Seminar "Functional analysis and its applications"

Isomorphisms of commutative regular algebras

Shavkat Ayupov and Karimbergen Kudaybergenov

V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences

June 10, 2021

Outline

- Intoduction
 - Short history
 - Prelimanaries
- 2 Main results
 - The group of all band preserving automorphisms
 - Isomorphisms of homogeneous commutative unital regular algebras

Isomorphisms of regular rings

In 1930's, motivated by the geometry of lattice of the projections of type II₁ factors, von Neumann built the theory on the correspondence between complemented orthomodular lattices and regular rings. Let us recall one of his achievements [1, Part II, Theorem 4.2], applied to the case of *-regular rings. Let \Re , \Re' be *-regular rings such that their lattices of projections L_{\Re} and $L_{\mathfrak{R}'}$ are lattice-isomorphic. If \mathfrak{R} has order $n \geq 3$ (which means that it contains a ring of matrices of order n), then there exists a ring isomorphism of \Re and \Re' which generates given lattice isomorphism between L_{\Re} and $L_{\Re'}$.

I. von Neumann, Continuous geometry. Foreword by Israel Halperin, Princeton Mathematical Series, No. 25 Princeton University Press, Princeton, N.J. (1960).

Problems of homomorphisms on semifields

Note that in the case of commutative regular rings the picture is completely different.

Let us recall a problem of isomorphisms for an important class of commutative regular rings with an atomic Boolean algebra of idempotents, namely, so-called Tychonoff semifields.

M. Ya. Antonovskii, V. G. Boltyanskii, Tikhonov semifields and certain problems in general topology, Russian Mathematical Surveys (1970), 25(3):1-43.

Problems of homomorphisms on semifields

Given an arbitrary set Δ , a Tychonoff semifield \mathbb{R}^{Δ} is defined as the product of $|\Delta|$ copies of the real field, equipped with the pointwise algebraic operations, natural partial order and the Tychonoff's topology. These operations make \mathbb{R}^{Δ} a topological regular ring. The set of all idempotents of the semifield \mathbb{R}^{Δ} with the induced topology and order is topologically isomorphic to $\{0,1\}^{\Delta}$. For $g \in \Delta$ denote by $\mathbf{1}_g$ an atom from $\{0,1\}^{\Delta}$ defined as $\mathbf{1}_{g}(g) = 1$ and $\mathbf{1}_{g}(g') = 0$ for $g \neq g'$ ($g' \in \Delta$) and $\mathbf{1}_{\Lambda}$ is identity of \mathbb{R}^{Δ} .

M. Ya. Antonovskii, V. G. Boltyanskii, Tikhonov semifields and certain problems in general topology, Russian Mathematical Surveys (1970), 25(3):1-43.

Problems of homomorphisms on semifields

The following two questions are equivalent:^a

- (a) Does there exist an algebraic homomorphism $\psi: \mathbb{R}^\Delta \to \mathbb{R}$ satisfying the condition $\psi(\mathbf{1}_g) = 0$ for all $g \in \Delta$, such that $\psi(\mathbf{1}_\Delta) = 1$?
- (b) Does there exist a non trivial two-valued countably additive measure $\mu: \{0,1\}^{\Delta} \to \mathbb{R}$ satisfying the condition $\mu(\mathbf{1}_g) = 0$ for all $g \in \Delta$?

The second question is the famous Ulam Problem which is connected with the properties of cardinal $|\Delta|$.

^bS. U1am, Zur Mass theory inder allgsmeinen Mengenlehre, Fund. Math. **16** (1930), 140–150.

^aSh. A. Ayupov, Homomorphisms of a class of rings and two-valued measures on Boolean algebras, Funct. Anal. Appl., 11:3 (1977), 217–219.

Kusraev's result

- Let $S(\Omega, \Sigma, \mu)$ be the algebra of all measurable complex functions on (Ω, Σ, μ) ;
- A.G. Kusraev by means of Boolean-valued analysis establishes necessary and sufficient conditions for existence of band-preserving non trivial algebra automorphisms on $S(\Omega, \Sigma, \mu)$;
- In particular, he has proved that S[0,1] admits discontinuous algebra automorphisms which identically act on the Boolean algebra $P(L_{\infty}[0,1])$.

