+1}(x)) = +\infty$;

$$i_4$$
). $\sup_{\alpha \in \mathbb{Z}_+^n} (h_{m+1}(\alpha + \beta) - h_m(\alpha)) < \infty \text{ for } \beta \in \mathbb{Z}_+^n \text{ with } |\beta| = 1;$

$$i_5$$
). $\forall p \in \mathbb{N} \exists I = I(m, p) \in \mathbb{N}$: $\sum_{\alpha \in \mathbb{Z}_+^n} e^{\max_{|\beta| \leq p} h_{m+I}(\alpha+\beta) - h_m(\alpha)} < \infty$.

For each $m \in \mathbb{N}$ let

$$A_m(\Omega) = \{ f \in A^{\infty}(\Omega) : p_m(f) = \sup_{z \in \Omega, \alpha \in \mathbb{Z}_+^n} \frac{|(D^{\alpha}f)(z)|}{e^{h_m(\alpha)}} < \infty \}.$$
 (1)

Denote by $A_{\mathcal{H}}(\Omega)$ a projective limit of the spaces $A_m(\Omega)$. $A_{\mathcal{H}}(\Omega)$ is a Fréchet space which is continuously embedded in the space $A^{\infty}(\Omega)$. Note that in view of the condition i_4) the space $A_{\mathcal{H}}(\Omega)$ is invariant under differentiation. In view of the condition i_3) the space $A_{m+1}(\Omega)$ is continuously embedded in $A_m(\Omega)$ for each $m \in \mathbb{N}$.

For each $z\in\mathbb{C}^n$ the function $f_z(\lambda)=e^{\langle\lambda,z\rangle}$ belongs to $A^\infty(\Omega)$. Also, $f_z\in A_\mathcal{H}(\Omega)$ (Lemma 1). So for each linear continuous functional Φ on $A^\infty(\Omega)$ ($A_\mathcal{H}(\Omega)$) the function $\hat{\Phi}(z)=\Phi(e^{\langle\lambda,z\rangle})$ is correctly defined in \mathbb{C}^n . It is called the Laplace transform of Φ .

Our aim is to study the problem of description of the strong dual $A_{\mathcal{H}}^*(\Omega)$ of the space $A_{\mathcal{H}}(\Omega)$ in terms of the Laplace transforms of functionals.

There is some novelty in the setting of the problem. Earlier it was considered for a projective limit $A_{\mathfrak{M}}(\Omega)$ of normed spaces

$$A_m(\Omega) = \{ f \in A^{\infty}(\Omega) : p_m(f) = \sup_{z \in \Omega, \alpha \in \mathbb{Z}_+^n} \frac{|(D^{\alpha}f)(z)|}{M_{|\alpha|}^{(m)}} < \infty \}, (2)$$

constructed with a help of a family $\mathfrak{M}=\{M^{(m)}\}_{m=1}^{\infty}$ of logarithmically convex (log.c.) sequences $M^{(m)}=(M_k^{(m)})_{k=0}^{\infty}$. In particular, this problem was studied by B.A. Derjavets (1980-s) in assumption that $\partial\Omega$ is C^2 -smooth and the family $\mathfrak{M}=\{M^{(m)}\}_{m=1}^{\infty}$ of log.c. sequences $M^{(m)}=(M_k^{(m)})_{k=0}^{\infty}$ is s.t.:

 β_1) the sequence $(L_k^{(m)} = \frac{M_k^{(m)}}{k!})_{k=0}^{\infty}$ is increasing and log.c.,

$$\beta_{2}) \sup_{k \in \mathbb{N}} \left(\frac{M_{k+1}^{(m)}}{M_{k}^{(m)}} \right)^{\frac{1}{k}} < +\infty; \quad \beta_{3}) \lim_{k \to \infty} \left(\frac{M_{k}^{(m)}}{k!} \right)^{\frac{1}{k}} = +\infty;$$

$$\beta_{4}) \lim_{k \to \infty} \frac{Q^{k} M_{k}^{(m+1)}}{M_{k}^{(m)}} = 0 \quad \forall Q > 1;$$

$$eta_5$$
) functions $v_m(x) = \inf_{k \in \mathbb{Z}_+} L_k^{(m)} x^{k-1} \ (x > 0, m \in \mathbb{Z}_+)$ satisfy the condition $\sup_{x>0} rac{v_{m+1}(x)}{x^2 v_m(x)} < \infty \ (m \in \mathbb{Z}_+).$

Remark. It was shown in [Musin I.Kh. // Advances in Mathematics Research. 2002. Nova Science Publishers] that conditions of C^2 -smoothness of $\partial\Omega$ and β_1 , β_5) are excessive.

