

Term Rewriting
Basic Concepts, Tools, and Applications

Sarah Winkler

Logical Perspectives Summer School June 14–16 2021, Moscow

Outline

Term Rewriting

- abstract, Turing complete model of computation
- can model programs, simplification systems, other change processes
- ▶ rewriting techniques can serve as toolbox to analyze properties

Outline

Term Rewriting

- abstract, Turing complete model of computation
- can model programs, simplification systems, other change processes
- rewriting techniques can serve as toolbox to analyze properties

Crash course: Term rewriting in a nutshell

- ▶ analysis of termination, confluence, completion, complexity
- applications: fun/profit examples

Outline

Term Rewriting

- abstract, Turing complete model of computation
- ▶ can model programs, simplification systems, other change processes
- rewriting techniques can serve as toolbox to analyze properties

Crash course: Term rewriting in a nutshell

- ▶ analysis of termination, confluence, completion, complexity
- applications: fun/profit examples

Rewrite Tools Developed @ CL Group Innsbruck

T_TT₂, T_CT, CSI, mkbtt, KBCV, mædmax, FORT, ProTeM, CeTA, ConCon, MiniSmt, AutoStrat, Ctrl, . . .

A COVID medication research team wants to develop a medicine that transforms the DNA of SARS-CoV-2:

TAGCTAGCTAGCT

into the DNA of a known and relatively benign influenza virus:

CTGACTGACT

A COVID medication research team wants to develop a medicine that transforms the DNA of SARS-CoV-2:

TAGCTAGCTAGCT

into the DNA of a known and relatively benign influenza virus:

**** ****

(2)

Techniques exist to perform the following DNA transformations:

 $\mathsf{TCAT} \leftrightarrow \mathsf{T} \quad \mathsf{GAG} \leftrightarrow \mathsf{AG} \quad \mathsf{CTC} \leftrightarrow \mathsf{TC} \quad \mathsf{AGTA} \leftrightarrow \mathsf{A} \quad \mathsf{TAT} \leftrightarrow \mathsf{CT}$

A COVID medication research team wants to develop a medicine that transforms the DNA of SARS-CoV-2:

TAGCTAGCTAGCT

into the DNA of a known and relatively benign influenza virus:

CTGACTGACT

(2)

Techniques exist to perform the following DNA transformations:

$$\mathsf{TCAT} \leftrightarrow \mathsf{T} \quad \mathsf{GAG} \leftrightarrow \mathsf{AG} \quad \mathsf{CTC} \leftrightarrow \mathsf{TC} \quad \mathsf{AGTA} \leftrightarrow \mathsf{A} \quad \mathsf{TAT} \leftrightarrow \mathsf{CT}$$

Recently it has been discovered that the mad cow disease is caused by a retrovirus with the following DNA sequence

CTGCTACTGACT

A COVID medication research team wants to develop a medicine that transforms the DNA of SARS-CoV-2:

TAGCTAGCTAGCT

into the DNA of a known and relatively benign influenza virus:

CTGACTGACT

(2)

Techniques exist to perform the following DNA transformations:

$$\mathsf{TCAT} \leftrightarrow \mathsf{T} \quad \mathsf{GAG} \leftrightarrow \mathsf{AG} \quad \mathsf{CTC} \leftrightarrow \mathsf{TC} \quad \mathsf{AGTA} \leftrightarrow \mathsf{A} \quad \mathsf{TAT} \leftrightarrow \mathsf{CT}$$

Recently it has been discovered that the mad cow disease is caused by a retrovirus with the following DNA sequence

CTGCTACTGACT

Questions

ightharpoonup are the known transformations sufficient to transform (1) into (2)?

A COVID medication research team wants to develop a medicine that transforms the DNA of SARS-CoV-2:

TAGCTAGCTAGCT

into the DNA of a known and relatively benign influenza virus:

(2)

Techniques exist to perform the following DNA transformations:

$$\mathsf{TCAT} \leftrightarrow \mathsf{T} \quad \mathsf{GAG} \leftrightarrow \mathsf{AG} \quad \mathsf{CTC} \leftrightarrow \mathsf{TC} \quad \mathsf{AGTA} \leftrightarrow \mathsf{A} \quad \mathsf{TAT} \leftrightarrow \mathsf{CT}$$

Recently it has been discovered that the mad cow disease is caused by a retrovirus with the following DNA sequence

CTGCTACTGACT

Questions

- ▶ are the known transformations sufficient to transform (1) into (2)?
- ▶ is it possible that the mad cow disease DNA is created in this process?

▶ two-player game where state is sequence of black and white stones

- ▶ two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- ▶ two-player game where state is sequence of black and white stones
- ► allowed moves are

player who puts last white wins

- two-player game where state is sequence of black and white stones
- ► allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- ▶ two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

- ▶ two-player game where state is sequence of black and white stones
- ▶ allowed moves are

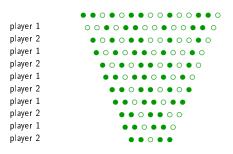
- player who puts last white wins
- ▶ initial state

- ▶ two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

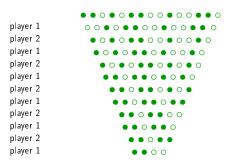
- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- initial state



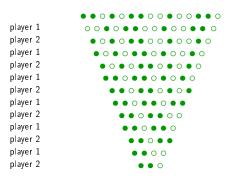
- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state



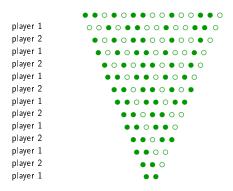
- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- initial state



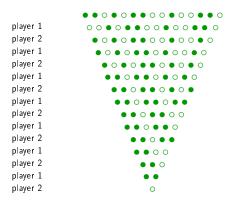
- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- initial state



- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state



- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- ▶ initial state

Questions

does the game terminate for every initial state?

- two-player game where state is sequence of black and white stones
- ▶ allowed moves are

- player who puts last white wins
- initial state

Questions

- does the game terminate for every initial state?
- which strategies are winning strategies for player 2?

