Boxing modal logics

Valentin Shehtman
Institute for Information Transmission Problems
Moscow State University,
Higher School of Economics

June 19, 2021 Logical Perspectives, Moscow

Modal propositional logics

Modal propositional formulas are build from the set PL of proposition letters using the connectives \rightarrow, \bot, \Box . Other connectives $(\land, \lor, \diamondsuit, \top$ etc.) are abbreviations.

A modal logic is a set of modal formulas containing

- the classical tautologies;
- the axiom of **K**: $\Box(p_1 \to p_2) \to (\Box p_1 \to \Box p_2)$,

and closed under the rules

- (MP) $A, A \rightarrow B/A$;
- (Nec) $A/\Box A$;
- (Sub) A/SA, where S is a propositional substitution.

The minimal modal logic is K.

A Kripke frame is a non-empty set with a binary relation F = (W, R).

A Kripke model over F is a pair $M = (\Phi, \theta)$, where $\theta : PL \longrightarrow 2^W$ is a valuation.

The inductive definition of the truth of a modal formula A at a point u of a model M $(M, u \models A)$ is standard.

A formula A is valid on a frame $F(F \models A)$ if

 $M, u \models A$ for every point u of every model M over F.

 $\mathbf{L}(F) := \{A \mid F \vDash A\}$ is the modal logic of a frame F.

 $\mathbf{L}(\mathcal{C}) := \bigcap \{ \mathbf{L}(F) \mid F \in \mathcal{C} \}$ is the modal logic of a class of frames \mathcal{C} , or the modal logic determined by \mathcal{C} .

Completeness, strong completeness, FMP, canonicity

Logics of the form $\mathbf{L}(\mathcal{C})$ (or, equivalently, $\mathbf{L}(F)$)) are called (Kripke) complete.

A logic Λ is strongly (Kripke) complete if every Λ -consistent set of formulas is satisfiable at some point of a Kripke model over a frame validating Λ .

Logics of the form L(C), where C is a class of finite frames, are said to have the finite model property (FMP).

FACT 1 Every finitely axiomatizable logic with the FMP is decidable.

FACT 2 For any propositional logic Λ there exists a canonical model (whose worlds are maximal Λ -consistent sets of formulas) $M_{\Lambda} = (F_{\Lambda}, \theta_{\Lambda})$ such that

$$M_{\mathbf{\Lambda}} \vDash A \text{ iff } \mathbf{\Lambda} \vdash A.$$

A logic Λ is canonical if $F_{\Lambda} \vDash \Lambda$. So

every canonical logic is strongly Kripke complete.

Boxing propositional logics

Definition

For a set of modal formulas Γ , put

$$\Box\Gamma:=\{\Box A\mid A\in\Gamma\}.$$

For a modal propositional logic Λ put

$$\Box \cdot \Lambda := \mathbf{K} + \Box \Lambda.$$

Lemma 1

- $\mathbf{K} + \Gamma \vdash A \text{ iff } \mathbf{K} + \Box \Gamma \vdash \Box A.$
- $\Box \cdot (\mathbf{K} + \Gamma) = \mathbf{K} + \Box \Gamma$.

It turns out that $\Box \cdot \Lambda$ inherits many properties of Λ .

Boxing propositional logics

Theorem 1

- If Λ is Kripke complete, then $\square \cdot \Lambda$ is Kripke complete.
- If Λ has the FMP, then $\square \cdot \Lambda$ has the FMP.
- If Λ is canonical, then $\square \cdot \Lambda$ is canonical.
- If Λ is strongly Kripke complete, then $\Box \cdot \Lambda$ is strongly Kripke complete.
- If Λ is locally tabular, then $\Box \cdot \Lambda$ is locally tabular.
- If Λ is has a finite modal depth, then $\square \cdot \Lambda$ has a finite modal depth:

$$md(\Box \cdot \Lambda) \le md(\Lambda) + 1.$$

Modal predicate logics

Modal predicate formulas are build from the countable set of individual variables Var, predicate letters P_k^n $(n, k \ge 0)$ using the connectives \to , \bot , \Box , and the quantifier \forall .

A modal predicate logic is a set of modal predicate formulas containing

- the classical predicate tautologies;
- the axiom of \mathbf{K} : $\Box(P_1^0 \to P_2^0) \to (\Box P_1^0 \to \Box P_2^0)$,

and closed under the rules

- (MP) $A, A \rightarrow B/A$;
- (Nec) $A/\Box A$;
- (Gen) $A / \forall xA$;
- (Sub) A/SA, where S is a predicate substitution.

 $\mathbf{Q}\mathbf{K}$ is the minimal modal predicate logic.

 $\mathbf{Q}\mathbf{\Lambda}$ is the minimal predicate extension of a propositional logic $\mathbf{\Lambda}$.