In our terms this means that B.A. Derjavets considered a case of the family \mathcal{H} of functions h_m : $h_m(x) = g_m(\sum_{j=1}^n |x_j|)$, where

 $g_m:\mathbb{R} \to [0,\infty)$ is a convex function, $g_m(0)=0$ s.t. $\forall\, m\in\mathbb{N}$:

- 1). $g_m(t) = g_m(|t|), t \in \mathbb{R};$
- 2). g_m is nondecreasing on $[0, \infty)$;
- 3). $\forall M > 0 \ \exists Q > 0 \text{ s.t. } g_m(t) \ge t \ln(t+1) + Mt Q, \ t \ge 0;$
- 4). $\exists C_m > 0 \text{ s.t. } g_m(t+1) g_m(t) \leq C_m t, \ t \geq 1;$
- 5). $\lim_{x\to +\infty}(g_m(t)-g_{m+1}(t)-Mt)=+\infty$ for each M>0;
- 6). the sequence $\left(\frac{\exp(g_m(k))}{k!}\right)_{k=0}^{\infty}$ is logarithmically convex;

In [I.Kh. Musin // Vladikavkaz. Mat. Zh. 22 (3) (2020)] this problem was considered for a case of $\mathcal H$ consisting of functions h_m defined by the rule: $h_m: x=(x_1,\ldots,x_n)\in \mathbb R^n \to h(\sum\limits_{j=1}^n |x_j|-m)$ if

$$\sum\limits_{j=1}^{n}|x_{j}|>m;\;h_{m}(x)=0\; ext{if}\;\sum\limits_{j=1}^{n}|x_{j}|\leq m\;(m\in\mathbb{N}),\; ext{where}$$

 $h:\mathbb{R} \to [0,\infty)$ is a convex function with h(0)=0 such that:

- 1). $h(t) = h(|t|), t \in \mathbb{R};$
- 2). h is nondecreasing on $[0, \infty)$;
- 3). $\exists a>0$ s.t. $h(t)\geq t\ln(t+1)-at-a,\ t\geq 0$. All the conditions $i_1)-i_5$) in this concrete situation are fulfilled. Note that this case corresponds to the family $\mathfrak{M}=\{M^{(m)}\}_{m=1}^{\infty}$ of sequences $M^{(m)}=(M_k^{(m)})_{k=0}^{\infty}$, where numbers $M_k^{(m)}$ defined by

of sequences $M^{(m)} = (M_k^{(m)})_{k=0}^{\infty}$, where numbers $M_k^{(m)}$ defined by the rule: $M_k^{(m)} = M_{k-m}$ if $k \ge m$ and $M_k^{(m)} = 1$ if k < m and $(M_k)_{k=0}^{\infty}$ is a log.c. sequence such that: $M_0 = 1$, $\exists Q_1 > 0 \ \exists Q_2 > 0 \ M_k \ge Q_1 Q_2^k k! \ (k \in \mathbb{Z}_+)$.

Note that if the restriction of h_m on $[0,\infty)^n$ $(m \in \mathbb{N})$ is nondecreasing in each variable then the condition i_5) can be replaced by the following one:

$$i_5'). \ \forall m,
u \in \mathbb{N} \ \exists \textit{l} = \textit{l}(m,
u) \in \mathbb{N} \ \text{s.t. for} \ \gamma = (1, \dots, 1) \in \mathbb{Z}_+^n$$

$$\sum_{\alpha\in\mathbb{Z}_+^n}\exp(h_{m+l}(\alpha+\nu\gamma)-h_m(\alpha))<\infty.$$

Thus, we would like to study the above mentioned problem in a more general situation than in [I.Kh. Musin // Vladikavkaz. Mat. Zh. 22 (3) (2020)].

