Hyperfast Second-Order Local Solvers for Efficient Statistically Preconditioned Distributed Optimization

Kamzolov Dmitry

Moscow Institute of Physics and Technology

https://arxiv.org/pdf/2102.08246

Joint work with: P. Dvurechensky, A. Lukashevich,
S. Lee, E. Ordentlich, C. Uribe, A. Gasnikov
Supported by RFBR projects no. 19-31-27001

the Ministry of Science and Higher Education of the Russian Federation (Goszadaniye) No. 075-00337-20-03, project No. 0714-2020-0005

June 2, 2021

Plan

- High-order methods
- Hyperfast Second-Order Method
- Statistically Preconditioned Distributed Method

High-order convex problem

 $\min f(x)$,

f(x) is convex function with Lipschitz p-th derivative with constant L_p

Lipschitz derivative

$$||D^{p}f(x) - D^{p}f(y)|| \le L_{p}||x - y||$$

Lipschitz derivative

$$||D^p f(x) - D^p f(y)|| \le L_p ||x - y||$$

Taylor approximation

$$\Omega_{p}(f, x; y) = f(x) + \sum_{k=1}^{p} \frac{1}{k!} D^{k} f(x) [y - x]^{k}, y \in E$$

Lipschitz derivative

$$||D^{p}f(x) - D^{p}f(y)|| \le L_{p}||x - y||$$

Taylor approximation

$$\Omega_{p}(f, x; y) = f(x) + \sum_{k=1}^{p} \frac{1}{k!} D^{k} f(x) [y - x]^{k}, y \in E$$

Corrolary

$$|f(y) - \Omega_p(f, x; y)| \le \frac{L_p}{(p+1)!} ||y - x||^{p+1}$$

Basic Method

Basic step [Nesterov, 2018]

$$T_{H_p}(x) = \underset{y}{\operatorname{argmin}} \left\{ \tilde{\Omega}_{p,H_p}(f,x;y) \right\},$$

where

$$\tilde{\Omega}_{p,H_p}(f,x;y) = \Omega_p(f,x;y) + \frac{H_p}{p!} ||y-x||^{p+1}.$$

For $H_p \ge L_p$ this subproblem is convex and hence implementable.

Basic Method

Basic step [Nesterov, 2018]

$$T_{H_p}(x) = \underset{y}{\operatorname{argmin}} \left\{ \tilde{\Omega}_{p,H_p}(f,x;y) \right\},$$

where

$$\tilde{\Omega}_{p,H_p}(f,x;y) = \Omega_p(f,x;y) + \frac{H_p}{p!} ||y-x||^{p+1}.$$

For $H_p \ge L_p$ this subproblem is convex and hence implementable.

Convergence

$$f(x_N) - f(x_*) \le O\left(\frac{H_p R^{p+1}}{N^p}\right)$$

Accelerated Method [Nesterov, 2018]

Accelerated Tensor Method

Initialization: Choose $x_0 \in \mathbb{E}$ and $M > L_p$. Compute $x_1 = T_{p,M}(x_0)$.

Define
$$C = \frac{p}{2} \sqrt{\frac{(p+1)}{(p-1)}(M^2 - L_p^2)}$$
 and $\psi_1(x) = f(x_1) + \frac{C}{p!} d_{p+1}(x - x_0)$.

Iteration k, $(k \ge 1)$:

- **1.** Compute $v_k = \arg\min_{x \in \mathbb{R}} \psi_k(x)$ and choose $y_k = \frac{A_k}{A_{k+1}} x_k + \frac{a_k}{A_{k+1}} v_k$.
- **2.** Compute $x_{k+1} = T_{p,M}(y_k)$ and update

$$\psi_{k+1}(x) = \psi_k(x) + a_k[f(x_{k+1}) + \langle \nabla f(x_{k+1}), x - x_{k+1} \rangle].$$

Accelerated Method

Accelerated Convergence

$$F(x_N) - F(x^*) \le O\left(\frac{H_p R^{p+1}}{N^{p+1}}\right)$$

Near-optimal tensor method [Gasnikov, et. al. 2019]

