Finite multiplicities beyond spherical pairs

Dmitry Gourevitch
Weizmann Institute of Science, Israel
http://www.wisdom.weizmann.ac.il/~dimagur
Lie Groups and Invariant Theory seminar, Moscow
j.w. Avraham Aizenbud
arXiv:2109.00204

October 2021

- **G**: reductive group over \mathbb{R} , \mathbf{X} := algebraic **G**-manifold, $\mathfrak{g} := Lie(\mathbf{G})$, $\mathcal{N}(\mathfrak{g}^*)$:=nilpotent cone, $G := \mathbf{G}(\mathbb{R})$, $X := \mathbf{X}(\mathbb{R})$,
- S(X) := infinitely smooth functions on X, flat at infinity (Schwartz).
- ullet X is called spherical if it has an open orbit of a Borel subgroup $B{\subset}G$.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup $P_0 \subset G$.

Major Goal: study $L^2(X)$, $C^\infty(X)$, S(X) as rep-s of G. Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz, Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,...

Theorem (Kobayashi-Oshima, 2013)

Let X = G/H. Then

- **3 X** is spherical \iff $\mathcal{S}(X)$ has bounded multiplicities.
- 0 X is real-spherical \iff $\mathcal{S}(X)$ has finite multiplicities.

$$m_{\sigma}(\mathcal{S}(X)) := \dim \operatorname{\mathsf{Hom}}(\mathcal{S}(X), \sigma), \quad m_{\sigma}(\mathcal{S}(G/H)) = \dim(\sigma^{-\infty})^H$$

Today: finite multiplicities for "small enough" representations in wider generality.

Ξ-spherical spaces

 $\forall x \in \mathbf{X}$, have action map $\mathbf{G} \to \mathbf{X}$, thus $\mathfrak{g} \to T_x \mathbf{X}$, and $T_x^* \mathbf{X} \to \mathfrak{g}^*$.

This gives the moment map $\mu:T^*\mathbf{X} o\mathfrak{g}^*$.

For $\mathbf{X}=\mathbf{G}/\mathbf{H}:T^*\mathbf{X}\cong\mathbf{G}/\mathbf{H}\times\mathfrak{h}^\perp$ and $\mu(g\mathbf{H},\alpha)=g\cdot\alpha$

Definition

• For a nilpotent orbit $\mathbf{0} \subset \mathcal{N}(\mathfrak{g}^*)$, say \mathbf{X} is $\mathbf{0}$ -spherical if

$$\dim \mu^{-1}(\mathbf{O}) \leq \dim \mathbf{X} + \dim \mathbf{O}/2$$

• For a **G**-invariant subset $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$, say **X** is Ξ -spherical if **X** is **O**-spherical $\forall \mathbf{O} \subset \Xi$.

For $\mathbf{X} = \mathbf{G}/\mathbf{H}$, \mathbf{X} is \mathbf{O} -spherical \iff dim $\mathbf{O} \cap \mathfrak{h}^{\perp} \leq$ dim $\mathbf{O}/2$. For parabolic $\mathbf{P} \subset \mathbf{G}$, $\mathbf{O}_{\mathbf{P}}$:=the unique orbit s.t. $\mathfrak{p}^{\perp} \cap \mathbf{O}_{\mathbf{P}}$ is dense in \mathfrak{p}^{\perp} .

Theorem 1 (Aizenbud - G.)

X is $\overline{O_P}$ -spherical \iff **P** has finitely many orbits on **X**.

 $\forall x \in \mathbf{X}$, have action map $G \to X$, thus $\mathfrak{g} \to T_x \mathbf{X}$, and $T_x^* \mathbf{X} \to \mathfrak{g}^*$. This gives the moment map $\mu : T^* X \to \mathfrak{g}^*$.