A predicate Kripke frame over a propositional frame F = (W, R) is a pair $\mathbf{F} = (F, D)$, where $D = (D_u)_{u \in W}$, $D_u \neq \emptyset$ is an expanding system of domains:

$$uRv \Rightarrow D_u \subseteq D_v.$$

A valuation ξ in \mathbf{F} is a function sending every n-ary predicate letter P_k^n to a family of n-ary relations on the domains:

$$\xi(P_k^n) = (\xi_u(P_k^n))_{u \in W},$$

where $\xi_u(P_k^n) \subseteq D_u^n$ for $n \neq 0$ and $\xi_u(P_k^0) \in \{0, 1\}$. The pair $M = (\mathbf{F}, \xi)$ is a Kripke model over \mathbf{F} .

Given M, at every point $u \in W$ we can evaluate modal D_u -sentences, i.e. modal sentences with constants from D_u :

$$M, u \vDash P_k^n(a_1, \dots, a_n) \text{ iff } (a_1, \dots, a_n) \in \xi_u(P_k^n),$$
 $M, u \vDash P_k^0 \text{ iff } \xi_u(P_k^0) = 1,$
 $M, u \vDash A \to B \text{ iff } (M, u \not\vDash A \text{ or } M, u \vDash B),$
 $M, u \not\vDash \bot,$
 $M, u \vDash \forall x A(x) \text{ iff } \forall a \in D_u M, u \vDash A(a),$
 $M, u \vDash \Box A \text{ iff } \forall v \in R(u) M, v \vDash A.$

A modal formula $A(x_1, ..., x_n)$ is called *true in* M $(M \vDash A(x_1, ..., x_n))$ if $M, u \vDash A(\mathbf{a})$ for every $u \in W$ and $\mathbf{a} \in D_u^n$.

A modal formula A is *valid* on a frame \mathbf{F} (in symbols, $\mathbf{F} \models A$) if it is true in every Kripke model over \mathbf{F} .

 $\mathbf{ML}(\mathbf{F}) := \{A \mid \mathbf{F} \vDash A\}$ is the modal logic of \mathbf{F} .

The modal logic of a class of frames C is

 $\mathbf{ML}(\mathcal{C}) := \bigcap \{\mathbf{ML}(\mathbf{F}) \mid \mathbf{F} \in \mathcal{C}\}.$

Logics of this form are called *Kripke complete*.

A frame validating a modal predicate logic L is called an L-frame. A formula A is a logical consequence of a logic L in Kripke semantics $(L \vDash_K A)$ if A is valid on all L-frames.

 $\widehat{L} := \{A \mid L \vDash_{\mathcal{K}} A\}$ is the smallest Kripke complete extension of L, the Kripke completion of L.

Strong completeness

Definition

A (modal predicate) theory is a set Γ of formulas with constants. Γ is L-consistent if $\Gamma \not\vdash_L \bot$ (i.e. \bot is not derivable from $L \cup \Gamma$ using MP).

Definition

A theory Γ with a set of constants E is satisfiable in a Kripke model M at point u if there exists a map $\delta: E \longrightarrow D_u$ such that $M, u \vDash \delta \cdot \Gamma$ (where $\delta \cdot \Gamma$ is obtained from Γ by replacing each c with $\delta(c)$).

Definition

A modal predicate logic L is strongly Kripke complete if every L-consistent theory is satisfiable in some Kripke model over an L-frame.

So strong completeness implies completeness.



Canonical models

Canonical model theorem

For any predicate logic L there exists a canonical model (its worlds are maximal L-consistent theories with extra constants taken from a fixed set) $VM_L = (VF_L, \theta_L)$ such that for any formula A

$$M_L \vDash A \text{ iff } L \vdash A.$$

Definition

A logic L is canonical if $VF_L \vDash L$.

Corollary

Every canonical logic is strongly Kripke complete.

Boxing predicate logics

Definition

For a modal predicate logic L put $\Box \cdot L := \mathbf{QK} + \Box L$.

Lemma 2

$$L \vdash A \text{ iff } \Box \cdot L \vdash \Box A.$$

Thus

$$\mathbf{QK} + \Box \Gamma \subseteq \Box \! \cdot \! (\mathbf{QK} + \Gamma).$$

Problem. Axiomatize $\Box \cdot (\mathbf{QK} + \Gamma)$.

Lemma 3

If
$$\mathbf{QT} \subseteq \mathbf{QK} + \Gamma$$
, then $\Box \cdot (\mathbf{QK} + \Gamma) = \mathbf{QK} + \Box \Gamma + \Box \forall ref$, where

$$\Box \forall ref := \Box \forall x (\Box P(x) \to P(x)).$$

Preservation theorem for boxing

Theorem 2

- 1. Predicate boxing preserves canonicity.
- 2. If $\mathbf{Q}\Lambda$ is strongly Kripke complete, then $\Box\cdot(\mathbf{Q}\Lambda)$ is strongly Kripke complete.

Some counterexamples

In general predicate boxing does not preserve Kripke completeness (neither weak, nor strong). Consider the logics

$$\mathbf{Q}\mathbf{\Lambda}\mathbf{U_1} := \mathbf{Q}\mathbf{\Lambda} + AU_1,$$

where Λ is a propositional modal logic,

$$AU_1 := \exists x P(x) \to \forall x P(x)$$

is the axiom of singleton domains.