Algorithm 1 Accelerated Taylor Descent

- 1: **Input:** convex function $f: \mathbb{R}^d \to \mathbb{R}$ such that $\nabla^p f$ is L_p -Lipschitz.
- 2: Set $A_0 = 0, x_0 = y_0 = 0$
- 3: **for** k = 0 **to** k = K 1 **do**
- 4: Compute a pair $\lambda_{k+1} > 0$ and $y_{k+1} \in \mathbb{R}^d$ such that

$$\frac{1}{2} \le \lambda_{k+1} \frac{L_p \cdot ||y_{k+1} - \widetilde{x}_k||^{p-1}}{(p-1)!} \le \frac{p}{p+1},$$

where

$$y_{k+1} = \underset{y}{\operatorname{arg\,min}} \left\{ f_p(y; \widetilde{x}_k) + \frac{L_p}{p!} \|y - \widetilde{x}_k\|^{p+1} \right\},\,$$

and

$$a_{k+1} = \frac{\lambda_{k+1} + \sqrt{\lambda_{k+1}^2 + 4\lambda_{k+1}A_k}}{2} \text{ , } A_{k+1} = A_k + a_{k+1} \text{ , and } \widetilde{x}_k = \frac{A_k}{A_{k+1}}y_k + \frac{a_{k+1}}{A_{k+1}}x_k \,.$$

- 5: Update $x_{k+1} := x_k a_{k+1} \nabla f(y_{k+1})$
- 6: end for
- 7: return y_K

Near-optimal tensor method [Gasnikov, et. al. 2019]

Optimal convergence

$$F(x_N) - F(x^*) \le \tilde{O}\left(\frac{H_p R^{p+1}}{N^{\frac{3p+1}{2}}}\right)$$

Inexact subproblem solution

Inexact solution

Firstly, we introduce the definition of the inexact subproblem solution. Any point from the set

$$\mathcal{N}_{p,H_p}^{\gamma}(x) = \left\{ T \in \mathbb{R}^n : \|\nabla \tilde{\Omega}_{p,H_p}(f,x;T)\| \le \gamma \|\nabla f(T)\| \right\}$$

is the inexact subproblem solution, where $\gamma \in [0;1]$ is an accuracy parameter. \mathcal{N}^0_{p,H_p} is the exact solution of the subproblem.

Inexact subproblem solution

- 1: **Input:** convex function $f: \mathbb{R}^n \to \mathbb{R}$ such that $\nabla^p f$ is L_p -Lipschitz, $H_p = \xi L_p$ where ξ is a scaling parameter, γ is a desired accuracy of the subproblem solution.
- 2: Set $A_0 = 0, x_0 = y_0$
- 3: **for** k = 0 **to** k = K 1 **do**
- 4: Compute a pair $\lambda_{k+1} > 0$ and $y_{k+1} \in \mathbb{R}^n$ such that

$$\frac{1}{2} \le \lambda_{k+1} \frac{H_p \cdot \|y_{k+1} - \tilde{x}_k\|^{p-1}}{(p-1)!} \le \frac{p}{p+1},$$

where

$$y_{k+1} \in \mathcal{N}_{p,H_p}^{\gamma}(\tilde{x}_k)$$

and

$$a_{k+1} = \frac{\lambda_{k+1} + \sqrt{\lambda_{k+1}^2 + 4\lambda_{k+1}A_k}}{2} , A_{k+1} = A_k + a_{k+1}$$

$$\tilde{x}_k = \frac{A_k}{A_{k+1}} y_k + \frac{a_{k+1}}{A_{k+1}} x_k .$$

- 5: Update $x_{k+1} := x_k a_{k+1} \nabla f(y_{k+1})$
- 6: **return** y_K

BDGM [Nesterov 2020]

Algorithm 3 Bregman-Distance Gradient Method

- 1: Set $z_0 = \tilde{x}_k$ and $\tau = \frac{3\delta}{8(2+\sqrt{2})\|\nabla f(\tilde{x}_k)\|}$
- 2: Set objective function

$$\varphi_k(z) = \langle \nabla f(\tilde{x}_k), z - \tilde{x}_k \rangle + \frac{1}{2} \nabla^2 f(\tilde{x}_k) [z - \tilde{x}_k]^2 + \frac{1}{6} D^3 f(\tilde{x}_k) [z - \tilde{x}_k]^3 + \frac{L_3}{4} ||z - \tilde{x}_k||^4$$

3: Set feasible set

$$S_k = \left\{z: \|z - \tilde{x}_k\| \le 2\left(rac{2+\sqrt{2}}{L_3}\|
abla f(ilde{x}_k)\|
ight)^{rac{1}{3}}
ight\}$$

4: Set scaling function

$$\rho_k(z) = \frac{1}{2} \left\langle \nabla^2 f(\tilde{x}_k)(z - \tilde{x}_k), z - \tilde{x}_k \right\rangle + \frac{L_3}{4} \|z - \tilde{x}_k\|^4$$

