Exactly true and non-falsity versions of Deutsch's logic

Alex Belikov & Yaroslav Petrukhin

- Terms «Exactly True» and «Non-Falsity» logic take their roots in recent works on extensions of FDE:
 - Pietz, A., Rivieccio, U. (2013). Nothing but the truth. Journal of Philosophical Logic, 42, 125–135.
 - Shramko, Y., Zaitsev, D., Belikov, A. (2017). First-degree entailment and its relatives. Studia Logica, 105, 1291–1317.
 - Shramko, Y., Zaitsev, D., Belikov, A. (2018). The FMLA-FMLA Axiomatizations of the Exactly True and Non-falsity Logics and Some of Their Cousins. Journal of Philosophical Logic, Online First.

Recall the definition of the consequence relation in FDE.

Definition (Consequence relation in FDE)

 $\varphi \vDash_{\mathit{fde}} \psi$ iff for any FDE-model, if φ is true in this model, then ψ is true in the same model.

- Notice that FDE-models permit inconsistent and incomplete valuations.
- Technically, it can be reflected by using a logical matrix with four truth-values: T (true and non-false), B (true and false), N (neither true, nor false), F (false and non-true).

We know that in Classical Logic a consequence relation can be defined by different (but equivalent) ways:

- Direct (from premise to conclusion) preservation of truth;
- Backward (from conclusion to premise) preservation of falsity;
- Direct preservation of truth and non-falsity;
- Backward preservation of falsity and non-truth;

So, what if we put (3) and (4) in **FDE** setting?

This way leads us to two consequence relations which give rise to two logics: Exactly True Logic (Pietz-Rivieccio) and Non-Falsity Logic (Shramko-Zaitsev-Belikov).

Definition (Consequence relation in ETL)

 $\varphi \vDash_{\mathit{etl}} \psi$ iff for any FDE-model, if φ is true and non-false in this model, then ψ is true and non-false in the same model.

Definition (Consequence relation in NFL)

 $\varphi \vDash_{\mathit{nfl}} \psi$ iff for any FDE-model, if ψ is false and non-true in this model, then φ is false and non-true in the same model.

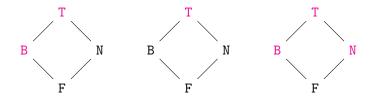


Рис.: Lattice \mathcal{FOUR} and possible sets of designated truth-values: (from left-to-right) FDE setting, ETL setting, NFL setting

Introduction: Deutsch's logic

- \bullet Harry Deutsch introduced a relevant logic S_{fde} :
 - Deutsch, H., Relevant analytic entailment, The Relevance Logic Newsletter 2(1) (1977): 26–44.
 - Deutsch, H., The completeness of S, Studia Logica 38(2) (1979): 137–147.
- S_{fde} has a four-valued semantics in the spirit of Belnap's one.
- S_{fde} is closely related to the family of infectious logics.
- Conjunction, disjunction and negation in S_{fde} are defined by means of the following tables:

\wedge	T	В	Ν	F	\vee	T	В	Ν	F	φ	$\sim \varphi$
	Т					T					F
В	В	В	Ν	F	В	T	В	Ν	В	В	В
	N				N	N	Ν	Ν	Ν		N
F	F	F	Ν	F	F	T	В	Ν	F	F	Т

Introduction: Deutsch's logic

 Our main motivation is quite natural. In the original case of ETL and NFL we obtain exactly true and non-falsity versions of the relevant logic FDE, which is obeying the 'Variable Sharing Principle':

if
$$\varphi \vDash \psi$$
, then $Var(\varphi) \cap Var(\psi) \neq \varnothing$.

Now, we want to extend this approach to the relevant logic S_{fde} , which is obeying different criteria of relevance, namely 'Proscriptive Principle':

if
$$\varphi \vDash \psi$$
, then $Var(\psi) \subseteq Var(\varphi)$.