Research Example 3: Functional Programs

TRS \mathcal{R} models sieve of Eratosthenes to enumerate prime numbers:

```
\begin{array}{ll} \operatorname{primes} \to \operatorname{sieve}(\operatorname{from}(\operatorname{s}(\operatorname{s}(0)))) & \operatorname{sieve}(0\colon y) \to \operatorname{sieve}(y) \\ \operatorname{from}(x) \to x\colon \operatorname{from}(\operatorname{s}(x)) & \operatorname{sieve}(\operatorname{s}(x)\colon y) \to \operatorname{s}(x)\colon \operatorname{sieve}(\operatorname{filter}(x,y,x)) \\ \operatorname{hd}(x\colon y) \to x & \operatorname{filter}(0,y\colon z,w) \to 0\colon \operatorname{filter}(w,z,w) \\ \operatorname{tl}(x\colon y) \to y & \operatorname{filter}(\operatorname{s}(x),y\colon z,w) \to y\colon \operatorname{filter}(x,z,w) \end{array}
```

Research Example 3: Functional Programs

TRS \mathcal{R} models sieve of Eratosthenes to enumerate prime numbers:

```
\begin{array}{ll} \mathsf{primes} \to \mathsf{sieve}(\mathsf{from}(\mathsf{s}(\mathsf{s}(\mathsf{0})))) & \mathsf{sieve}(\mathsf{0} \colon y) \to \mathsf{sieve}(y) \\ \mathsf{from}(x) \to x \colon \mathsf{from}(\mathsf{s}(x)) & \mathsf{sieve}(\mathsf{s}(x) \colon y) \to \mathsf{s}(x) \colon \mathsf{sieve}(\mathsf{filter}(x,y,x)) \\ \mathsf{hd}(x \colon y) \to x & \mathsf{filter}(\mathsf{0},y \colon z,w) \to \mathsf{0} \colon \mathsf{filter}(w,z,w) \\ \mathsf{tl}(x \colon y) \to y & \mathsf{filter}(\mathsf{s}(x),y \colon z,w) \to y \colon \mathsf{filter}(x,z,w) \end{array}
```

Questions About (Functional) Programs

▶ is the given program terminating?

Research Example 3: Functional Programs

TRS \mathcal{R} models sieve of Eratosthenes to enumerate prime numbers:

```
\begin{array}{ll} \mathsf{primes} \to \mathsf{sieve}(\mathsf{from}(\mathsf{s}(\mathsf{s}(\mathsf{0})))) & \mathsf{sieve}(\mathsf{0} \colon y) \to \mathsf{sieve}(y) \\ \mathsf{from}(x) \to x \colon \mathsf{from}(\mathsf{s}(x)) & \mathsf{sieve}(\mathsf{s}(x) \colon y) \to \mathsf{s}(x) \colon \mathsf{sieve}(\mathsf{filter}(x,y,x)) \\ \mathsf{hd}(x \colon y) \to x & \mathsf{filter}(\mathsf{0},y \colon z,w) \to \mathsf{0} \colon \mathsf{filter}(w,z,w) \\ \mathsf{tl}(x \colon y) \to y & \mathsf{filter}(\mathsf{s}(x),y \colon z,w) \to y \colon \mathsf{filter}(x,z,w) \end{array}
```

Questions About (Functional) Programs

- ▶ is the given program terminating?
- if yes, what is its worst-case computational complexity?

Research Example 3: Functional Programs

TRS \mathcal{R} models sieve of Eratosthenes to enumerate prime numbers:

```
\begin{array}{ll} \mathsf{primes} \to \mathsf{sieve}(\mathsf{from}(\mathsf{s}(\mathsf{s}(\mathsf{0})))) & \mathsf{sieve}(0\colon y) \to \mathsf{sieve}(y) \\ \mathsf{from}(x) \to x\colon \mathsf{from}(\mathsf{s}(x)) & \mathsf{sieve}(\mathsf{s}(x)\colon y) \to \mathsf{s}(x)\colon \mathsf{sieve}(\mathsf{filter}(x,y,x)) \\ \mathsf{hd}(x\colon y) \to x & \mathsf{filter}(0,y\colon z,w) \to 0\colon \mathsf{filter}(w,z,w) \\ \mathsf{tl}(x\colon y) \to y & \mathsf{filter}(\mathsf{s}(x),y\colon z,w) \to y\colon \mathsf{filter}(x,z,w) \end{array}
```

Questions About (Functional) Programs

- ▶ is the given program terminating?
- if yes, what is its worst-case computational complexity?
- ▶ are results unique?

▶ LLVM provides widely used compilation toolchain

LLVM provides widely used compilation toolchain

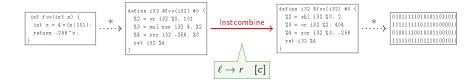
- ▶ LLVM provides widely used compilation toolchain
- ► Instcombine pass: >1000 algebraic simplifications of expressions:

- ► LLVM provides widely used compilation toolchain
- ► Instcombine pass: >1000 algebraic simplifications of expressions: multiplications to shifts, reordering bitwise operations, ...



- ▶ LLVM provides widely used compilation toolchain
- ► Instcombine pass: >1000 algebraic simplifications of expressions: multiplications to shifts, reordering bitwise operations, ...
- ▶ applies "rewrite rules" with SMT side constraints

- ► LLVM provides widely used compilation toolchain
- ► Instcombine pass: >1000 algebraic simplifications of expressions: multiplications to shifts, reordering bitwise operations, ...
- ▶ applies "rewrite rules" with SMT side constraints
- optimization set is community maintained, interference unclear



- ▶ LLVM provides widely used compilation toolchain
- ► Instcombine pass: >1000 algebraic simplifications of expressions: multiplications to shifts, reordering bitwise operations, ...
- ▶ applies "rewrite rules" with SMT side constraints
- optimization set is community maintained, interference unclear
- termination is crucial

Course Content

Day 1

abstract rewriting, properties of abstract rewrite systems, Newman's Lemma, term rewriting

Day 2

termination, polynomial interpretations, lexicographic path order, Knuth-Bendix order, derivational complexity

Day 3

critical pairs, confluence, orthogonality, Knuth-Bendix completion

Course Content

Day 1

abstract rewriting, properties of abstract rewrite systems, Newman's Lemma, term rewriting

Day 2

termination, polynomial interpretations, lexicographic path order, Knuth-Bendix order, derivational complexity

Day 3

critical pairs, confluence, orthogonality, Knuth-Bendix completion

Outline

Motivating Examples

Abstract Rewriting

Term Rewriting

- ▶ abstract rewrite system (ARS) consists of
 - ▶ carrier set A
 - ightharpoonup binary relation ightharpoonup on A

- abstract rewrite system (ARS) consists of
 - carrier set A
 - lacksquare binary relation ightarrow on A

ARS
$$A = (A, \rightarrow)$$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

• $A = \{a, b, c, d, e, f, gh, i, j, k\}$

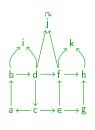
• $A = \{a, b, c, d, gh, i, j, k\}$

• $A = \{a, b, c, d, gh, j, j, j, k\}$

• $A = \{a, b, c, d, gh, j, j, j, k\}$

• $A = \{a, b, c, d, gh, j, j, j, j, k\}$

- abstract rewrite system (ARS) consists of
 - carrier set A
 - binary relation \rightarrow on A