- 5: for $k \ge 0$ do
- 6: Compute the approximate gradient $g_{\varphi_k,\tau}(z_i)$
- 7: IF $||g_{\varphi_k,\tau}(z_i)|| \leq \frac{1}{6}||\nabla f(z_i)|| \delta$, then STOP
- 8: **ELSE** $z_{i+1} = \operatorname*{argmin}_{z \in S_L} \left\{ \langle g_{\varphi_k, \tau}(z_i), z z_i \rangle + 2 \left(1 + \frac{1}{\sqrt{2}} \right) \beta_{\rho_k}(z_i, z) \right\},$
- 9: return z_i

BDGM [Nesterov 2020]

Bregman distance

 $\beta_{\rho_k}(z_i,z)$ is a Bregman distance generated by $\rho_k(z)$

$$\beta_{\rho_k}(z_i,z) = \rho_k(z) - \rho_k(z_i) - \langle \nabla \rho_k(z_i), z - z_i \rangle$$
.

Inexact third-order derivative

$$g_{\varphi_k,\tau}(z) = \nabla f(\tilde{x}_k) + \nabla^2 f(\tilde{x}_k)[z - \tilde{x}_k] + g_{\tilde{x}_k}^{\tau}(z)/2 + L_3||z - \tilde{x}_k||^2(z - \tilde{x}_k)$$

$$g_{ ilde{x}_k}^{ au}(z) = rac{1}{ au^2} \left(
abla f(ilde{x}_k + au(z - ilde{x}_k)) +
abla f(ilde{x}_k - au(z - ilde{x}_k)) - 2
abla f(ilde{x}_k)
ight).$$

Hyperfast Method

Algorithm 2 Hyperfast Second-Order Method

- 1: **Input:** convex function $f: \mathbb{R}^n \to \mathbb{R}$ with L_3 -Lipschitz 3rd-order derivative.
- 2: Set $A_0 = 0, x_0 = y_0$
- 3: **for** k = 0 **to** k = K 1 **do**
- 4: Compute a pair $\lambda_{k+1} > 0$ and $y_{k+1} \in \mathbb{R}^n$ such that

$$\frac{1}{2} \le \lambda_{k+1} \frac{3L_3 \cdot \|y_{k+1} - \tilde{x}_k\|^2}{4} \le \frac{3}{4},$$

where $y_{k+1} \in \mathcal{N}_{3,3L_3/2}^{1/6}(\tilde{x}_k)$ solved by Algorithm 3 and

$$a_{k+1} = rac{\lambda_{k+1} + \sqrt{\lambda_{k+1}^2 + 4\lambda_{k+1}A_k}}{2}$$
, $A_{k+1} = A_k + a_{k+1}$

$$\tilde{x}_k = \frac{A_k}{A_{k+1}}y_k + \frac{a_{k+1}}{A_{k+1}}x_k$$
.

- 5: Update $x_{k+1} := x_k a_{k+1} \nabla f(y_{k+1})$
- 6: **return** y_K

Theorem

Theorem

Let f be a convex function whose third derivative is L_3 -Lipschitz and x_* denote a minimizer of f. Then to reach accuracy ε Algorithm 2 with Algorithm 3 for solving subproblem computes

$$N_1 = \tilde{O}\left(\left(\frac{L_3 R^4}{\varepsilon}\right)^{\frac{1}{5}}\right)$$

Hessians and

$$N_2 = \tilde{O}\left(\left(\frac{L_3R^4}{\varepsilon}\right)^{\frac{1}{5}}\log\left(\frac{G+H}{\varepsilon}\right)\right)$$

gradients, where G and H are the uniform upper bounds for the norms of the gradients and Hessians computed at the points generated by the main algorithm.

Empirical Risk Minimization(ERM)

$$\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}; \xi_i, \eta_i), \tag{1}$$

where $\{\zeta_i = (\xi_i, \eta_i)\}_{i=1}^N$ are training samples, and ℓ is a convex loss function with respect to x.

Empirical Risk Minimization(ERM)

$$\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}; \xi_i, \eta_i), \tag{1}$$

where $\{\zeta_i = (\xi_i, \eta_i)\}_{i=1}^N$ are training samples, and ℓ is a convex loss function with respect to x.

Convexity

Furthermore, we assume F is L_F -smooth and σ_F -strongly convex, i.e.,

$$\sigma_F I_d \leq \nabla^2 F(x) \leq L_F I_d,$$
 (2)

where I_d is the *d*-dimensional identity matrix. The condition number of F is denoted as $\kappa_F = L_F/\sigma_F$, and the solution to (1) as x_* .