Notations and definitions

For
$$\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{Z}_+^n$$
, $z=(z_1,\ldots,z_n)\in\mathbb{C}^n$ let $|\alpha|=\alpha_1+\ldots+\alpha_n$, $\alpha!=\alpha_1!\cdots\alpha_n!$, $D^\alpha=\frac{\partial^{|\alpha|}}{\partial z_1^{\alpha_1}\cdots\partial z_n^{\alpha_n}}$. For $u=(u_1,\ldots,u_n)$, $v=(v_1,\ldots,v_n)\in\mathbb{C}^n$ $(u,v)=u_1v_1+\ldots+u_nv_n$, $||u||=\sqrt{|u_1|^2+\cdots+|u_n|^2}$. By λ_m denote the Lebesgue measure in \mathbb{C}^m . For a domain $\mathcal{O}\subseteq\mathbb{C}^n$ $A(\mathcal{O})$ is the space of functions holomorphic in \mathcal{O} , $A_c(\Omega)$ is the space of functions holomorphic in Ω and continuous on $\overline{\Omega}$ ($\overline{\Omega}$ is a closure of Ω in \mathbb{C}^n) with standard topologies. $A'_{\mathcal{H}}(\Omega)$ is a space of linear continuous functionals on $A_{\mathcal{H}}(\Omega)$, $(A^\infty(\Omega))^*$ $(A^*_c(\Omega)$ is the strong dual of $A^\infty(\Omega)$ $(A_c(\Omega))$. $A_c(\Omega)$ is the support function of Ω . Put \mathbb{C}^n is the support function of Ω . Put \mathbb{C}^n is the support function of Ω . The Young-Fenchel conjugate of \mathbb{C}^n is \mathbb{C}^n and \mathbb{C}^n is \mathbb{C}^n . The Young-Fenchel conjugate of \mathbb{C}^n is \mathbb{C}^n and \mathbb{C}^n is \mathbb{C}^n .

The main result

For each $m \in \mathbb{N}$ define a function φ_m in \mathbb{C}^n by the rule

$$\varphi_m(z) = h_m^*(\ln^+|z_1|, \dots, \ln^+|z_n|), \ z = (z_1, \dots, z_n) \in \mathbb{C}^n.$$

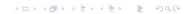
Since h_m^* is convex in \mathbb{R}^n and takes there finite values, then h_m^* is continuous in \mathbb{R}^n . Hence, φ_m is a continuous psh-function in \mathbb{C}^n . For each $m \in \mathbb{N}$ introduce the normed space

$$P_{m} = \left\{ F \in A(\mathbb{C}^{n}) : \left\| F \right\|_{m} = \sup_{z \in \mathbb{C}^{n}} \frac{|F(z)|}{\exp(H_{\Omega}(z) + \varphi_{m}(z))} < \infty \right\}.$$
(3)

The space P_m is continuously embedded in P_{m+1} for each $m \in \mathbb{N}$. Let $P_{\mathcal{H}}$ be an inductive limit of spaces P_m .

Theorem 1

The mapping $L: T \in A^*_{\mathcal{H}}(\Omega) \to \hat{T}$ establishes an isomorphism between the spaces $A^*_{\mathcal{H}}(\Omega)$ and $P_{\mathcal{H}}$.



The proof of this theorem is based on the scheme taken from M. Neymark [Neymark M. // Ark. math., 7 (1969)] and B.A. Taylor [Taylor B.A. // Commun. on pure and appl. mathematics. 1971. **24**:1] and some results from [Musin I.Kh. // Advances in Mathematics Research. 2002. Nova Science Publishers. New York] and Il'dar Kh. Musin, Polina V. Yakovleva. // Central European Journal of Mathematics. **10**:2 (2012)].

Auxiliary results

Proposition 1

Let a function $g: \mathbb{R}^n \to \mathbb{R}$, g(0) = 0, be s.t. for some a > 0 $g(x) \ge \|x\| \ln(\|x\| + 1) - a\|x\| - a$, $x \in \mathbb{R}^n$. Let b > 0. Then for any points x, y in \mathbb{R}^n s.t. $\|y - x\| \le be^{-\|x\|}$

$$|g^*(y) - g^*(x)| \le be^{2a+b}.$$
 (4)

In the proof of Proposition 1 it is used that the supremum of the function $g_x(\xi) = \langle \xi, x \rangle - g(\xi)$ taken over \mathbb{R}^n is attained at some point $\xi^* = \xi^*(x)$ such that $\|\xi^*\| \le e^{2a}e^{\|x\|}$.