Proposition 3

Let Λ be a strongly complete consistent modal propositional logic. Then

- $Q\Lambda U_1$ is strongly Kripke complete.
- $\square \cdot \mathbf{Q} \Lambda \mathbf{U_1} \vDash_{\mathcal{K}} AU_1$, but $\square \cdot \mathbf{Q} \Lambda \mathbf{U_1} \not\vdash AU_1$.

Thus $\square \cdot \mathbf{Q} \Lambda \mathbf{U}_1$ is Kripke incomplete.

Kripke sheaves

Definition

A Kripke sheaf over a propositional Kripke frame F=(W,R) is a triple $\Phi=(F,D,\rho)$ where (F,D) is a system of expanding domains, $\rho=(\rho_{uv})_{(u,v)\in R^*}$ is a family of transition functions $\rho_{uv}:D_u\longrightarrow D_v$ such that

- for every $u \in W$, $\rho_{uu} = id_{D_u}$ (the identity function on D_u);
- uR^*vR^*w implies $\rho_{vw}\rho_{uv} = \rho_{uw}$.

Definition

A valuation on a Kripke sheaf Φ is a function ξ on predicate letters such that for every n-ary predicate letter P_k^n

$$\xi(P_k^n) = (\xi_u(P_k^n))_{u \in W},$$

where $\xi_u(P_k^n) \subseteq D_u^n$ for $n \neq 0$ and $\xi_u(P_k^0) \in \{0,1\}$. The pair $M = (\mathbf{F}, \xi)$ is a Kripke sheaf model over Φ .

 $^{{}^{}a}R^{*}$ denotes the reflexive transitive closure of R.

Kripke sheaves

The definition of $M, u \models A$ for $u \in W$ and a D_u -sentence A is recursive:

$$M, u \vDash P_k^n(a_1, \dots, a_n) \text{ iff } (a_1, \dots, a_n) \in \xi_u(P_k^n),$$

 $M, u \vDash P_k^0 \text{ iff } \xi_u(P_k^0) = 1,$
 $M, u \vDash A \to B \text{ iff } (M, u \not\vDash A \text{ or } M, u \vDash B),$
 $M, u \not\vDash \bot,$
 $M, u \vDash \forall x A(x) \text{ iff } \forall a \in D_u M, u \vDash A(a),$
 $M, u \vDash \Box A \text{ iff } \forall v \in R(u) M, v \vDash A|v,$

where A|v denotes the D_v -sentence obtained from A by replacing every individual $a \in D_u$ with $\rho_{uv}(a)$.

A modal formula $A(x_1, \ldots, x_n)$ is called *true in* M (in symbols, $M \models A(x_1, \ldots, x_n)$) if $M, u \models A(\mathbf{a})$ for every $u \in W$ and $\mathbf{a} \in D_u^n$. A modal formula A is *valid* on a Kripke sheaf Φ (in symbols, $\Phi \models A$) if it is true in every Kripke sheaf model over Φ .

Kripke sheaves

By Soundness theorem, $\mathbf{ML}(\Phi) := \{A \mid \Phi \models A\}$ is a modal predicate logic.

The modal logic of a class of Kripke sheaves $\mathcal C$ is

 $\mathbf{ML}(\mathcal{C}) := \bigcap \{\mathbf{ML}(\Phi) \mid \Phi \in \mathcal{C}\}.$

Logics $\mathbf{ML}(\mathcal{C})$ are called *Kripke sheaf complete*.

Remark. Kripke completeness implies Kripke sheaf completeness.

Definition

A modal predicate logic L is called $strongly\ Kripke\ sheaf\ complete$ if every L-consistent theory is satisfiable in a Kripke sheaf model over a Kripke sheaf validating L.

Theorem 3

Boxing preserves strong Kripke sheaf completeness.

Incompleteness and completions

Theorem 4

Let Λ be a consistent propositional logic containing $\mathbf{T} = \mathbf{K} + \Box p \to p$. Then

- 1. $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ is Kripke sheaf incomplete.
- 2. If $\mathbf{Q}\boldsymbol{\Lambda}$ is strongly Kripke complete, then

$$\widehat{\mathbf{Q}(\Box \cdot \mathbf{\Lambda})} = \Box \cdot \mathbf{Q} \mathbf{\Lambda} = \mathbf{Q}(\Box \cdot \mathbf{\Lambda}) + \Box \forall ref.$$

Incompleteness and completions

Examples of the logics Λ , for which $Q\Lambda$ is strongly Kripke complete.

• One-way PTC logics:

$$\mathbf{K} + \Box p \to \Box^n p + \text{ variable-free formulas.}$$

E.g. **T**, **S4**, **K4**,...

- Logics with confluence and density axioms: **S4.2**, $\mathbf{K4} + \Box^2 p \to \Box p$, $\mathbf{S4.2} + \Box^2 p \to \Box p$,...
- Logics with non-branching axioms: **S4.3**, **K4.3**.
- **S5** and its extensions.

THANK YOU!