Semantics

- We introduce two new logics S_{etl} and S_{nfl} which differ from S_{fde} by the definition of the consequence relation.
- More precisely, the difference lies in the set of the designated truth-values. For S_{etl} we use $\{T\}$ instead of $\{T,B\}$. For S_{nfl} we use $\{T,B,F\}$ instead of $\{T,B\}$.

Semantics: a family of consequence relations

- We define a family of consequence relations. For each $\Gamma \cup \Delta \subseteq Form$, each $L_{etl} \in \{S_{etl}, ETL\}$, each $L_{fde} \in \{S_{fde}, FDE\}$, and each $L_{nfl} \in \{S_{nfl}, NFL\}$, it holds that:
 - $\Gamma \models_{\mathsf{L}_{\mathsf{etl}}} \Delta$ iff for each valuation $v, v(\gamma) = \mathsf{T}$ (for each $\gamma \in \Gamma$) implies $v(\delta) = \mathsf{T}$ (for some $\delta \in \Delta$);
 - $\Gamma \models_{\mathsf{L}_{\mathsf{fde}}} \Delta$ iff for each valuation $v, \ v(\gamma) \in \{\mathsf{T},\mathsf{B}\}$ (for each $\gamma \in \Gamma$) implies $v(\delta) \in \{\mathsf{T},\mathsf{B}\}$ (for some $\delta \in \Delta$);
 - $\Gamma \models_{\mathsf{L}_{\mathsf{nfl}}} \Delta$ iff for each valuation $v, \ v(\gamma) \in \{\mathsf{T}, \mathsf{B}, \mathsf{N}\}$ (for each $\gamma \in \Gamma$) implies $v(\delta) \in \{\mathsf{T}, \mathsf{B}, \mathsf{N}\}$ (for some $\delta \in \Delta$).

Semantics

- It should be noted that both S_{etl} and S_{nfl} appeared in Szmuc's paper 'Defining LFIs and LFUs in extensions of infectious logics' (2017) under the names $L_{n\varepsilon}$ and $L_{bb'}$, respectively, where they are mentioned as the subsystems of K_3^w and PWK. S_{etl} is also independently appeared in Priest's paper 'Natural Deduction Systems for Logics in the FDE Family' (2020).
- Although S_{etl} and S_{nfl} are indeed subsystems of K_3^w and PWK, we find it reasonable to trace another, as we think, more closer connection of S_{etl} and S_{nfl} with different logics.

Semantics

\land	T	В	N	F	V	Т	В	N	F	_	φ	$\sim \varphi$
T	Т	В	N	F	Т	Т	Т	N	Т	-	Т	F
В	В	В	Ν	F	В	Т	В	N	В		В	B N
Ν	N F	Ν	Ν	N	N	N	Ν	Ν	Ν		Ν	N
F	F	F	Ν	F	F	Т	В	N	F		F	T

Thus, If we delete \mathbb{N} , then we obtain tables for K_3 and LP!

\wedge	Т	В	F		T	В	F	φ	$\sim \varphi$
Т	Т	В	F	T	T	Т	Т	Т	F
В	В	В	F	В	∥ ⊤	В	В	В	В
F	F	F	F	F	∥ ⊤	В	F	F	T

The connection between S_{etl} , S_{nfl} and K_3 , LP, respectively, helps to find a formalization for our logics.

We present $S_{\rm etl}$ and $S_{\rm nfl}$ in the form of Gentzen-type sequent calculi. We can use corresponding calculi for K_3 and LP as the basic step toward this goal. These calculi are well-known in the literature, for example, from A. Avron's paper 'Classical Gentzen-type Methods in Propositional Many-valued Logics' (2005).