ARS
$$\mathcal{A} = (A, \rightarrow)$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k$$

- abstract rewrite system (ARS) consists of
 - carrier set A
 - binary relation \rightarrow on A

$$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ b \\ \rightarrow d \\ \rightarrow f \\ \rightarrow h \\ \uparrow \\ a \\ \leftarrow c \\ \rightarrow e \\ \rightarrow g \\ \end{array}$$

ARS
$$A = (A, \rightarrow)$$

$$A = \{ a, b, c, d, e, f, gh, i, j, k \}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, j$$

- rewrite sequence
 - finite $a \rightarrow b \rightarrow d \rightarrow f \rightarrow k$

- abstract rewrite system (ARS) consists of
 - carrier set A
 - binary relation \rightarrow on A

$$\begin{array}{c} \stackrel{\circ}{j} \\ \stackrel{\circ}{j} \\ \stackrel{\circ}{b} \longrightarrow \stackrel{\circ}{d} \longrightarrow \stackrel{\circ}{f} \longrightarrow \stackrel{\circ}{h} \\ \stackrel{\circ}{a} \longleftarrow \stackrel{\circ}{c} \longrightarrow \stackrel{\circ}{e} \longrightarrow \stackrel{\circ}{g} \end{array}$$

ARS
$$A = (A, \rightarrow)$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i,$$

- rewrite sequence
 - finite $a \rightarrow b \rightarrow d \rightarrow f \rightarrow k$
 - empty a

- abstract rewrite system (ARS) consists of
 - carrier set A
 - binary relation \rightarrow on A

$$\begin{array}{c} \overrightarrow{j} \\ \overrightarrow{j} \\ b \longrightarrow d \longrightarrow f \longrightarrow h \\ \downarrow \qquad \qquad \uparrow \\ a \longleftarrow c \longrightarrow e \longrightarrow g \end{array}$$

ARS
$$A = (A, \rightarrow)$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, e, f, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i, j, k\}$$

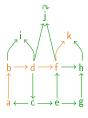
$$A = \{a, b, c, d, gh, i, j, k\}$$

$$A = \{a, b, c, d, gh, i,$$

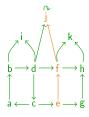
- rewrite sequence
 - finite $a \rightarrow b \rightarrow d \rightarrow f \rightarrow k$
 - empty a
 - infinite $a \rightarrow b \rightarrow d \rightarrow c \rightarrow a \rightarrow b \rightarrow d \rightarrow c \rightarrow \cdots$

ightharpoonup transitive closure of ightharpoonup

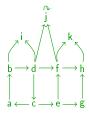
ightharpoonup transitive closure of ightarrow



ightharpoonup + transitive closure of ightharpoonup



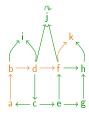
- \rightarrow + transitive closure of \rightarrow
- ightharpoonup transitive and reflexive closure of ightarrow



$$ightarrow + j$$

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup ightharpoonup transitive and reflexive closure of ightharpoonup

Example



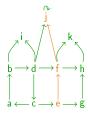
 \rightarrow a \rightarrow + k

 $e \rightarrow + j$

ightharpoonup a ightharpoonup 1

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup ightharpoonup transitive and reflexive closure of ightharpoonup

Example



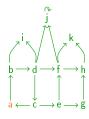
 \rightarrow a \rightarrow + k

 $e \rightarrow^+ j$

ightharpoonup a $ightarrow^*$

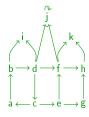
 $\mathsf{e} \to^*$]

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup



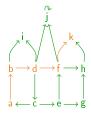
- ► a \rightarrow ⁺ k e \rightarrow ⁺ j ► a \rightarrow ^{*} k e \rightarrow ^{*} j a \rightarrow ^{*} a

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- ightharpoonup \leftrightarrow^* conversion (equivalence relation generated by \rightarrow)



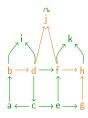
- ► $a \rightarrow^+ k$ $e \rightarrow^+ j$ ► $a \rightarrow^* k$ $e \rightarrow^* j$ $a \rightarrow^* a$

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- ightharpoonup \leftrightarrow^* conversion (equivalence relation generated by \to)



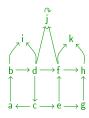
- ▶ $a \rightarrow^+ k$ $e \rightarrow^+ j$ ▶ $a \rightarrow^* k$ $e \rightarrow^* j$ $a \rightarrow^* a$ ▶ $a \leftrightarrow^* k$

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- ightharpoonup \leftrightarrow^* conversion (equivalence relation generated by \to)



- ▶ $a \rightarrow^+ k$ $e \rightarrow^+ j$ ▶ $a \rightarrow^* k$ $e \rightarrow^* j$ $a \rightarrow^* a$ ▶ $a \leftrightarrow^* k$ $b \leftrightarrow^* g$

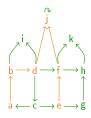
- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- $ightharpoonup \leftrightarrow^*$ conversion (equivalence relation generated by \rightarrow)
- ▶ \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$



- ▶ $a \rightarrow^+ k$ $e \rightarrow^+ j$ ▶ $a \rightarrow^* k$ $e \rightarrow^* j$ $a \rightarrow^* a$ ▶ $a \leftrightarrow^* k$ $b \leftrightarrow^* g$

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- $ightharpoonup \leftrightarrow^*$ conversion (equivalence relation generated by \rightarrow)
- ▶ \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$

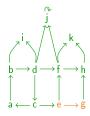
Example



- ightharpoonup a $\leftrightarrow^* k$ b $\leftrightarrow^* g$

▶ a↓e

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- $ightharpoonup \leftrightarrow^*$ conversion (equivalence relation generated by \rightarrow)
- ▶ \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$



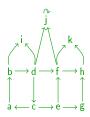
- ► $a \rightarrow^+ k$ $e \rightarrow^+ j$ ► $a \rightarrow^* k$ $e \rightarrow^* j$ $a \rightarrow^* a$ ► $a \leftrightarrow^* k$ $b \leftrightarrow^* g$

- ► a↓e e↓g

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- ightharpoonup \leftrightarrow^* conversion (equivalence relation generated by \to)
- ▶ \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$

Definitions (Normal Forms)

normal form is element x such that $x \not\rightarrow y$ for all y



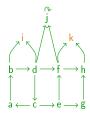
- ▶ $a \rightarrow^+ k$ $e \rightarrow^+ j$ ▶ $a \rightarrow^* k$ $e \rightarrow^* j$ $a \rightarrow^* a$ ▶ $a \leftrightarrow^* k$ $b \leftrightarrow^* g$