^a A. G. Kusraev, *Automorphisms and derivations in an extended complex f-algebra*, Sib. Math. J. **47** (2006) 97–107.

Outline

- Intoduction
 - Short history
 - Prelimanaries
- 2 Main results
 - The group of all band preserving automorphisms
 - Isomorphisms of homogeneous commutative unital regular algebras

Regular algebras

- A ring A is said to be regular in the sense of von Neumann if, for every $a \in A$, the equation axa = a has a solution in A.
- An algebra \mathcal{A} is said to be regular, if \mathcal{A} is a regular ring in the sense of von Neumann.
- Let \mathcal{A} be a commutative unital regular algebra with a unity 1 over an algebraically closed field \mathbb{F} of characteristic 0 and let $\nabla = \nabla(\mathcal{A})$ denote the set of idempotent elements of \mathcal{A} , that is,

$$\nabla(\mathcal{A}) = \left\{ e \in \mathcal{A} : e^2 = e \right\}.$$

- For $a \in \mathcal{A}$, let i(a) be the solution of the equations axa = a and xax = x.
- The element $s(a) = ai(a) \in \nabla$ is called the support of a.

A measure on Boolean algebras

- A function $\mu: \nabla \to [0, +\infty]$ is said to be a measure on ∇ , if $\mu(0) = 0$ and $\mu(e \vee g) = \mu(e) + \mu(g)$ for all $e, g \in \nabla$ such that $e \wedge g = 0$.
- The measure μ is called finite, if $\mu(e) < +\infty$ for all $e \in \nabla$; a strictly positive, if from the equality $\mu(e) = 0$, it follows that e = 0.
- The measure μ is called countably additive, if for any countable family $\{e_i\}_{i\in I}\subset \nabla$ of nonzero pairwise disjoint elements such that $\sup_{i\in I}e_i\in \nabla$ the equality

$$\mu\left(\sum_{i\in I}e_i\right)=\sum_{i\in I}\mu\left(e_i\right)$$

holds.

A rank metric on regular algebra

- We assume below that *µ* is a strictly positive finite measure on ∇ of all idempotents of a commutative unital regular algebra *A*.
- Define the function $\rho : \mathcal{A} \times \mathcal{A} \to \mathbb{R}$, by setting:

$$\rho(a,b) = \mu(s(a-b)). \tag{1}$$

- We will assume that A is complete with respect to the metric ρ defined as in (1).
- ullet In this case, ∇ is a complete Boolean algebra of the countable type.

Main example

Example 1.1

Let (Ω, Σ, μ) be a measure space with a finite strictly positive countable-additive measure μ . Denote by $S(\Omega) = S(\Omega, \Sigma, \mu)$ the algebra of all (classes of) measurable functions on (Ω, Σ, μ) with values in the field \mathbb{F} . Clearly, $S(\Omega)$ is a commutative regular algebra with unit $\mathbf{1}$ given by $\mathbf{1}(\omega) = 1$, $\omega \in \Omega$. The Boolean algebra ∇ of all idempotents in $S(\Omega)$ coincides with the Boolean algebra of classes of almost everywhere equal sets from Σ . For any $a \in S(\Omega)$ the support s(a) is a class from ∇ with the representative $\{\omega \in \Omega :: |a(\omega)| \neq 0\} \in \Sigma$.