From Proposition 1 we have the following corollary.

Corollary 1

Let a function $g : \mathbb{R}^n \to \mathbb{R}$, g(0) = 0, be such that for some a > 0 $g(x) \ge ||x|| \ln(||x|| + 1) - a||x|| - a$, $x \in \mathbb{R}^n$. Let b > 0. Then for $x = (x_1, \dots, x_n), y \in \mathbb{R}^n$ s.t. $||y - x|| \le be^{-(|x_1| + \dots + |x_n|)}$

$$|g^*(y) - g^*(x)| \le be^{2a+b}.$$
 (5)

The Corollary 1 is used in the proof of the next Proposition.

Proposition 2

Let a function $g: \mathbb{R}^n \to \mathbb{R}$, g(0) = 0, be such that for some a > 0 $g(x) \ge ||x|| \ln(||x|| + 1) - a||x|| - a$, $x \in \mathbb{R}^n$. Let points $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$ be such that $|y_j - x_j| \le \frac{1}{\prod\limits_{i=1}^{n} (1+|x_k|)}, j = 1, \dots, n$.

$$|g^*(\ln^+|y_1|,\ldots,\ln^+|y_n|) - g^*(\ln^+|x_1|,\ldots,\ln^+|x_n|)| \le 2ne^{2a+2n}.$$

From the Proposition 2 we get the following corollaries.

Corollary 2

Let $g: \mathbb{R}^n \to \mathbb{R}$ be a function as in the Proposition 2. Let $z = (z_1, \ldots, z_n), \zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$ be such that $|\zeta_j - z_j| \le \frac{1}{\prod\limits_{k=1}^n (1+|z_k|)}, j = 1, \ldots, n.$

Then

$$|g^*(\ln^+|\zeta_1|,\ldots,\ln^+|\zeta_n|)-g^*(\ln^+|z_1|,\ldots,\ln^+|z_n|)| \leq 2ne^{2a+2n}$$

Corollary 3

Let
$$z = (z_1, \ldots, z_n), \zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$$
 be such that $|\zeta_j - z_j| \le \frac{1}{\prod\limits_{k=1}^n (1+|z_k|)}, j = 1, \ldots, n.$

Then for any $m \in \mathbb{N}$

$$|\varphi_m(\zeta) - \varphi_m(z)| \le 2ne^{2a_m + 2n}$$

Corollary 4

Let $z, \zeta \in \mathbb{C}^n$ be such that $\|\zeta - z\| \leq \frac{1}{(1+\|z\|)^n}$.

Then $|\varphi_m(\zeta) - \varphi_m(z)| \leq 2ne^{2a_m + 2n}, \ m \in \mathbb{N}$.

Proposition 3

For any $m \in \mathbb{N}$ there exists a constant $l_m > 0$ such that

$$h_{m+n}^*(x) \ge h_m^*(x) + \sum_{j=1}^n x_j - l_m, \ x = (x_1, \dots, x_n) \in \mathbb{R}_+^n.$$

From this Proposition we have the following

Corollary 5

$$\varphi_{m+n}(z) \geq \varphi_m(z) + \sum_{i=1}^n \ln^+ |z_j| - l_m, \ m \in \mathbb{N}z = (z_1, \ldots, z_n) \in \mathbb{C}^n,$$

where I_m is a constant from Proposition 3.

In the proof of the following Proposition the condition i_3) is used.

Proposition 4

Let $m \in \mathbb{N}$, c > 0 be s.t. for $S \in A_{\mathcal{H}}^*(\Omega)$ $|S(f)| \leq cp_m(f)$, Then $S(f) = \sum_{|\alpha| \geq 0} S_{\alpha}(D^{\alpha}f)$, $f \in A_{\mathcal{H}}(\Omega)$, where $S_{\alpha} \in A_c^*(\Omega)$, moreover, $\|S_{\alpha}\|_{A_c^*(\Omega)} \leq \frac{c}{e^{h_m(\alpha)}}$, $\alpha \in \mathbb{Z}_+^n$.