- ▶ a↓e e↓g

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- ightharpoonup \leftrightarrow^* conversion (equivalence relation generated by \to)
- ▶ \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$

Definitions (Normal Forms)

 \blacktriangleright normal form is element x such that $x \not\rightarrow y$ for all y

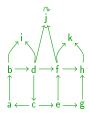


- ▶ $a \leftrightarrow^* k$ $b \leftrightarrow^* g$
 - ▶ a↓e e↓g
 - \triangleright normal forms i, k

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- ightharpoonup \leftrightarrow^* conversion (equivalence relation generated by \to)
- ▶ \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$

Definitions (Normal Forms)

- \blacktriangleright normal form is element x such that $x \not\rightarrow y$ for all y
- \triangleright $x \rightarrow^! y$ if $x \rightarrow^* y$ for normal form y (x has normal form y)



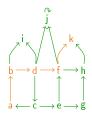
- ► $a \rightarrow^+ k$ $e \rightarrow^+ j$ ► $a \rightarrow^* k$ $e \rightarrow^* j$ $a \rightarrow^* a$ ► $a \leftrightarrow^* k$ $b \leftrightarrow^* g$

 - ▶ a↓e e↓g
 - ▶ normal forms i, k

- \rightarrow + transitive closure of \rightarrow
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- ightharpoonup \leftrightarrow^* conversion (equivalence relation generated by \to)
- ▶ \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$

Definitions (Normal Forms)

- \blacktriangleright normal form is element x such that $x \not\rightarrow y$ for all y
- \triangleright $x \rightarrow^! y$ if $x \rightarrow^* y$ for normal form y (x has normal form y)



- - ▶ a↓e e↓g
 - \triangleright normal forms i, k
 - ightharpoonup a \rightarrow ! k

- ightharpoonup + transitive closure of ightharpoonup
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- $\blacktriangleright \ \leftrightarrow^* \quad \text{conversion} \qquad (\text{ equivalence relation generated by } \to)$
- ▶ \downarrow joinability $\downarrow = \rightarrow^* \cdot * \leftarrow$

Definitions (Normal Forms)

- ▶ normal form is element x such that x
 ightharpoonup y for all y

Terminology

▶ if $x \to^* y$ then x rewrites to y and y is reduct of x

- ightharpoonup + transitive closure of ightharpoonup
- ightharpoonup * transitive and reflexive closure of ightharpoonup
- ightharpoonup \leftrightarrow^* conversion (equivalence relation generated by ightarrow)
- ▶ \ \ joinability \ \ \ \ = \rightarrow^* \ \ \ \ \

Definitions (Normal Forms)

- ▶ normal form is element x such that x
 ightharpoonup y for all y
- ▶ $x \rightarrow^! y$ if $x \rightarrow^* y$ for normal form y (x has normal form y)

Terminology

- ▶ if $x \rightarrow^* y$ then x rewrites to y and y is reduct of x
- ▶ if $x \leftrightarrow^* y$ then x and y are convertible

- ► SN strong normalization
 - ▶ no infinite rewrite sequences

- ► SN strong normalization termination
 - ▶ no infinite rewrite sequences

- ► SN strong normalization termination
 - ▶ no infinite rewrite sequences
- ► CR confluence
 - $\blacktriangleright \quad ^* \leftarrow \; \cdot \; \rightarrow^* \; \subseteq \; \downarrow$

- ► SN strong normalization termination
 - no infinite rewrite sequences
- ► CR confluence
 - $\blacktriangleright \quad ^* \leftarrow \; \cdot \; \rightarrow^* \; \subseteq \; \downarrow$
 - ► ∀ a, b, c

- ► SN strong normalization termination
 - no infinite rewrite sequences
- ► CR confluence
 - \blacktriangleright * \leftarrow · \rightarrow * \subseteq \downarrow
 - ▶ ∀ *a*, *b*, *c*

- ▶ WCR local confluence
 - $\blacktriangleright \ \leftarrow \ \cdot \ \rightarrow \, \subseteq \, \downarrow$

- ► SN strong normalization termination
 - no infinite rewrite sequences
- ► CR confluence
 - $\blacktriangleright \quad ^* \leftarrow \; \cdot \; \rightarrow^* \; \subseteq \; \downarrow$
 - ► ∀ a, b, c

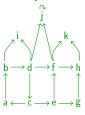
- ▶ WCR local confluence
 - $\blacktriangleright \ \leftarrow \ \cdot \ \rightarrow \, \subseteq \, \downarrow$
 - ► ∀ a, b, c

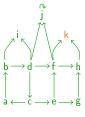
- ► SN strong normalization termination
 - no infinite rewrite sequences
- ► CR confluence
 - $\blacktriangleright \quad ^* \leftarrow \; \cdot \; \rightarrow^* \; \subseteq \; \downarrow$
 - ► ∀ a, b, c

- ► WCR local confluence weak Church-Rosser property
 - $\blacktriangleright \ \leftarrow \ \cdot \ \rightarrow \, \subseteq \, \downarrow$
 - ► ∀ a, b, c

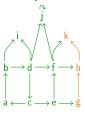
- \triangleright SN(x) strong normalization termination
 - ▶ no infinite rewrite sequences starting from $x \in A$
- ightharpoonup CR(x) confluence
 - \blacktriangleright * \leftarrow \times \rightarrow * \subseteq \downarrow
 - ▶ ∀ *b*, *c*

- \blacktriangleright WCR(x) local confluence weak Church-Rosser property
 - $\blacktriangleright \ \leftarrow {\color{red} {\color{gray} {X}}} \rightarrow {\color{gray} {\subseteq}} \downarrow$
 - ▶ ∀ b, c

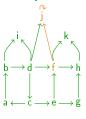




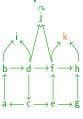
► SN(k)



► SN(k) SN(g)



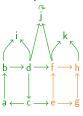
► SN(k) SN(g) $\neg SN(f)$



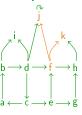
► SN(k)

► WCR(k)

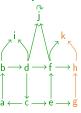
- SN(g)
- $\neg SN(f)$



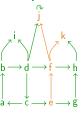
- ► SN(k) SN(g) $\neg SN(f)$
- ► WCR(k) WCR(e)



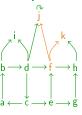
- $\blacktriangleright \ \ SN(k) \qquad \ SN(g) \qquad \ \neg SN(f)$
- ► WCR(k) WCR(e) \neg WCR(f)