Recall the sequent calculus for K_3 :

- $\bullet \ \, {\sf Axioms:} \qquad \varphi \Rightarrow \varphi \qquad \quad \varphi, {\sim} \varphi \Rightarrow$
- Structural rules: (Cut), (L-Weakening), (R-Weakening).
- Logical rules:

$$(\land\Rightarrow)\frac{\varphi,\psi,\Gamma\Rightarrow\Delta}{\varphi\wedge\psi,\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\land)\frac{\Gamma\Rightarrow\Delta,\varphi}{\Gamma\Rightarrow\Delta,\varphi\wedge\psi}$$

$$(\lor\Rightarrow)\frac{\varphi,\Gamma\Rightarrow\Delta}{\varphi\vee\psi,\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\lor)\frac{\Gamma\Rightarrow\Delta,\varphi,\psi}{\Gamma\Rightarrow\Delta,\varphi\vee\psi}$$

$$(\sim\Rightarrow)\frac{\varphi,\Gamma\Rightarrow\Delta}{\varphi\vee\psi,\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\lor)\frac{\Gamma\Rightarrow\Delta,\varphi}{\Gamma\Rightarrow\Delta,\varphi\vee\psi}$$

$$(\sim\sim\Rightarrow)\frac{\varphi,\Gamma\Rightarrow\Delta}{\sim\sim\varphi,\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\sim\sim)\frac{\Gamma\Rightarrow\Delta,\varphi}{\Gamma\Rightarrow\Delta,\sim\sim\varphi}$$

$$(\sim\lor\Rightarrow)\frac{\sim\varphi,\sim\psi,\Gamma\Rightarrow\Delta}{\sim(\varphi\vee\psi),\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\sim\lor)\frac{\Gamma\Rightarrow\Delta,\sim\varphi}{\Gamma\Rightarrow\Delta,\sim(\varphi\vee\psi)}$$

$$(\sim\land\Rightarrow)\frac{\sim\varphi,\Gamma\Rightarrow\Delta}{\sim(\varphi\wedge\psi),\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\sim\land)\frac{\Gamma\Rightarrow\Delta,\sim\varphi}{\Gamma\Rightarrow\Delta,\sim(\varphi\wedge\psi)}$$

Recall the sequent calculus for LP:

- $\bullet \ \, \mathsf{Axioms:} \qquad \varphi \Rightarrow \varphi \qquad \Rightarrow \varphi, \sim \varphi$
- Structural rules: (Cut), (L-Weakening), (R-Weakening).
- Logical rules:

$$(\land\Rightarrow)\frac{\varphi,\psi,\Gamma\Rightarrow\Delta}{\varphi\wedge\psi,\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\land)\frac{\Gamma\Rightarrow\Delta,\varphi}{\Gamma\Rightarrow\Delta,\varphi\wedge\psi}$$

$$(\lor\Rightarrow)\frac{\varphi,\Gamma\Rightarrow\Delta}{\varphi\vee\psi,\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\lor)\frac{\Gamma\Rightarrow\Delta,\varphi,\psi}{\Gamma\Rightarrow\Delta,\varphi\vee\psi}$$

$$(\sim\Rightarrow)\frac{\varphi,\Gamma\Rightarrow\Delta}{\varphi\vee\psi,\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\lor)\frac{\Gamma\Rightarrow\Delta,\varphi}{\Gamma\Rightarrow\Delta,\varphi\vee\psi}$$

$$(\sim\sim\Rightarrow)\frac{\varphi,\Gamma\Rightarrow\Delta}{\sim\sim\varphi,\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\sim\sim)\frac{\Gamma\Rightarrow\Delta,\varphi}{\Gamma\Rightarrow\Delta,\sim\sim\varphi}$$

$$(\sim\lor\Rightarrow)\frac{\sim\varphi,\sim\psi,\Gamma\Rightarrow\Delta}{\sim(\varphi\vee\psi),\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\sim\lor)\frac{\Gamma\Rightarrow\Delta,\sim\varphi}{\Gamma\Rightarrow\Delta,\sim(\varphi\vee\psi)}$$

$$(\sim\land\Rightarrow)\frac{\sim\varphi,\Gamma\Rightarrow\Delta}{\sim(\varphi\wedge\psi),\Gamma\Rightarrow\Delta} \qquad (\Rightarrow\sim\land)\frac{\Gamma\Rightarrow\Delta,\sim\varphi}{\Gamma\Rightarrow\Delta,\sim(\varphi\wedge\psi)}$$