Distributed setup

Distributed configuration

Data is distributed uniformly among m computing units/nodes/agents such that $\mathcal{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_m\}$ and N = mn. That is, each machine $j \in \{1, \dots, m\}$ locally stores n samples $\mathcal{D}_j = \{\xi_i^{(j)}, \eta_i^{(j)}\}_{i=1}^n$. Moreover, there is a central node, that is able to communicate with all the worker nodes.

Distributed ERM

Each agent j has a local empirical risk, denoted as $F_i(x) \triangleq (1/n) \sum_{i=1}^n \ell(x; \xi_i^{(j)}, \eta_i^{(j)})$, where $F_1(x)$ is a central node. Thus,

$$F(x) = \frac{1}{N} \sum_{i=1}^{m} F_j(x) = \frac{1}{nm} \sum_{i=1}^{m} \sum_{i=1}^{n} \ell(x; \xi_i^{(j)}, \eta_i^{(j)}).$$
 (3)

Statistically preconditioning

Reference function

Following the same algorithmic structure as DANE and SPAG, we define a reference function

$$\phi(x) = \frac{1}{n} \sum_{k=1}^{n} \ell(x, \zeta_k) + \frac{\mu}{2} ||x||_2^2, \tag{4}$$

where the examples ζ_k are taken from the node which is chosen to be central. It follows that $\phi(x)$ is L_{ϕ} -smooth, and σ_{ϕ} -strongly convex.

Statistical similarity

The value of the parameter μ is set to be a upper bound that quantifies how statistically similar the function F_1 is from F, i.e., we assume that with high probability, it holds that

$$\|\nabla^2 F(x) - \nabla^2 F_1(x)\|_2 \le \mu. \tag{5}$$

Relative smoothness

Relative condition number

F(x) is $L_{F/\phi}$ -relative smooth and $\sigma_{F/\phi}$ -relative strongly convex with respect to $\phi(x)$, i.e.,

$$\sigma_{F/\phi} \nabla^2 \phi(x) \le \nabla^2 F(x) \le L_{F/\phi} \nabla^2 \phi(x),$$
 (6)

with $L_{F/\phi}=1$, $\sigma_{F/\phi}=\sigma_F/(\sigma_F+2\mu)$, and $\kappa_{F/\phi}=L_{F/\phi}/\sigma_{F/\phi}$

Bregman divergence

The Bregman divergence is defined as

$$D_{\phi}(x,y) \triangleq \phi(x) - \phi(y) - \nabla \phi(y)^{\top}(x-y). \tag{7}$$

Bregman proximal method

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \langle \nabla F(z), x - z \rangle + L_{F/\phi} D_{\phi}(x, z) \right\}.$$

(8)

Inexact SPAG

Algorithm 1 InSPAG $(L_{F/\phi}, \sigma_{F/\phi}, x_0, D)$

- 1: **Input:** D s.t. $x_* \in B_2(0,D), \hat{D}_{\phi}^2 = 2L_{\phi}D^2, L_{F/\phi}, \sigma_{F/\phi}, G_0.$
- 2: Set $y_0 = u_0 = x_0 \in B_2(0, D)$, $\alpha_0 \triangleq 0$, $A_0 \triangleq \alpha_0$.
- 3: **for** $t \ge 0$ **do**
- 4: At the central node
- 5: Find the smallest integer $i_t \ge 0$ such that

$$D_{\phi}(x_{t+1}, y_{t+1}) \le \frac{G_{t+1}\alpha_{t+1}^2}{A_{t+1}^2} D_{\phi}(u_{t+1}, u_t), \quad (9)$$

where $G_{t+1}=2^{i_t-1}G_t$, $A_{t+1}\triangleq A_t+\alpha_{t+1}$, and α_{t+1} is the largest root of

$$A_{t+1}(1 + A_t \sigma_{F/\phi}) = L_{F/\phi} G_{t+1} \alpha_{t+1}^2.$$
 (10)

6: Send $y_{t+1} \triangleq (\alpha_{t+1}u_t + A_tx_t)/A_{t+1}$ to workers.