Lemma1

For each $z \in \mathbb{C}^n$ the function $f_z(\lambda) = \exp(\langle \lambda, z \rangle)$ belongs to $A_{\mathcal{H}}(\Omega)$, moreover, $p_m(f_z) = \exp(H_{\Omega}(z) + \varphi_m(z)) \quad \forall m \in \mathbb{N}$.

Lemma2

For any $S \in A^*_{\mathcal{H}}(\Omega)$ we have that $\hat{S} \in P_{\mathcal{H}}$.

Three important auxiliary theorems

For each $m \in \mathbb{Z}_+$ let

$$E_m = \left\{ F \in H(\mathbb{C}^n) : N_m(F) = \sup_{z \in \mathbb{C}^n} \frac{|F(z)|}{(1 + ||z||)^m \exp(H_{\Omega}(z))} < \infty \right\}.$$

Let E be an inductive limit of the spaces E_m .

Theorem 2

The Laplace transformation $\mathcal{L}: S \in (A^{\infty}(\Omega))^* \to \hat{S}$ establishes a topological isomorphism between the spaces $(A^{\infty}(\Omega))^*$ and E.

Theorem 2 is obtained in [Musin I.Kh. // Advances in Mathematics Research. 2002. Nova Science Publishers. New York]. Under assumptions that the boundary of Ω is C^2 -smooth this theorem was obtained by B.A. Derjavets [Dissertation . . . of candidate of fiz.-mat. nauk. Rostov-on-Don University, 1983]

The next result [I.Kh. Musin, P.V. Yakovleva // CEJM. 10:2 (2012)] is applied to establish surjectivity of L in the Theorem 1.

Theorem 3

Let \mathcal{O} be a domain of holomorphy in \mathbb{C}^n . Let $h \in psh(\mathcal{O})$ and a function $\varphi \in psh(\mathbb{C}^n)$ be such that for some $c_{\varphi} > 0$ and $\nu > 0$ $|arphi(z)-arphi(t)|\leq c_{arphi} \;\; ext{if} \;\; \|z-t\|\leq rac{1}{(1+\|t\|)^{
u}} \;\; . \;\; ext{Let for } f\in H(\mathcal{O})$

$$\int_{\mathcal{O}} |f(\zeta)|^2 e^{-2(\varphi(\zeta) + h(\zeta))} \ d\lambda_n(\zeta) < \infty. \tag{6}$$

Then $\exists \ F \in H(\mathbb{C}^n \times \mathcal{O}) \ \text{s.t.} \ F(\zeta,\zeta) = f(\zeta) \ (\zeta \in \mathcal{O}) \ \text{and}$

$$\int\limits_{\mathbb{C}^n\times\mathcal{O}}\frac{|F(z,\zeta)|^2e^{-2(\varphi(z)+h(\zeta))}}{(1+\|(z,\zeta)\|)^{2n(\nu+3)}}\;d\lambda_{2n}(z,\zeta)\leq$$

$$\leq C \int_{\Omega} |f(\zeta)|^2 e^{-2(\varphi(\zeta)+h(\zeta))} d\lambda_n(\zeta),$$

where a positive constant C depends only on n, ν and φ .

Theorem 4

Let $\mathcal O$ be a domain of holomorphy in $\mathbb C^n$. Let $h\in psh(\mathcal O)$ and a function $\varphi\in psh(\mathbb C^n)$ be such that for some $c_\varphi>0$ and $\nu>0$ $|\varphi(z)-\varphi(t)|\leq c_\varphi$ if $\|z-t\|\leq \frac{1}{(1+\|t\|)^\nu}$. Let a function $S\in H(\mathbb C^n\times\mathcal O)$ be such that $S(\zeta,\zeta)=0$ for $\zeta\in\mathcal O$ and

$$|S(z,\zeta)| \leq e^{\varphi(z)+h(\zeta)}, \ z \in \mathbb{C}^n, \zeta \in \mathcal{O}.$$