- ► SN(k) SN(g) $\neg SN(f)$
- $\blacktriangleright \quad \mathsf{WCR}(\mathsf{k}) \qquad \mathsf{WCR}(\mathsf{e}) \qquad \neg \mathsf{WCR}(\mathsf{f})$
- ► CR(g)



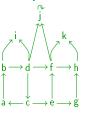
- ► SN(k) SN(g) ¬SN(f)
 ► WCR(k) WCR(e) ¬WCR(f)
- ightharpoonup CR(g)



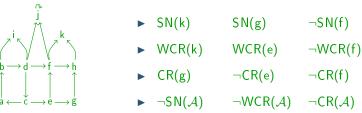
 ► SN(k)
 SN(g)
 ¬SN(f)

 ► WCR(k)
 WCR(e)
 ¬WCR(f)

 ► CR(g)
 ¬CR(e)
 ¬CR(f)

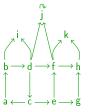


► SN(k)SN(g) \neg SN(f)► WCR(k)WCR(e) \neg WCR(f)► CR(g) \neg CR(e) \neg CR(f)► \neg SN(\mathcal{A}) \neg WCR(\mathcal{A}) \neg CR(\mathcal{A})



Relationships between properties

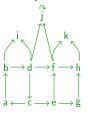
 $ightharpoonup CR \implies WCR$



- ► SN(k) SN(g) $\neg SN(f)$
- $\blacktriangleright \quad \mathsf{WCR}(\mathsf{k}) \qquad \mathsf{WCR}(\mathsf{e}) \qquad \neg \mathsf{WCR}(\mathsf{f})$
- $\qquad \qquad \neg \, \mathsf{CR}(\mathsf{g}) \qquad \quad \neg \, \mathsf{CR}(\mathsf{f}) \\$
- $\blacktriangleright \neg SN(A) \neg WCR(A) \neg CR(A)$

Relationships between properties

- $ightharpoonup CR \implies WCR$
- $ightharpoonup WCR \implies CR$

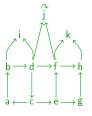


- ► SN(k) SN(g) $\neg SN(f)$
- $\blacktriangleright \quad \mathsf{WCR}(\mathsf{k}) \qquad \mathsf{WCR}(\mathsf{e}) \qquad \neg \mathsf{WCR}(\mathsf{f})$
- ► CR(g) $\neg CR(e)$ $\neg CR(f)$
- $ightharpoonup \neg SN(A) \neg VCR(A) \neg CR(A)$

Relationships between properties

- $ightharpoonup CR \implies WCR$
- $ightharpoonup WCR \implies CR$

$$\mathsf{a} \longleftarrow \mathsf{b} \ \bigcap \mathsf{c} \longrightarrow \mathsf{d}$$



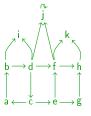
- ► SN(k)
- SN(g) $\neg SN(f)$
- ightharpoonup WCR(k) WCR(e) \neg WCR(f)
- ► CR(g) $\neg CR(e)$ $\neg CR(f)$
- $ightharpoonup \neg SN(A) \neg WCR(A) \neg CR(A)$

Relationships between properties

- $ightharpoonup CR \implies WCR$
- ightharpoonup WCR \Longrightarrow CR

 $a \leftarrow b \subset c \longrightarrow d$

► SN & WCR ⇒ CR



- ► SN(k)
- SN(g) $\neg SN(f)$
- ightharpoonup WCR(k) WCR(e) \neg WCR(f)
- ► CR(g) $\neg CR(e)$ $\neg CR(f)$
- $ightharpoonup \neg SN(A) \neg WCR(A) \neg CR(A)$

Relationships between properties

- $ightharpoonup CR \implies WCR$
- ightharpoonup WCR \Longrightarrow CR
- ► SN & WCR ⇒ CR

$$\mathsf{a} \longleftarrow \mathsf{b} \ \widehat{\textstyle \bigcirc} \ \mathsf{c} \longrightarrow \mathsf{d}$$

Newman's Lemma

ightharpoonup signature ${\cal F}$

function symbols with arities

ightharpoonup signature ${\cal F}$

function symbols with arities

Example

 $\blacktriangleright \ \ \mathcal{F} = \{\,0,\,s,\,+\,\}$ for constant 0 (arity 0), unary s, and binary +

lacktriangleright signature ${\cal F}$ function symbols with arities

ightharpoonup variables \mathcal{V} $\mathcal{F} \cap \mathcal{V} = \emptyset$ and \mathcal{V} is infinite

ightharpoonup signature ${\cal F}$

function symbols with arities

ightharpoonup variables ${\cal V}$

 $\mathcal{F} \cap \mathcal{V} = \varnothing$ and \mathcal{V} is infinite

Example

ightharpoonup signature ${\cal F}$

function symbols with arities

▶ variables `

 $\mathcal{F} \cap \mathcal{V} = \emptyset$ and \mathcal{V} is infinite

lacktriangledown terms $\mathcal{T}(\mathcal{F},\mathcal{V})$

ightharpoonup signature \mathcal{F}

function symbols with arities

variables

 $\mathcal{F} \cap \mathcal{V} = \emptyset$ and \mathcal{V} is infinite

- ightharpoonup terms $\mathcal{T}(\mathcal{F},\mathcal{V})$ smallest set such that
 - $ightharpoonup \mathcal{V} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V})$

- lacktriangleright signature ${\cal F}$ function symbols with arities
- lacksquare variables $\mathcal V$ $\mathcal F\cap\mathcal V=arnothing$ and $\mathcal V$ is infinite
- ightharpoonup terms $\mathcal{T}(\mathcal{F},\mathcal{V})$ smallest set such that
 - $\blacktriangleright \quad \mathcal{V} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V})$
 - $\downarrow \quad \text{if} \quad \begin{cases}
 f \in \mathcal{F} \text{ has arity } n \\
 t_1, \dots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V})
 \end{cases}$

- lacktriangleright signature ${\cal F}$ function symbols with arities
- ightharpoonup terms $\mathcal{T}(\mathcal{F},\mathcal{V})$ smallest set such that
 - $ightharpoonup \mathcal{V} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V})$
 - $\qquad \qquad \mathsf{if} \quad \frac{f \in \mathcal{F} \text{ has arity } n}{t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V})} \ \right\} \ \mathsf{then} \ \frac{f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{V})}{t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V})}$