• To obtain a sequent calculus for S_{etl} it is sufficient to replace $(\Rightarrow \lor)$ and $(\Rightarrow \sim \land)$ in K_3 with their restriced versions:

$$(\Rightarrow \vee^*) \ \frac{\Gamma \Rightarrow \Delta, \varphi, \psi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi} \quad \text{provided that}$$

$$(\Rightarrow \sim \wedge^*) \ \frac{\Gamma \Rightarrow \Delta, \sim \varphi, \sim \psi}{\Gamma \Rightarrow \Delta, \sim (\varphi \wedge \psi)} \quad \text{provided that}$$

$$var(\{\varphi, \psi\}) \subseteq var(\Gamma)$$

• To obtain a sequent calculus for S_{nfl} it is sufficient to replace $(\land \Rightarrow)$ and $(\sim \lor \Rightarrow)$ in LP with their restricted versions:

$$(\wedge^* \Rightarrow) \frac{\varphi, \psi, \Gamma \Rightarrow \Delta}{\varphi \wedge \psi, \Gamma \Rightarrow \Delta} \quad \text{provided that} \\ (\sim \vee^* \Rightarrow) \frac{\sim \varphi, \sim \psi, \Gamma \Rightarrow \Delta}{\sim (\varphi \vee \psi), \Gamma \Rightarrow \Delta} \quad \text{provided that} \\ (\sim \vee^* \Rightarrow) \frac{\sim \varphi, \sim \psi, \Gamma \Rightarrow \Delta}{\sim (\varphi \vee \psi), \Gamma \Rightarrow \Delta} \quad \text{var}(\{\varphi, \psi\}) \subseteq \textit{var}(\Delta)$$

The same sequent calculi for S_{etl} and S_{nfl} can be obtained from other source. Recall M. Coniglio and M. I. Corbalan formalization of K_3^w and PWK.

• The sequent calculus for K_3^w is the restriction of the one for classical logic. It has $(\Rightarrow \lor^*)$ instead of the usual $(\Rightarrow \lor)$ and the following rules for negation:

• The sequent calculus for PWK restricts the calculus for classical logic in a dual way. It has $(\wedge^* \Rightarrow)$ instead of the usual $(\wedge \Rightarrow)$ and the following rules for negation:

$$(\sim^* \Rightarrow) \; \frac{\varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \sim \varphi} \quad \text{provided that} \qquad (\Rightarrow \sim) \; \frac{\Gamma \Rightarrow \Delta, \varphi}{\sim \varphi, \Gamma \Rightarrow \Delta}$$

Thus, we can naturally obtain the sequent calculi for S_{etl} and S_{nfl} from the systems of Coniglio and Corbalan.

• To obtain a sequent calculus for S_{etl} we add the axiom $\varphi, \sim \varphi \Rightarrow$ to K_3^w and replace the negation rules with the following ones:

$$\begin{array}{ll} (\sim \sim \Rightarrow) \ \dfrac{\varphi, \Gamma \Rightarrow \Delta}{\sim \sim \varphi, \Gamma \Rightarrow \Delta} & (\Rightarrow \sim \sim) \ \dfrac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \sim \sim \varphi} \\ (\Rightarrow \sim \wedge^*) \ \dfrac{\Gamma \Rightarrow \Delta, \sim \varphi, \sim \psi}{\Gamma \Rightarrow \Delta, \sim (\varphi \wedge \psi)} & \text{provided that} \\ (\sim \vee \Rightarrow) \ \dfrac{\sim \varphi, \sim \psi, \Gamma \Rightarrow \Delta}{\sim (\varphi \vee \psi), \Gamma \Rightarrow \Delta} & (\Rightarrow \sim \vee) \ \dfrac{\Gamma \Rightarrow \Delta, \sim \varphi}{\Gamma \Rightarrow \Delta, \sim (\varphi \vee \psi)} \\ (\sim \wedge \Rightarrow) \ \dfrac{\sim \varphi, \Gamma \Rightarrow \Delta}{\sim (\varphi \wedge \psi), \Gamma \Rightarrow \Delta} & (\sim \wedge \Rightarrow) \ \dfrac{\sim \varphi, \Gamma \Rightarrow \Delta}{\sim (\varphi \wedge \psi), \Gamma \Rightarrow \Delta} \\ \end{array}$$