Then there exist functions $S_1, \ldots, S_n \in H(\mathbb{C}^n \times \mathcal{O})$ such that:

a)
$$S(z,\zeta) = \sum_{j=1}^{n} S_{j}(z,\zeta)(z_{j}-\zeta_{j}), \ (z,\zeta) \in \mathbb{C}^{n} \times \mathcal{O};$$

b)
$$\int\limits_{\mathbb{C}^n\times\mathcal{O}}\frac{|S_j(z,\zeta)|^2}{\mathrm{e}^{2(\varphi(z)+h(\zeta)+m\ln(1+\|(z,\zeta)\|))}}\ d\lambda_{2n}(z,\zeta)<\infty\ (j=1,\ldots,n)\ \text{for}$$

some m > 0 not depending on S.

Theorem 4 [I.Kh. Musin, P.V. Yakovleva // CEJM. **10**:2 (2012)] is applied to establish injectivity of L in the Theorem 1.

Properties of spaces $A_{\mathcal{H}}(\Omega)$, $A_{\mathcal{H}}^*(\Omega)$ and $P_{\mathcal{H}}$.

Definition 1

 (M^*) -space is a l.c.s. F which is the projective limit of a sequence of normed spaces F_k with linear continuous mappings $g_{mk}: F_k \to F_m$, m < k, s.t. $g_{k,k+1}$ is compact for each $k \in \mathbb{N}$.

Using Montel's theorem and the condition i_3) it can be proved that $A_{\mathcal{H}}(\Omega)$ is the (M^*) -space. Thus, $A_{\mathcal{H}}(\Omega)$ is a (FS)-space.

Definition 2

Let $(E_m)_{m\in\mathbb{N}}$ be a sequence of Banach spaces such that E_m is continuously embedded in E_{m+1} for each $m\in\mathbb{N}$ and $E=\cup_{m\in\mathbb{N}}E_m$. If for each $m\in\mathbb{N}$ there is k>m s.t. the embedding map of E_m in E_k is compact, then the countable locally convex inductive limit of spaces $E:=\varinjlim E_m$ is called a (DFS)-space.

With a help of Montel's theorem and Corollary 5 it can be shown that the embeddings $j_m: P_m \to P_{m+n}$ are compact for each $m \in \mathbb{N}$. Hence, the space $P_{\mathcal{H}}$ is a (*DFS*)-space.

The space $A_{\mathcal{H}}^*(\Omega)$ as the strong dual of the Fréchet-Schwartz space $A_{\mathcal{H}}(\Omega)$ is a (DFS)-space.

Sketch of the proof of Theorem 1.

Let us only show that L is surjective. Let $F \in P_{\mathcal{H}}$. Then $F \in P_m$ for some $m \in \mathbb{N}$. Hence,

$$\int_{\mathbb{C}^n} \frac{|F(\zeta)|^2 e^{-2H_{\Omega}(\zeta) + \varphi_m(\zeta)}}{(1 + \|\zeta\|)^{2n+1}} \ d\lambda_n(\zeta) < \infty. \tag{7}$$

From this using Corollary 5 we get that

$$\int_{\mathbb{C}^n} |F(\zeta)|^2 e^{-2(H_{\Omega}(\zeta) + \varphi_{m+n(n+1)}(\zeta))} \ d\lambda_n(\zeta) < \infty. \tag{8}$$

Note that functions H_{Ω} and $\varphi_{m+n(n+1)}$ are plurisubharmonic in \mathbb{C}^n and for some $C_{\Omega} > 0$

$$|H_{\Omega}(u) - H_{\Omega}(v)| \le C_{\Omega}, \ u, v \in \mathbb{C}^n : ||u - v|| \le 1.$$
 (9)

So applying Theorem 3 with $\nu=1$ we can find a function $\Phi\in H(\mathbb{C}^{2n})$ such that $\Phi(z,z)=F(z)$ for $z\in\mathbb{C}^n$ and for some c>0 not depending on F

$$\int\limits_{\mathbb{C}^{2n}} \frac{|\Phi(z,\zeta)|^2 e^{-2(H_{K}(Im\,z)+\varphi_{m+n(n+1)}(\zeta))}}{(1+\|(z,\zeta)\|)^{8n}} \ d\lambda_{2n}(z,\zeta) \leq$$

$$\leq c \int_{\mathbb{C}^n} |F(\zeta)|^2 e^{-2(H_{\Omega}(\zeta)+\varphi_{m+n(n+1)}(\zeta))} \ d\lambda_{n}(\zeta).$$