- lacktriangleright signature ${\cal F}$ function symbols with arities
- lacktriangleright terms $\mathcal{T}(\mathcal{F},\mathcal{V})$ smallest set such that
 - $ightharpoonup \mathcal{V} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V})$
 - $\qquad \qquad \mathsf{if} \quad \frac{f \in \mathcal{F} \text{ has arity } n}{t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V})} \ \right\} \ \mathsf{then} \ f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{V})$

$$\mathcal{T}(\mathcal{F}, \mathcal{V}) = \{ x, y, z, 0, s(0), s(s(0)), s(0) + x, s(x) + y, \dots \}$$

- lacktriangleright signature ${\cal F}$ function symbols with arities
- $lackbox{ variables } \mathcal{V} \qquad \qquad \mathcal{F} \cap \mathcal{V} = \varnothing \ \mbox{and} \ \mathcal{V} \ \mbox{is infinite}$
- lacktriangleright terms $\mathcal{T}(\mathcal{F},\mathcal{V})$ smallest set such that
 - $\blacktriangleright \quad \mathcal{V} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V})$
 - $\qquad \text{if} \quad \begin{array}{l} f \in \mathcal{F} \text{ has arity } n \\ t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V}) \end{array} \right\} \text{ then } f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{V})$
- lacktriangleright ground terms $\mathcal{T}(\mathcal{F})$ smallest set such that
 - $\qquad \qquad \mathsf{if} \quad \frac{f \in \mathcal{F} \text{ has arity } n}{t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F})} \; \right\} \; \mathsf{then} \; f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F})$

- lacktriangleright signature ${\cal F}$ function symbols with arities
- $lackbox{ variables } \mathcal{V} \qquad \qquad \mathcal{F} \cap \mathcal{V} = \varnothing \ \mbox{and} \ \mathcal{V} \ \mbox{ is infinite}$
- lacktriangleright terms $\mathcal{T}(\mathcal{F},\mathcal{V})$ smallest set such that
 - $\blacktriangleright \quad \mathcal{V} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V})$
 - $\qquad \qquad \mathsf{if} \quad \frac{f \in \mathcal{F} \text{ has arity } n}{t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V})} \; \right\} \; \mathsf{then} \; f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{V})$
- lacktriangleright ground terms $\mathcal{T}(\mathcal{F})$ smallest set such that
 - $\qquad \text{if} \quad \frac{f \in \mathcal{F} \text{ has arity } n}{t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F})} \; \right\} \; \text{then} \; f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F})$

$$T(\mathcal{F}) = \{ 0, s(0), s(s(0)), s(0) + 0, s(0) + s(0), \dots \}$$

Definitions (Context)

context is term with one hole

▶ context is term with one hole, i.e., element of $\mathcal{T}(\mathcal{F} \cup \{\Box\}, \mathcal{V})$ that contains exactly one occurrence of special constant \Box

▶ context is term with one hole, i.e., element of $\mathcal{T}(\mathcal{F} \cup \{\Box\}, \mathcal{V})$ that contains exactly one occurrence of special constant \Box

Example (Examples)

ightharpoonup $= s(0) + s(s(\square))$ $\square + x$

- ▶ context is term with one hole, i.e., element of $\mathcal{T}(\mathcal{F} \cup \{\Box\}, \mathcal{V})$ that contains exactly one occurrence of special constant \Box
- ightharpoonup C[t] denotes result of replacing hole in context C by term t

Example (Examples)

ightharpoonup $= s(0) + s(s(\square))$ $\square + x$

- ▶ context is term with one hole, i.e., element of $\mathcal{T}(\mathcal{F} \cup \{\Box\}, \mathcal{V})$ that contains exactly one occurrence of special constant \Box
- ightharpoonup C[t] denotes result of replacing hole in context C by term t

Example (Examples)

- ightharpoonup $= s(0) + s(s(\square)) \qquad \square + x$
- ▶ $\Box[s(0)] = s(0)$ $(\Box + x)[0 + x] = (0 + x) + x$

lacktriangle substitution is mapping $\sigma\colon \mathcal{V} o \mathcal{T}(\mathcal{F},\mathcal{V})$ such that its domain

$$\mathcal{D}om(\sigma) = \{ x \in \mathcal{V} \mid \sigma(x) \neq x \}$$

is finite

lacktriangle substitution is mapping $\sigma\colon \mathcal{V} o \mathcal{T}(\mathcal{F},\mathcal{V})$ such that its domain

$$\mathcal{D}om(\sigma) = \{ x \in \mathcal{V} \mid \sigma(x) \neq x \}$$

is finite

lacktriangle substitution is mapping $\sigma\colon \mathcal{V} o \mathcal{T}(\mathcal{F},\mathcal{V})$ such that its domain

$$\mathcal{D}om(\sigma) = \{ x \in \mathcal{V} \mid \sigma(x) \neq x \}$$

is finite

ightharpoonup application of substitution σ to term t

$$egin{aligned} m{t} \sigma &= egin{cases} \sigma(t) & \text{if } t \in \mathcal{V} \ f(t_1 \sigma, \dots, t_n \sigma) & \text{if } t = f(t_1, \dots, t_n) \end{cases} \end{aligned}$$

lacktriangle substitution is mapping $\sigma\colon \mathcal{V} o \mathcal{T}(\mathcal{F},\mathcal{V})$ such that its domain

$$\mathcal{D}om(\sigma) = \{ x \in \mathcal{V} \mid \sigma(x) \neq x \}$$

is finite

ightharpoonup application of substitution σ to term t

$$t\sigma = \begin{cases} \sigma(t) & \text{if } t \in \mathcal{V} \\ f(t_1\sigma, \dots, t_n\sigma) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$t = x + s(y + z) \qquad \qquad \sigma = \{x \mapsto s(y), y \mapsto x + s(0)\}\$$

lacktriangle substitution is mapping $\sigma\colon \mathcal{V} o \mathcal{T}(\mathcal{F},\mathcal{V})$ such that its domain

$$\mathcal{D}om(\sigma) = \{ x \in \mathcal{V} \mid \sigma(x) \neq x \}$$

is finite

ightharpoonup application of substitution σ to term t

$$t\sigma = \begin{cases} \sigma(t) & \text{if } t \in \mathcal{V} \\ f(t_1\sigma, \dots, t_n\sigma) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$t = x + s(y + z)$$

$$t = s(y) + s((x + s(0)) + z)$$

$$\sigma = \{x \mapsto s(y), y \mapsto x + s(0)\}$$

t is instance of s

instance: terms s, t

question: \exists substitution σ such that $s\sigma = t$?

t is instance of s

instance: terms s, t

question: \exists substitution σ such that $s\sigma=t$?

t is instance of s

instance: terms s, t

question: \exists substitution σ such that $s\sigma = t$?