For $\mathbf{X}=\mathbf{G}/\mathbf{H}:T^*\mathbf{X}\cong\mathbf{G}/\mathbf{H}\times\mathfrak{h}^\perp$ and $\mu(g\mathbf{H},\alpha)=g\cdot\alpha$

Definition

• For a nilpotent orbit $\mathbf{O} \subset \mathcal{N}(\mathfrak{g}^*)$, say \mathbf{X} is \mathbf{O} -spherical if $\dim \mu^{-1}(\mathbf{O}) = \dim X + \dim \mathbf{O}/2$

• For a **G**-invariant subset $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$, say **X** is Ξ -spherical if **X** is **O**-spherical $\forall \mathbf{O} \subset \Xi$.

For $\mathbf{X} = \mathbf{G}/\mathbf{H}$, \mathbf{X} is \mathbf{O} -spherical \iff dim $\mathbf{O} \cap \mathfrak{h}^{\perp} \leq$ dim $\mathbf{O}/2$. For parabolic $\mathbf{P} \subset \mathbf{G}$, $\mathbf{O}_{\mathbf{P}}$:=the unique orbit s.t. $\mathfrak{p}^{\perp} \cap \mathbf{O}_{\mathbf{P}}$ is dense in \mathfrak{p}^{\perp} .

Theorem 1 (Aizenbud - G. 2021)

X is $\overline{O_P}$ -spherical \iff P has finitely many orbits on X.

Corollary (following Wen-Wei Li)

- **X** is $\mathcal{N}(\mathfrak{g}^*)$ -spherical \iff **X** is spherical
 - **X** is $\{0\}$ -spherical \iff **G** has finitely many orbits on **X**.

Casselman - Wallach representations - the category $\mathcal{M}(G)$

- $\mathcal{M}(G)$:= Serre subcategory of the category of continuous representations in Fréchet spaces generated by representations of the form $C^{\infty}(G/P_0, \mathcal{E})$, where $G \supset P_0$ -minimal parabolic subgroup, \mathcal{E} any smooth vector bundle over G/P_0 . $Irr(G) := irreducible representations in \mathcal{M}(G)$.
- $\sigma \in Irr(G) \iff \sigma = \text{space of smooth vectors in a continuous}$ irreducible representation in a Hilbert space.
- $\mathcal{M}(G) = \text{continuous representations } \pi \text{ in Fréchet spaces s.t.}$:
 - \bullet \bullet is smooth and has moderate growth

 - \bullet $\pi|_K$ has finite multiplicities, where $G \supset K$ -maximal compact subgroup.
- $\mathcal{M}(G)$ is abelian category, equivalent to admissible (\mathfrak{g}, K) -modules.
- $S(X) \notin \mathcal{M}(G)$ for most X it is "too big" to be admissible or to have finite length.

Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(\mathfrak{g})$ PBW filtration on the universal enveloping algebra.
- \bullet gr $\mathcal{U}(\mathfrak{g}) \cong \mathcal{S}(\mathfrak{g}) \cong \mathsf{Pol}(\mathfrak{g}^*).$
- For an ideal $I \subset \mathcal{U}(\mathfrak{g})$, $\mathcal{V}(I) :=$ zero set of symbols of I in \mathfrak{g}^* .
- ullet For a ${\mathfrak g}$ -module M, ${
 m Ann}(M)\subset {\mathcal U}({\mathfrak g})$ annihilator, ${\mathcal V}({
 m Ann}(M))\subset {\mathfrak g}^*$
- $\bullet \ \, \text{For} \,\, \Xi{\subset}\mathcal{N}(\mathfrak{g}^*), \,\, \mathcal{M}_\Xi(\textit{G}) = \{\pi{\in}\, \mathcal{M}(\textit{G}) \,|\, \mathcal{V}(Ann(\pi)){\subset}\Xi\}$

Theorem 2 (Aizenbud - G. 2021)

Let $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$ closed **G**-invariant. Let **X** be Ξ -spherical **G**-manifold, and let $\sigma \in \mathcal{M}_\Xi(G)$. Then $\dim \operatorname{Hom}(\mathcal{S}(X), \sigma) < \infty$

Applications to branching problems

Corollary

Let $\mathbf{H} \subset \mathbf{G}$ be reductive subgroup. Let $\mathbf{O}_1 \subset \mathfrak{g}^*$ and $\mathbf{O}_2 \subset \mathfrak{h}^*$ be nilpotent orbits. Suppose that one of the following holds:

- $oldsymbol{0} \quad oldsymbol{0}_1 = oldsymbol{0}_{\mathsf{P}} \ ext{for some } oldsymbol{\mathsf{P}} \subset oldsymbol{\mathsf{G}} \ ext{and } oldsymbol{\mathsf{G}}/oldsymbol{\mathsf{P}} \ ext{is an } \overline{oldsymbol{\mathsf{O}}_2} ext{-spherical } oldsymbol{\mathsf{H}} ext{-space}.$
- $oldsymbol{0} \quad oldsymbol{O}_2 = oldsymbol{O}_{oldsymbol{Q}} \ \ ext{for some } oldsymbol{Q} \subset oldsymbol{\mathsf{H}} \ \ ext{and} \ oldsymbol{\mathsf{G}}/oldsymbol{\mathsf{Q}} \ \ ext{is an} \ \overline{oldsymbol{\mathsf{O}}_1} ext{-spherical} \ oldsymbol{\mathsf{G}} ext{-space}.$

Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_1}}(G)$ and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_2}}(H)$, we have

$$\dim \operatorname{Hom}_H(\pi|_H, \tau) < \infty$$

Corollary

- ① Let $P \subset G$ be a parabolic subgroup s.t. G/P is a spherical H-variety. Then $\forall \pi \in \mathcal{M}_{\overline{O_P}}(G)$, $\pi|_H$ has finite multiplicities.
- ① Let $\mathbf{Q} \subset \mathbf{H}$ be a parabolic subgroup that is spherical as a subgroup of \mathbf{G} . Then for any $\tau \in \mathcal{M}_{\overline{\mathbf{O_0}}}(H)$, $\operatorname{ind}_H^G \tau$ has finite multiplicities.

Corollary

Let $\mathbf{H} \subset \mathbf{G}$ be reductive subgroup. Let $\mathbf{O}_1 \subset \mathfrak{g}^*$ and $\mathbf{O}_2 \subset \mathfrak{h}^*$ be nilpotent orbits. Suppose that one of the following holds:

- $oldsymbol{0} oldsymbol{0}_1 = oldsymbol{0}_{\mathsf{P}}$ for some $oldsymbol{\mathsf{P}} \subset oldsymbol{\mathsf{G}}$ and $oldsymbol{\mathsf{G}}/oldsymbol{\mathsf{P}}$ is an $\overline{oldsymbol{\mathsf{O}}_2}$ -spherical $oldsymbol{\mathsf{H}}$ -space.
- $oldsymbol{0} \quad oldsymbol{O}_2 = oldsymbol{O}_{oldsymbol{Q}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \overline{oldsymbol{O}_1}$ -spherical $oldsymbol{G}$ -space.

Then
$$\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_1}}(G)$$
 and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_2}}(H)$: $\dim \operatorname{Hom}_H(\pi|_H, \tau) < \infty$

Corollary

- **1** Let $P \subset G$ be a parabolic subgroup s.t. G/P is a spherical H-variety. Then $\forall \pi \in \mathcal{M}_{\overline{O_P}}(G)$, $\pi|_H$ has finite multiplicities.
- ① Let $\mathbf{Q} \subset \mathbf{H}$ be a parabolic subgroup that is spherical as a subgroup of \mathbf{G} . Then for any $\tau \in \mathcal{M}_{\overline{\mathbf{O_0}}}(H)$, ind $_H^G \tau$ has finite multiplicities.

For simple **G** and symmetric $H \subset G$, all $P \subset G$ satisfying (i), and all $Q \subset H$ satisfying (ii) are classified by He, Nishiyama, Ochiai, Oshima. A strategy for other spherical **H**: Avdeev-Petukhov.

Corollary

Let **H** be a reductive group, and **P**, $\mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups s.t.

 $\mathbf{H}/\mathbf{P} \times \mathbf{H}/\mathbf{Q}$ is a spherical \mathbf{H} -variety, under the diagonal action.

Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(H)$, and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{O}}}}(H)$, $\pi \otimes \tau$ has finite multiplicities.

All such triples $(\mathbf{H}, \mathbf{P}, \mathbf{Q})$ were classified by Stembridge.

Example: $\mathbf{H} = \mathrm{GL}_n$, $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\min}}}(H)$, or classical \mathbf{H} and $\pi, \tau \in \mathcal{M}_{\overline{\mathbf{O}_{2^n}}}(H)$.

Our results also extend to certain representations of non-reductive H.

Example (Generalized Shalika model)

Let $G = GL_{2n}$, $R = LU \subset G$ with $L = GL_n \times GL_n$ and $U = Mat_{n \times n}$,

 $\mathbf{M} = \Delta \operatorname{GL}_n \subset \mathbf{L}, \ \mathbf{H} := \mathbf{MU}.$

Let $\mathfrak{m}^* \supset \mathbf{O}_{min} := minimal \ nilpotent \ orbit, \ and \ \pi \in \mathcal{M}_{\overline{\mathbf{O}_{min}}}(M)$.

Let ψ be a unitary character of H.

Then $\operatorname{ind}_H^G(\pi \otimes \psi)$ has finite multiplicities.

Similar case: $\mathbf{G} = O_{4n}$, $\mathbf{L} = \mathsf{GL}_{2n}$, $\mathbf{M} = \mathsf{Sp}_{2n}$, $\mathbf{O}_{\mathsf{ntm}} \subset \mathfrak{m}^*$.

Some necessary conditions for finite multiplicities

Theorem (Tauchi)

Let $P \subset G$ be a parabolic subgroup. If all degenerate principal series representations of the form $\operatorname{Ind}_P^G \rho$, with $\dim \rho < \infty$, have finite H-multiplicities, then H has finitely many orientable orbits on G/P.

Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R} . Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

- \bigcirc **H** is $\overline{\mathbf{O}_{P}}$ -spherical.
- **©** Every $\pi \in \mathcal{M}_{\overline{\mathbb{O}_{\mathbf{p}}}}(G)$ has finite multiplicities in $\mathcal{S}(G/H)$.
- H has finitely many orbits on G/P.
- H has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups.

Theorem (Tauchi)

Let $P \subset G$ be a parabolic subgroup. If all degenerate principal series representations of the form $\operatorname{Ind}_P^G \rho$, with $\dim \rho < \infty$, have finite H-multiplicities, then H has finitely many orientable orbits on G/P.

Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R} . Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

- \bigcirc **H** is $\overline{\mathbf{O}_{P}}$ -spherical.
- ① Every $\pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ has finite multiplicities.
- H has finitely many orbits on G/P.
- H has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups. In general, the finiteness of $\mathbf{H} \backslash \mathbf{G} / \mathbf{P}$ is not necessary, but the finiteness of $H \backslash G / P$ is not sufficient for finite multiplicities.

Reduction to distributions

- $S^*(X) := S(X)^*$ space of tempered distributions.
- Examples for $X=\mathbb{R}$: $\delta_0, \delta_x^{(n)}, f\mapsto \int_{-\infty}^\infty f(x)g(x)dx$, where g-smooth and tempered f-n.
- Non-example: $f \mapsto \int_{-\infty}^{\infty} f(x) \exp(x) dx$

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let $\mathcal{S}^*(X \times Y)^{\Delta G,I}$ denote the space of ΔG -invariant tempered distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X \times Y)^{\Delta G,I} < \infty$$

Reduction to distributions

- $S^*(X) := S(X)^*$ space of tempered distributions.
- Examples for $X = \mathbb{R}$: δ_0 , $\delta_x^{(n)}$, $f \mapsto \int_{-\infty}^{\infty} f(x)g(x)dx$, where g-smooth and tempered f-n.
- Non-example: $f \mapsto \int_{-\infty}^{\infty} f(x) \exp(x) dx$

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$$

Reduction to distributions

 $\mathcal{S}^*(X) := \mathcal{S}(X)^*$ - space of tempered distributions.