Since $|\Phi|^2 \in psh(\mathbb{C}^{2n})$, then for any R > 0, $z, \zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$

$$|\Phi(z,\zeta)|^2 \leq \frac{1}{\lambda_{2n}(R)} \int_{B_R(z,\zeta)} |\Phi(t,u)|^2 d\lambda_{2n}(t,u),$$

where $B_R(z,\zeta)$ is a closed ball in \mathbb{C}^{2n} of a radius R with the center at the point (z,ζ) , $\lambda_{2n}(R)$ is a volume of $B_R(z,\zeta)$. From this inequality putting $R=\frac{1}{2n\prod\limits_{i=1}^{n}(1+|\zeta_k|)}$ and using the inequality (9)

and Corollary 3 in a standard way we get that for some $c_1>0$

$$|\Phi(z,\zeta)| \leq c_1(1+||z||)^{4n}(1+||\zeta||)^{4n+n^2}e^{H_{\Omega}(z)+\varphi_{m+n(n+1)}(\zeta)}, \ (z,\zeta) \in \mathbb{C}^{2n}.$$

Now using Corollary 5 we have for some $c_2 > 0$

$$|\Phi(z,\zeta)| \le c_2 (1+||z||)^{4n} e^{H_{\Omega}(z)+\varphi_{m+n(n^2+5n+1)}(\zeta)}, \ (z,\zeta) \in \mathbb{C}^{2n}. \ (10)$$

We expand $\Phi(z,\zeta)$ in a power series in ζ : $\Phi(z,\zeta) = \sum_{|\alpha|>0} \Phi_{\alpha}(z)\zeta^{\alpha}$.

By the Cauchy formula for any $\alpha \in \mathbb{Z}_+^n$, positive numbers r_1, \ldots, r_n we have that

$$C_{\alpha}(z) = \frac{1}{(2\pi i)^n} \int_{|\zeta_1| = r_1} \dots \int_{|\zeta_n| = r_n} \frac{\Phi(z, \zeta)}{\zeta_1^{\alpha_1 + 1} \dots \zeta_n^{\alpha_n + 1}} d\zeta_1 \dots d\zeta_n, \ z \in \mathbb{C}^n.$$

Thus, $C_{\alpha} \in H(\mathbb{C}^n)$. Using (10) and since the restriction of $\varphi_{m+\nu}$ on $[0,\infty)^n$ is nondecreasing in each variable, we have that

$$|C_{\alpha}(z)| \leq \frac{c_2(1+||z||)^{4n}e^{H_{\Omega}(z)+\varphi_{m+\nu}(r)}}{r^{\alpha}},$$
 (11)

where $r = (r_1, ..., r_n) \in \mathbb{R}^n$ (all components are positive), $\nu = n(n^2 + 5n + 1)$.

From this we get that for any $\alpha \in \mathbb{Z}_+^n, z \in \mathbb{C}^n$

$$|C_{\alpha}(z)| \leq \frac{c_2(1+||z||)^{4n}e^{H_{\Omega}(z)}}{e^{h_{m+\nu}(\alpha)}}.$$
 (12)

Therefore, the set $\left\{e^{h_{m+\nu}(\alpha)}C_{\alpha}\right\}_{\alpha\in\mathbb{Z}_{+}^{n}}$ is bounded in E_{4n} . Hence, it is bounded in E. Since the spaces $(A^{\infty}(\Omega))^{*}$ and E are isomorphic (by Theorem 2), then there exist functionals $S_{\alpha}\in(A^{\infty}(\Omega))^{*}$ such that $\hat{S_{\alpha}}=C_{\alpha}$ and the set $\mathcal{A}=\left\{e^{h_{m+\nu}(\alpha)}S_{\alpha}\right\}_{\alpha\in\mathbb{Z}_{+}^{n}}$ is bounded in $(A^{\infty}(\Omega))^{*}$. From this we conclude that there exist numbers $I\in\mathbb{Z}_{+}$ and $c_{3}>0$ such that for any $\alpha\in\mathbb{Z}_{+}^{n}$

$$|S_{\alpha}(f)| \leq \frac{c_3 q_I(f)}{e^{h_{m+\nu}(\alpha)}} , f \in A^{\infty}(\Omega).$$
 (13)