Example

Example 1.2

If $\Omega = \{1, ..., n\}$ is a n-point set with a counting measure μ , that is, $\mu(A) = |A|$ for all $A \subseteq \Omega$, where |A| is the cardinality of A, then $S(\Omega) \cong \mathbb{F}^n$. In this case $\nabla = \{0,1\}^n$. Further, for a non zero element $a = (a_1, ..., a_n) \in \mathbb{F}^n$ its partial inverse and support are the following: $i(a) = (i(a_1), ..., i(a_n))$, where $i(a_k) = \frac{1}{a_k}$ for $a_k \neq 0$ and $i(a_k) = 0$ otherwise; $s(a) = (\varepsilon_1, ..., \varepsilon_n)$, where $\varepsilon_k = |signa_k|$ for all k = 1, ..., n. The metric ρ on \mathbb{F}^n can be defined as

$$\rho(a,b) = \left| \left\{ k \in \overline{1,n} : a_k \neq b_k \right\} \right| = \sum_{k=1}^n |sign(a_k - b_k)|.$$

A subalgebra of simple elements

An element $a \in \mathcal{A}$ is called

• finitely valued, if

$$a=\sum_{k=1}^n \lambda_k e_k,$$

where $\lambda_k \in \mathbb{F}$, $e_k \in \nabla$, $e_k e_j = 0$, $k \neq j$, k, j = 1, ..., n, $n \in \mathbb{N}$;

• countably valued, if

$$a=\sum_{k=1}^{\infty}\lambda_k e_k,$$

where $\lambda_k \in \mathbb{F}$, $e_k \in \nabla$, $e_k e_j = 0$, $k \neq j$, $k, j \in \mathbb{N}$.

Denote by $\mathbb{F}(\nabla)$ (respectively, $\mathbb{F}_c(\nabla)$) the set of all finitely valued (respectively, countably valued) elements in \mathcal{A} . Then,

$$\nabla \subset \mathbb{F}(\nabla) \subset \mathbb{F}_c(\nabla)$$

and $\mathbb{F}(\nabla)$, $\mathbb{F}_c(\nabla)$ are regular subalgebras in \mathcal{A} .

A band preserving mapping

Recall that two elements $x, y \in A$ are said to be orthogonal (notation $x \perp y$), if s(x)s(y) = 0.

A linear mapping $\Phi: \mathcal{B} \to \mathcal{A}$ is said to be band preserving, if

$$x \perp y \Longrightarrow \Phi(x) \perp y$$
.

Since $x \perp 1 - s(x)$, we see that Φ is band preserving iff

$$s\left(\Phi(x)\right) \le s(x) \tag{2}$$

for all $x \in A$.

Proposition 1.3

Let \mathcal{B} be a regular subalgebra in \mathcal{A} such that $\mathbb{F}_c(\nabla) \subset \mathcal{B}$ and let $\Phi: \mathcal{B} \to \mathcal{A}$ be a homomorphism such that $\Phi(\mathbf{1}) = \mathbf{1}$. Then Φ is band preserving if and only if $\Phi|_{\mathbb{F}_c(\nabla)} = id_{\mathbb{F}_c(\nabla)}$.

An algebraically independent subset

- Let $\mathbb{F}[x_1,...,x_n]$ be the algebra of polynomials in $x_1,...,x_n$ over the field \mathbb{F} .
- A subset $\mathcal{M} \subset \mathcal{A}$ is said to be algebraically independent, if for all $a_1, \ldots, a_n \in \mathcal{M}, e \in \nabla$, and $p(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$ from $ep(a_1, \ldots, a_n) = 0$ it follows that $eq(a_1, \ldots, a_n) = 0$ for every monomial $q \in \mathbb{F}[x_1, \ldots, x_n]$ occurring in a representation of p.
- An algebraically independent subset M is said to be maximal if it is not a proper subset of an algebraically independent set.
- For example, $\{t^{\sqrt{2}}, t^{\sqrt{3}}\}$ is an algebraically independent subset in S(0;1). But $\{\sin t, \cos t\}$ is an algebraically dependent subset in S(0;1), because $\sin^2 t + \cos^2 t = 1$.

Outline

- Intoduction
 - Short history
 - Prelimanaries
- Main results
 - The group of all band preserving automorphisms
 - Isomorphisms of homogeneous commutative unital regular algebras

An algebraically independent subset

Let \mathcal{M} be a maximal algebraically independent subset of \mathcal{A} . Set

$$s(\mathcal{M}) = \{s(a) : a \in \mathcal{M}\} \subset \nabla$$
,

and for $e \in s(\mathcal{M})$ set

$$\mathcal{M}_e = \{ a \in \mathcal{M} : s(a) = e \}.$$

Denote by $G(\mathcal{M}, \mathcal{A})$ the set of all mappings $g : \mathcal{M} \to \mathcal{A}$ such that

- s(g(a)) = s(a) for all $a \in \mathcal{M}$;
- $g(\mathcal{M}) = \{g(x) : x \in \mathcal{M}\}$ is also a maximal algebraically independent subset of \mathcal{A} .