Inexact SPAG

- 7: At every worker node
- 8: Compute $\frac{1}{n} \sum_{i=1}^{n} \nabla \ell(y_{t+1}, \zeta_i^{(j)})$ and send it to the central node.
- 9: At the central node
- 10: Compute

$$\nabla F(y_{t+1}) = \frac{1}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \nabla \ell(y_{t+1}, \zeta_i^{(j)}).$$

11:

Solve
$$u_{t+1} \triangleq \underset{x \in B_2(0,D)}{\arg \min} \hat{D}_{\phi}^2/t V_t(x),$$
 (11)

where
$$V_t(x) \triangleq \alpha_{t+1} \langle \nabla F(y_{t+1}), x - y_{t+1} \rangle +$$

 $+ (1 + A_t \sigma_{F/\phi}) D_{\phi}(x, u_t) +$
 $+ \alpha_{t+1} \sigma_{F/\phi} D_{\phi}(x, y_{t+1}),$ (12)

12:

Set
$$x_{t+1} \triangleq \frac{\alpha_{t+1}u_{t+1} + A_tx_t}{A_{t+1}}$$
. (13)

13: **end for**

Convergence Theorem

Convergence Theorem

Assume the function F is σ_F -strongly convex and L_F -smooth, and $\sigma_{F/\phi}$ -strongly convex and $L_{F/\phi}$ -smooth with respect to a function ϕ , where ϕ is σ_{ϕ} -strongly convex and L_{ϕ} -smooth. Moreover, let x_t , $t \geq 0$ be the sequence generated by Algorithm 1. Then, after T iterations it holds that

$$F(x_T) - F(x_*) \le \frac{\hat{D}_{\phi}^2}{A_T} (3/2 + \log T),$$
 (9)

Moreover, the value A_T grows as follows:

$$A_T \geq \max \left\{ \frac{T^2}{2L_{F/\phi}\widetilde{G}_T}, \frac{1}{L_{F/\phi}G_1} \exp \left(2T \sqrt{\frac{\sigma_{F/\phi}}{2L_{F/\phi}\widetilde{G}_T}} \right) \right\},$$
 where $\widetilde{G}_T^{-1/2} = \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{\sqrt{G_{t+1}}}$.

Complexity

Total complexity

To obtain an ε accurate minimizer of F(x) total number of subiteration is

$$\tilde{O}\left(\frac{\sqrt{\kappa_F D}}{n^{1/4}}\left(\frac{\|A^\top A\|_2^2 D^2}{\min\{\lambda_1, \lambda_2\} + \mu}\right)^{\frac{1}{5}}\right). \tag{10}$$

Communication complexity

If ϕ is a quadratic function, then $G_t=1$, and the communication complexity will be $O(\sqrt{\kappa_F/\phi})$. In the general case, where ϕ is not quadratic, $G_t\to 1$ linearly with rate $\tilde{O}(\sqrt{\kappa_F})$.

Communication complexity

Statistics of the datasets. N is the number of samples, d is the number of features, Feat. is the average number of non-zero features, and Size is the data size in MB.

Dataset	N	d	Feat.	Size
RCV1	20k	47k	74.05	13.7
In-house	710M	3,246k	109.86	650.8k

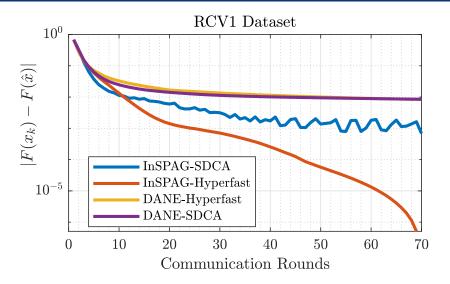


Figure 1: Comparison of the communication rounds for the data set RCV1.

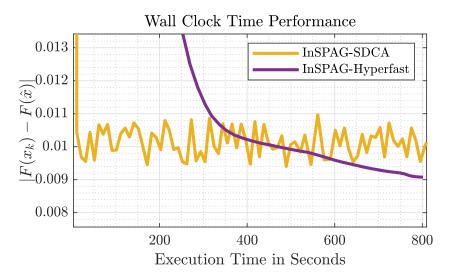


Figure 2: Wall clock time performance of the InSPAG method for the data set RCV1.

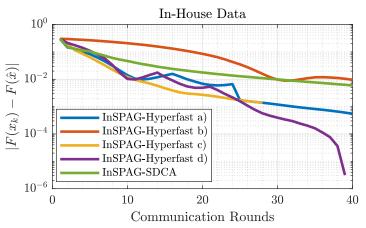


Figure 3: Comparison of the communication rounds for the in house dataset. a) $L_3=10$, ADAM learning rate 0.01, n=10000; b) $L_3=100$, ADAM learning rate 0.1, n=10000; c) $L_3=10$, ADAM learning rate 0.1, n=10000; d) $L_3=15$, ADAM learning rate 0.01, n=1000.

Thank you for your attention!