Define a functional T on $A_{\mathcal{H}}(\Omega)$ by the rule:

$$T(f) = \sum_{|\alpha| \ge 0} S_{\alpha}(D^{\alpha}f), \ f \in A_{\mathcal{H}}(\Omega). \tag{14}$$

Show that T is a linear continuous functional on $A_{\mathcal{H}}(\Omega)$. Using the inequality (3) we have that for any $f \in A_{\mathcal{H}}(\Omega)$, $\alpha \in \mathbb{Z}_+^n$ and $s \in \mathbb{N}$

$$|S_{\alpha}(D^{\alpha}f)| \leq c_3 p_{m+s}(f) e^{\max_{|\beta| \leq l} h_{m+s}(\alpha+\beta) - h_{m+\nu}(\alpha)}. \tag{15}$$

the series $\sum_{|\alpha|\geq 0} e^{\max_{|\alpha|\leq l} h_{m+s}(\alpha+\beta)-h_{m+\nu}(\alpha)}$ converges. Then for any $f\in A_{\mathcal{H}}(\Omega)$ the series in the right of (14) is absolutely converging. Moreover, for chosen s there exists a constant $c_4>0$ not depending on $f\in A_{\mathcal{H}}(\Omega)$ such that $|T(f)|\leq c_4p_{m+s}(f)$. Hence, the linear functional T is correctly defined and continuous. Besides that $\hat{T}=F$. Thus, L is surjective.

Using the conditions i_5) we chose a positive integer $s > \nu$ so that

Let P_{ij} be polynomials $(i=1,\ldots,m;j=1,\ldots,r)$ and $P=(P_{ij})_{\substack{i=1,m;\\j=1,r}}$. Consider an operator $\vec{P}(D)$ acting from $A_{\mathcal{H}}^m(\Omega)$ into $A_{\mathcal{H}}^r(\Omega)$ by the rule:

$$\vec{P}(D) \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m P_{1j}(D)f_j \\ \vdots \\ \sum_{j=1}^m P_{rj}(D)f_j \end{pmatrix}$$

Consider the set of all r-tuples $Q = (Q_1, \ldots, Q_r)$ with polynomial components such that

$$P_{1j}(z)Q_1(z) + \cdots P_{rj}(z)Q_r(z) = 0, \ j = 1, \ldots, m.$$

It is known that this set has a finite number of generators. Let $Q^{(I)}=(Q_1^{(I)},\ldots,Q_r^{(I)})$ be its generators $(I=1,\ldots,s)$.

Theorem 5

The equation $\vec{P}(D)\vec{f} = \vec{g}$ is solvable in $A_{\mathcal{H}}^m(\Omega)$ for $\vec{g} \in A_{\mathcal{H}}^r(\Omega)$ iff $\sum_{i=1}^r Q_i^{(I)}(D)g_i = 0$, $I = 1, \ldots, s$.

The proof of Theorem 5 is based on next Theorem by L. Hörmander.

Theorem 6

Given the system $P \in M[p \times q]$ (with polynomial components) there is an integer N such that for psh in \mathbb{C}^n functions φ and $-\ln d$ such that $0 < d \le 1$, $d(z+\zeta) \le 2d(\zeta)$, if $|\Re z_j| \le 1$, $|\Im z_j| \le 1$ $(j=1,\ldots,n)$; $|\varphi(z+\zeta)-\varphi(\zeta)| \le C_0$, if $|z_j| \le d(\zeta)$ $(j=1,\ldots,n)$, and all $u \in (A(\mathbb{C}^n))^q$ one can find $v \in (A(\mathbb{C}^n))^q$ with Pu = Pv and $\int \|v\|^2 e^{-\varphi_N} d\lambda \le K \int \|Pu\|^2 e^{-\varphi} d\lambda$, where $\varphi_N(z) = \varphi(z) - N \ln d(z) + N \ln(1+\|z\|^2)$, K is independent on u, φ, d .