A group of all permutations of \mathcal{M} , denoted by $Sym(\mathcal{M})$. Let $\mathbb{F}_c(\nabla)^{\bullet}$ be the group of all invertible elements from $\mathbb{F}_c(\nabla)$.

The group of all band preserving automorphisms

For a commutative unital regular algebra \mathcal{A} denote by $Aut_{\nabla}(\mathcal{A})$ the group of all band preserving automorphisms of \mathcal{A} .

Theorem 2.1

Let A be a commutative unital regular algebra over an algebraically closed field \mathbb{F} of characteristic zero such that there exists a finite strictly positive countable-additive measure μ on the Boolean algebra ∇ of all idempotents in A; A is a complete with respect the metric $\rho(a,b) = \mu(s(a-b))$, $a,b \in A$. Then there is an injective mapping

$$g \in G(\mathcal{M}, \mathcal{A}) \to \Phi_g \in Aut_{\nabla}(\mathcal{A}).$$
 (3)

In particular, the group $Aut_{\nabla}(\mathcal{A})$ contains a subgroup isomorphic to the group $\prod_{e \in s(\mathcal{M})} Sym(\mathcal{M}_e) \ltimes (\mathbb{F}_c(e\nabla)^{\bullet})^{|e\mathcal{M}|}$.

Outline

- Intoduction
 - Short history
 - Prelimanaries
- Main results
 - The group of all band preserving automorphisms
 - Isomorphisms of homogeneous commutative unital regular algebras

For a subset S consider the following subalgebras:

- $A_0(S) = \mathbb{F}(S, \nabla)$ is the subalgebra of A generated by S and ∇ ;
- $A_1(S)$ is the least regular subalgebra of A containing $A_0(S)$;
- $A_2(S)$ is the closure of $A_1(S)$ with respect to the metric ρ ;
- $A_3(S)$ is the integral closure of $A_2(S)$;
- $A_4(S)$ is the closure of $A_3(S)$ with respect to the metric ρ .

A homogeneous Boolean algebra

• Recall that a weight of the Boolean algebra ∇ is the least cardinality of sets which completely generate ∇ , i.e.,

$$\tau(\nabla) = \inf\left\{|X| : X \text{ completely generates } \nabla\right\}.$$

For
$$0 \neq e \in \nabla$$
 set $\nabla_e = \{x \in \nabla : x \leq e\}$.

- A Boolean algebra ∇ is homogeneous, if $\tau(\nabla_e) = \tau(\nabla)$ for any non zero $e \in \nabla$.
- We say that an algebraically independent subset \mathcal{M} in \mathcal{A} is faithful, if $s(x) = \mathbf{1}$ for all $x \in \mathcal{M}$.
- Let γ be a cardinal number. We say that a commutative unital regular algebra \mathcal{A} is γ -homogeneous, if there is a faithful algebraically independent subset \mathcal{M} with the cardinality γ such that $\mathcal{A}_4(\mathcal{M}) = \mathcal{A}$.
- In this case we call γ the transcendence degree of \mathcal{A} (notation trdeg(\mathcal{A}) = γ) and say that \mathcal{A} is a γ -homogeneous commutative regular algebra.