Example

• s(0) + s(s(0)) is instance of x + s(x)

t is instance of s

instance: terms s, t

question: \exists substitution σ such that $s\sigma = t$?

- ightharpoonup s(0) + s(s(0)) is instance of x + s(x)
- s(0) + (s(0) + s(0)) is no instance of x + (s(x) + y)

t is instance of s

instance: terms s, t

question: \exists substitution σ such that $s\sigma = t$?

Example

- s(0) + s(s(0)) is instance of x + s(x)
- s(0) + (s(0) + s(0)) is no instance of x + (s(x) + y)

Matching Algorithm

1 start with $\{s \mapsto t\}$

t is instance of s

instance: terms s, t

question: \exists substitution σ such that $s\sigma = t$?

Example

- ightharpoonup s(0) + s(s(0)) is instance of x + s(x)
- s(0) + (s(0) + s(0)) is no instance of x + (s(x) + y)

- start with $\{s \mapsto t\}$
- repeatedly apply following transformation rules

$$\{f(s_1,\ldots,s_n)\mapsto f(t_1,\ldots,t_n)\}\uplus S \implies \{s_1\mapsto t_1,\ldots,s_n\mapsto t_n\}\cup S$$

t is instance of s

instance: terms s, t

question: \exists substitution σ such that $s\sigma = t$?

Example

- ightharpoonup s(0) + s(s(0)) is instance of x + s(x)
- s(0) + (s(0) + s(0)) is no instance of x + (s(x) + y)

- start with $\{s \mapsto t\}$
- repeatedly apply following transformation rules

$$\{f(s_1,\ldots,s_n)\mapsto f(t_1,\ldots,t_n)\} \uplus S \implies \{s_1\mapsto t_1,\ldots,s_n\mapsto t_n\} \cup S$$

 $\{f(s_1,\ldots,s_n)\mapsto g(t_1,\ldots,t_n)\} \uplus S \implies \bot \text{ if } f\neq g$

t is instance of s

instance: terms s, t

question: \exists substitution σ such that $s\sigma = t$?

Example

- ightharpoonup s(0) + s(s(0)) is instance of x + s(x)
- s(0) + (s(0) + s(0)) is no instance of x + (s(x) + y)

- start with $\{s \mapsto t\}$
- repeatedly apply following transformation rules

$$\{ f(s_1, \ldots, s_n) \mapsto f(t_1, \ldots, t_n) \} \uplus S \implies \{ s_1 \mapsto t_1, \ldots, s_n \mapsto t_n \} \cup S$$

$$\{ f(s_1, \ldots, s_n) \mapsto g(t_1, \ldots, t_n) \} \uplus S \implies \bot \quad \text{if } f \neq g$$

$$\{ f(s_1, \ldots, s_n) \mapsto x \} \uplus S \implies \bot$$

t is instance of s

instance: terms s, t

 \exists substitution σ such that $s\sigma = t$?

Example

- ightharpoonup s(0) + s(s(0)) is instance of x + s(x)
- s(0) + (s(0) + s(0)) is no instance of x + (s(x) + y)

- 1 start with $\{s \mapsto t\}$
- 2 repeatedly apply following transformation rules

$$\left\{ \begin{array}{l} \{f(s_1,\ldots,s_n) \mapsto f(t_1,\ldots,t_n)\} \uplus S \implies \left\{ s_1 \mapsto t_1,\ldots,s_n \mapsto t_n \right\} \cup S \\ \\ \{f(s_1,\ldots,s_n) \mapsto g(t_1,\ldots,t_n)\} \uplus S \implies \bot \quad \text{if } f \neq g \\ \\ \{f(s_1,\ldots,s_n) \mapsto x\} \uplus S \implies \bot \\ \\ \{x \mapsto t\} \uplus S \implies \bot \quad \text{if } x \mapsto t' \text{ in } S \text{ with } t \neq t' \\ \\ 16 \end{array}$$

Definitions (Term Rewrite System)

- ▶ rewrite rule $\ell \to r$ is pair of terms (ℓ, r) such that
 - $ightharpoonup \ell \notin \mathcal{V}$
 - $ightharpoonup Var(r) \subseteq Var(\ell)$

Definitions (Term Rewrite System)

- ightharpoonup rewrite rule $\ell o r$ is pair of terms (ℓ, r) such that
 - $ightharpoonup \ell \notin \mathcal{V}$
 - $ightharpoonup Var(r) \subseteq Var(\ell)$
- ▶ term rewrite system (TRS) consists of
 - $ightharpoonup \mathcal{F}$ signature
 - $ightharpoonup \mathcal{R}$ finite set of rewrite rules between terms in $\mathcal{T}(\mathcal{F},\mathcal{V})$

Definitions (Term Rewrite System)

- ightharpoonup rewrite rule $\ell o r$ is pair of terms (ℓ, r) such that
 - $ightharpoonup \ell \notin \mathcal{V}$
 - $ightharpoonup Var(r) \subseteq Var(\ell)$
- ▶ term rewrite system (TRS) consists of
 - \triangleright \mathcal{F} signature
 - $ightharpoonup \mathcal{R}$ finite set of rewrite rules between terms in $\mathcal{T}(\mathcal{F},\mathcal{V})$

TRS
$$\mathcal{R}$$
 for $\mathcal{F} = \{0, s, +\}$:
$$0 + x \to x \qquad s(x) + y \to s(x + y)$$

$$s \rightarrow_{\mathcal{R}} t \iff$$

$$\exists \; \mathsf{context} \; \mathcal{C}$$

$$s \to_{\mathcal{R}} t \quad \Longleftrightarrow \quad \exists \; \ell \to r \in \mathcal{R}$$

$$\exists \; \mathsf{substitution} \; \sigma$$

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

TRS
$$\mathcal{R}$$
 for $\mathcal{F} = \{0, s, +\}:$

$$0 + x \to x \qquad s(x) + y \to s(x + y)$$

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

Example

TRS
$$\mathcal{R}$$
 for $\mathcal{F} = \{0, s, +\}:$

$$0 + x \to x$$

$$s(x) + y \to s(x + y)$$

▶ rewrite step

$$\mathsf{s}(\mathsf{s}(0)) + \mathsf{s}(\mathsf{s}(\mathsf{s}(0)))$$

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

- TRS \mathcal{R} for $\mathcal{F} = \{0, s, +\}:$ $0 + x \to x$ $s(x) + y \to s(x + y)$
- ► rewrite step

$$\mathsf{s}(\mathsf{s}(\mathsf{0})) + \mathsf{s}(\mathsf{s}(\mathsf{s}(\mathsf{0}))) \ o_{\mathcal{R}} \ \mathsf{s}(\ \mathsf{s}(\mathsf{0}) + \mathsf{s}(\mathsf{s}(\mathsf{s}(\mathsf{0}))) \) \ C = \Box$$