4 D > 4 D > 4 E > 4 E > E 990

• To obtain a sequent calculus for S_{nfl} we add the axiom $\Rightarrow \varphi, \sim \varphi$ to PWK and replace the negation rules with the following ones:

$$(\sim \sim \Rightarrow) \frac{\varphi, \Gamma \Rightarrow \Delta}{\sim \sim \varphi, \Gamma \Rightarrow \Delta} \qquad (\Rightarrow \sim \sim) \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \sim \sim \varphi}$$

$$(\sim \vee^* \Rightarrow) \frac{\sim \varphi, \sim \psi, \Gamma \Rightarrow \Delta}{\sim (\varphi \lor \psi), \Gamma \Rightarrow \Delta} \quad \text{provided that}$$

$$(\Rightarrow \sim \vee) \frac{\Gamma \Rightarrow \Delta, \sim \varphi}{\Gamma \Rightarrow \Delta, \sim \varphi}$$

$$(\Rightarrow \sim \vee) \frac{\Gamma \Rightarrow \Delta, \sim \varphi}{\Gamma \Rightarrow \Delta, \sim (\varphi \lor \psi)}$$

$$(\sim \wedge \Rightarrow) \frac{\sim \varphi, \Gamma \Rightarrow \Delta}{\sim (\varphi \land \psi), \Gamma \Rightarrow \Delta} \qquad (\Rightarrow \sim \wedge) \frac{\Gamma \Rightarrow \Delta, \sim \varphi, \sim \psi}{\Gamma \Rightarrow \Delta, \sim (\varphi \land \psi)}$$

4□ > 4₫ > 4 ½ > 4½ > ½ 900

Sequent Calculi: Summary

Observation:

- We can treat S_{etl} twofold: either as the weakening of the disjunction in K_3 , or as the weakening of the negation in K_3^w .
- ullet We can treat S_{nfl} twofold: either as the weakening of the conjunction in LP, or as the weakening of the negation in PWK.

Results:

 \bullet Completeness, soundness and cut-elimination are proved for S_{etl} and $S_{nfl}.$

Some interesting result concerning the consequence relations

Consequence relations in S_{etl} and S_{nfl} can be characterized with respect to the consequence relations in K_3 and LP:

- If $Var(\Delta) \subseteq Var(\Gamma)$ and $\Gamma \models_{\mathsf{K}_3} \Delta$, then $\Gamma \models_{\mathsf{S}_{\mathsf{etl}}} \Delta$.
- If $Var(\Gamma) \subseteq Var(\Delta)$ and $\Gamma \models_{\mathsf{LP}} \Delta$, then $\Gamma \models_{\mathsf{S}_{\mathsf{nfl}}} \Delta$.

Conclusion

- Exactly true and non-falsity versions of FDE are extensions of FDE, whereas exactly true and non-falsity versions of S_{fde} are not extensions of S_{fde} .
- S_{etl} and S_{nfl} obey distinct criteria of relevance.
- S_{etl} and S_{nfl} can be seen either as the weakenings of disjunction and conjunction in K_3 and LP, or as the weakenings of negation in K_w^3 and PWK.
- \bullet S_{etl} and S_{nfl} can be formalized in terms of Gentzen-type sequent calculi, enjoying cut-elimination.

Thank you!

25 / 25