Maharam homogeneous measure space

- A measure space (Ω, Σ, μ) is said to be Maharam homogeneous if the Boolean algebra ∇ of the algebra $S(\Omega)$ is homogeneous.
- An automorphism ϕ of the Boolean algebra ∇ is said to be measure-preserving, if $\mu(e) = \mu(\phi(e))$ for all $e \in \nabla$.
- Every measure-preserving automorphism of the Boolean algebra ∇ can be extended to an automorphism of $S(\Omega)$.
- Let $G = \{\phi\}$ be a group of automorphisms of ∇ . The group G is called ergodic if for every $0 \neq e \in \nabla$ the following equality holds:

$$\bigvee_{\phi \in G} \phi(e) = \mathbf{1}.$$

A homogeneous commutative regular algebra

Proposition 2.2

Let (Ω, Σ, μ) be a Maharam homogeneous measure space with a finite strictly positive countable-additive measure μ and let \mathcal{A} be an integrally closed and ρ -closed regular subalgebra in $S(\Omega)$. Suppose that G is a measure-preserving ergodic group of automorpisms on ∇ such that $\phi(\mathcal{A}) = \mathcal{A}$ for all $\phi \in G$. Then \mathcal{A} is homogeneous.

Since for a Maharam homogeneous measure space (Ω, Σ, μ) , the group of all measure-preserving automorphisms of ∇ is ergodic, by Proposition 2.2, $S(\Omega)$ is a homogeneous commutative regular algebra.

A criteria of isomorphism of homogeneous commutative regular algebras

Theorem 2.3

Let (Ω, Σ, μ) be a Maharam homogeneous measure space with a finite strictly positive countable-additive measure μ . Assume that \mathcal{A} and \mathcal{B} are homogeneous, regular, integrally closed and ρ -closed unital subalgebras in $S(\Omega)$. Suppose that $\nabla(\mathcal{A})$ and $\nabla(\mathcal{B})$ are respectively their Boolean algebras of idempotents. Then the following assertions are equivalent:

- \bullet the algebras A and B are isomorphic;
- **2** the Boolean algebras $\nabla(A)$ and $\nabla(B)$ are isomorphic and trdeg(A) = trdeg(B).

The group of band preserving automorphisms of homogeneous algebra

Let γ be a cardinal number and let Sym_{γ} be the group of all permutations of a set of the cardinality γ . Theorem 2.1 implies the following result.

Corollary 2.4

Let \mathcal{A} be an γ -homogeneous algebra satisfying conditions of Theorem 2.1 . Then the group $Aut_{\nabla}(\mathcal{A})$ contains a subgroup isomorphic to the group $Sym_{\gamma}\ltimes (\mathbb{F}_c(\nabla)^{\bullet})^{\gamma}$.

An approximate limit

Recall that a measurable set $E \subset \mathbb{R}$ is said to have density d at t if the

$$\lim_{h\to 0}\frac{m\left(E\cap [t-h,t+h]\right)}{2h}$$

exists and is equal to d, where m is the Lebesgue's measure on \mathbb{R} . By Lebesgue's density theorem the set E has density 1 at almost all points of E.

Consider a Lebesgue measurable set $E \subset \mathbb{R}$, a measurable function $f: E \to \mathbb{R}$ and a point $t_0 \in \mathbb{R}$, in which E has density 1. The approximate upper and lower limits of f at t_0 are defined, respectively, as

- the infimum of $a \in \mathbb{R} \cup \{\infty\}$ such that the set $\{f \leq a\}$ has density 1 at t_0 ;
- the supremum of $a \in \mathbb{R} \cup \{\infty\}$ such that the set $\{f \geq a\}$ has density 1 at t_0 .

An approximate derivative

They are usually denoted by

$$ap - \limsup_{t \to t_0} f(t)$$
 and $ap - \liminf_{t \to t_0} f(t)$.

If the two numbers coincide then the result is called the approximate limit of f at t_0 and it is denoted by $ap - \lim_{t \to t_0} f(t)$.

If the approximate limit

$$f'_{ap}(t_0) := \operatorname{ap} - \lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0}$$

exists and it is finite, then it is called approximate derivative of the function f at t_0 and the function f is called approximately differentiable at t_0 .

The algebra of approximately differentiable functions

• The *-subalgebra AD(0;1) coincides with the set of all functions of the form

$$\sum_{n=1}^{\infty} e_n g_n,$$

where $\{e_n\}_{n\geq 1}$ is a partition of the unit in ∇ , $g_n \in C^{(1)}[0,1]$, $n \in \mathbb{N}$, and $C^{(1)}[0,1]$ is the algebra of all continuously differentiable complex-valued functions on [0,1].