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

- TRS \mathcal{R} for $\mathcal{F} = \{0, s, +\}:$ $0 + x \to x$ $s(x) + y \to s(x + y)$
- ▶ rewrite sequence

$$\mathsf{s}(\mathsf{s}(0)) + \mathsf{s}(\mathsf{s}(\mathsf{s}(0))) \ \rightarrow_{\mathcal{R}} \ \mathsf{s}(\ \mathsf{s}(0) + \mathsf{s}(\mathsf{s}(\mathsf{s}(0))))$$

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

- TRS \mathcal{R} for $\mathcal{F} = \{0, s, +\}:$ $0 + x \to x$ $s(x) + y \to s(x + y)$
- ► rewrite sequence

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

Example

TRS
$$\mathcal{R}$$
 for $\mathcal{F} = \{0, s, +\}:$

$$0 + x \rightarrow x \qquad s(x) + y \rightarrow s(x + y)$$

► rewrite sequence

$$\begin{split} s(s(0)) + s(s(s(0))) &\to_{\mathcal{R}} s(s(0) + s(s(s(0)))) \\ &\to_{\mathcal{R}} s(s(0) + s(s(s(0))))) \end{split} \qquad \qquad C = \Box$$

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

Example

TRS
$$\mathcal{R}$$
 for $\mathcal{F} = \{0, s, +\}:$

$$0 + x \rightarrow x$$

$$s(x) + y \rightarrow s(x + y)$$

► rewrite sequence

$$\begin{split} s(s(0)) + s(s(s(0))) &\to_{\mathcal{R}} s(s(0) + s(s(s(0)))) \\ &\to_{\mathcal{R}} s(s(s(0) + s(s(s(0))))) \\ &\to_{\mathcal{R}} s(s(s(s(s(0))))) \\ &\to_{\mathcal{R}} s(s(s(s(s(0))))) \\ \end{split}$$

binary relation $\to_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every TRS \mathcal{R} :

Example

TRS
$$\mathcal{R}$$
 for $\mathcal{F} = \{0, s, +\}:$

$$0 + x \to x \qquad s(x) + y \to s(x + y)$$

► rewrite sequence

$$\begin{array}{c} \mathsf{s}(\mathsf{s}(0)) + \mathsf{s}(\mathsf{s}(\mathsf{s}(0))) & \to_{\mathcal{R}} \; \mathsf{s}(\; \mathsf{s}(0) + \mathsf{s}(\mathsf{s}(\mathsf{s}(0))) \;) \\ & \to_{\mathcal{R}} \; \mathsf{s}(\; \mathsf{s}(\; 0 + \mathsf{s}(\mathsf{s}(\mathsf{s}(0))) \;) \;) \\ & \to_{\mathcal{R}} \; \mathsf{s}(\; \mathsf{s}(\; \mathsf{s}(\mathsf{s}(\mathsf{s}(0))) \;) \;) \\ & \to_{\mathcal{R}} \; \mathsf{s}(\mathsf{s}(\; \mathsf{s}(\mathsf{s}(\mathsf{s}(0))) \;) \;) \\ & & \mathsf{location} \; \mathsf{location} \;$$

- ▶ term rewriting is Turing-complete model of computation
- ▶ hence all non-trivial questions are undecidable

- term rewriting is Turing-complete model of computation
- ▶ hence all non-trivial questions are undecidable

Undecidable Problems

instance: TRS \mathcal{R} instance: TRS \mathcal{R}

question: is \mathcal{R} terminating? question: is \mathcal{R} confluent?

- ▶ term rewriting is Turing-complete model of computation
- ▶ hence all non-trivial questions are undecidable

Undecidable Problems

instance: TRS \mathcal{R} instance: TRS \mathcal{R}

question: is \mathcal{R} terminating? question: is \mathcal{R} confluent?

Theorem

confluence is decidable for terminating TRSs

- term rewriting is Turing-complete model of computation
- ▶ hence all non-trivial questions are undecidable

Undecidable Problems

instance: TRS \mathcal{R} instance: TRS \mathcal{R}

question: is \mathcal{R} terminating? question: is \mathcal{R} confluent?

Theorem

- ► confluence is decidable for terminating TRSs
- ▶ termination is undecidable for confluent TRSs

Exercises

Complete the following table:

	a	b	С	d	е	f	i	j
SN	Х							
WCR								
CR							√	

- Show that Newman's Lemma does not hold element-wise: find an ARS (A, \rightarrow) such that $a \in A$, SN(a) and WCR(a) hold, but $\neg CR(a)$.
- Which of the following matching problems have a solution? $x + s(y) \mapsto s(x) + s(s(x))$ $f(x, g(x, y)) \mapsto f(f(z, z), g(a, z))$
- Rewrite the term $s(s(0)) \times s(s(0))$ to normal form wrt the TRS $0+y \to y$ $s(x)+y \to s(x+y)$ $0\times y \to 0$ $s(x)\times y \to (x\times y)+y$

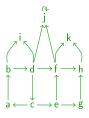
Exercises

Complete the following table:

	a	b	С	d	е	f	i	j
SN	Х							
WCR								
CR							√	

- Show that Newman's Lemma does not hold element-wise: find an ARS (A, \rightarrow) such that $a \in A$, SN(a) and WCR(a) hold, but $\neg CR(a)$.
- Which of the following matching problems have a solution? $x + s(y) \mapsto s(x) + s(s(x))$ $f(x, g(x, y)) \mapsto f(f(z, z), g(a, z))$
- Rewrite the term $s(s(0)) \times s(s(0))$ to normal form wrt the TRS $0+y \to y$ $s(x)+y \to s(x+y)$ $0\times y \to 0$ $s(x)\times y \to (x\times y)+y$

Exercises



Complete the following table:

complete the following table.								
	а	b	С	d	е	f	i	j
SN	X							
WCR								
CR							√	

- Show that Newman's Lemma does not hold element-wise: find an ARS (A, \rightarrow) such that $a \in A$, SN(a) and WCR(a) hold, but $\neg CR(a)$.
- Which of the following matching problems have a solution? $x + s(y) \mapsto s(x) + s(s(x))$ $f(x, g(x, y)) \mapsto f(f(z, z), g(a, z))$
- Rewrite the term $s(s(0)) \times s(s(0))$ to normal form wrt the TRS $0+y \to y$ $s(x)+y \to s(x+y)$ $0\times y \to 0$ $s(x)\times y \to (x\times y)+y$