② The algebra AD(0;1) is the smallest regular, integrally closed and ρ -closed proper subalgebra of S(0;1), which contains D[0,1] and all projections from S(0;1), where D[0;1] is the algebra of (classes of) differentiable functions which have almost everywhere finite derivation on [0;1].

¹A. F. Ber, K. K. Kudaybergenov and F. A. Sukochev, Notes on derivations of Murray–von Neumann algebras, J. Funct. Anal. 279 (5) (2020) 108589.

Isomorphism between the algebra of all measurable functions and the algebra of all approximately differentiable functions

Applying Proposition 2.2 for the case where A = AD(0;1) and G is the group of all rational translations (modulo 1) of [0,1], we see that AD(0;1) is a homogeneous commutative regular algebra.

Theorem 2.5

The regular algebras S(0;1) and AD(0;1) are isomorphic.

As we have mentioned above AD(0;1) is a proper subalgebra in S(0;1). Recall that the first example of a nowhere approximately differentiable function belonging to the Banach space C[0,1] is due to V. Jarnik.²

²V. Jarnik, Sur les nombres derivés approximatifs, Fund. Math. 22 (1934) 4-16.

Remark 2.6

It should be noted that the algebras C[0;1] and $C^{(1)}[0;1]$ are not isomorphic. Indeed, assume that $\Phi: C[0;1] \to C^{(1)}[0;1]$ is an isomorphism. There is a continuous mapping^a $\iota: [0;1] \to [0;1]$ such that $\Phi(x) = x \circ \iota$ for all $x \in C[0;1]$. If ι is a bijection, then the image $Im\Phi = C[0;1]$. Otherwise there are different points $t_1, t_2 \in [0;1]$ such that $\iota(t_1) = \iota(t_2)$. Therefore $\Phi(x)(t_1) = \Phi(x)(t_2)$ for all $x \in C[0;1]$. So, in both cases, we have that $Im\Phi \neq C^{(1)}[0,1]$. Thus there is no isomorphism from C[0;1] onto $C^{(1)}[0;1]$.

^aL. Gillman, M. Jerison, Rings of continuous functions, The University Series in Higher Mathematics D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York 1960.

Example

Note that there is an uncountable algebraically independent subset in S(0;1).³ Therefore we have the following result.

Corollary 2.7

The group $Aut_{\nabla}(S(0;1))$ of all band preserving automorphms of the algebra S(0;1) contains a subgroup isomorphic to the group $Sym_{\gamma} \ltimes (\mathbb{F}_{c}(\nabla)^{\bullet})^{\gamma}$, where γ is the continuum.

³A. F. Ber, Derivations on commutative regular algebras, Siberian Advances in Mathematics, 21 (2011) 161–169.

Conjecture

In connection with the above Corollary the following Conjecture arises.

Conjecture 2.8

Let A be a homogeneous commutative regular algebra with a homogeneous Boolean algebra of idempotents ∇ . Then

$$trdeg(A) \leq 2^{\max\{\tau(\nabla),\aleph_0\}}.$$

In particular,

$$trdeg(S(0;1)) = c.$$

Example

Remark 2.9

We note that any band preserving automorphism of the algebra $S_{\mathbb{R}}(0;1)$ of all classes of real-valued functions on (0;1) is trivial. Indeed, any band preserving automorphism Φ on $S_{\mathbb{R}}(0;1)$ is positive, because for $0 \le x \in S_{\mathbb{R}}(0;1)$ we have that $\Phi(x) = \Phi\left((\sqrt{x})^2\right) = \Phi\left(\sqrt{x}\right)^2 \ge 0$. Now for any $x \in S_{\mathbb{R}}(0;1)$ take a sequence $\{x_n\}$ of simple functions on $S_{\mathbb{R}}(0;1)$ such that $x_n \uparrow x$. Then $x_n = \Phi(x_n) \uparrow \Phi(x)$, and therefore $\Phi(x) = x$.