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$$

Proof of Theorem 2.

 $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$, **X** is Ξ -spherical, $\sigma \in \mathcal{M}_\Xi$. Need: dim $\operatorname{Hom}_G(\mathcal{S}(X), \sigma) < \infty$. Let \mathcal{E} be a bundle on Y := G/K s.t. $\mathcal{S}(Y, \mathcal{E}) \twoheadrightarrow \sigma$. Let $I := \operatorname{Ann}(\sigma)$.

Then $\mathcal{V}(I)\subset\Xi$, and

$$\mathsf{Hom}_{\mathcal{G}}(\mathcal{S}(X),\sigma) \hookrightarrow \mathsf{Hom}_{\mathcal{G}}(\mathcal{S}(X),\mathcal{S}(Y,\mathcal{E}))^{I} \hookrightarrow \mathcal{S}^{*}(X \times Y, \mathbb{C} \boxtimes \mathcal{E})^{\Delta \mathcal{G},I}$$

Main technique: D-modules

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X\times Y,\mathcal{E})^{\Delta G,I}<\infty$$

- D_X :=sheaf of algebraic differential operators. Gr $D_X \cong \mathcal{O}(T^*X)$.
- For a fin.gen. sheaf M of D_X -modules, $SingS(M) := Supp Gr(M) \subset T^*X$.
- Bernstein: if $M \neq 0$ then dim $SingS(M) \geq dim X$.
- M is called holonomic if dim SingS(M) = dim X.

Theorem (Bernstein-Kashiwara)

For any holonomic M, dim $\text{Hom}_{D_{\mathbf{X}}}(M, \mathcal{S}^*(X)) < \infty$.

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let $\mathcal{S}^*(X \times Y)^{\Delta G,I}$ denote the space of ΔG -invariant tempered distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X\times Y)^{\Delta G,I}<\infty$$

• For a f.gen. sheaf M of $D_{\mathbf{X}}$ -modules,

• $D_{\mathbf{X}} :=$ sheaf of algebraic differential operators. Gr $D_{\mathbf{X}} \cong \mathcal{O}(T^*\mathbf{X})$.

- SingS(M) := Supp Gr(M) \subset T^* \mathbf{X} . • M is called holonomic if dim SingS(M) = dim \mathbf{X} .
- IN is called holoholing if difficulty = diff \(\begin{align*}
 \text{V} & \text{V} \\
 \text{V} & \
- Bernstein-Kashiwara: \forall holonomic M, dim $\operatorname{Hom}_{\mathcal{D}_{\mathbf{X}}}(M,\mathcal{S}^*(X)) < \infty$.

Lemma

Let $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$ and let \mathbf{X} , \mathbf{Y} be Ξ -spherical \mathbf{G} -manifolds. Then $\dim \mu_{\mathbf{X} \vee \mathbf{Y}}^{-1}(\Xi \cap (\Delta \mathfrak{g})^{\perp}) \leq \dim \mathbf{X} + \dim \mathbf{Y}$

Proof of Theorem 3.

 $M := D_{\mathbf{X} \times \mathbf{Y}}$ -module with $\mathcal{S}^*(X \times Y)^{\Delta G, I} \hookrightarrow \operatorname{Hom}(M, \mathcal{S}^*(X, Y))$. By the lemma, M is holonomic.

Proof of the geometric lemma

Lemma

Let $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$ and let X, Y be Ξ -spherical G-manifolds. Then

$$\dim \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}(\Xi \cap (\Delta \mathfrak{g})^{\perp}) \leq \dim \mathbf{X} + \dim \mathbf{Y}$$

Proof.

 \forall orbit $\mathbf{0} \subset \Xi$ we have

$$\dim \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}((\mathbf{O} \times \mathbf{O}) \cap (\Delta \mathfrak{g})^{\perp}) = \dim \mu_{\mathbf{X}}^{-1}(\mathbf{O}) + \dim \mu_{\mathbf{Y}}^{-1}(\mathbf{O}) - \dim \mathbf{O} \le \dim \mathbf{X} + \dim \mathbf{O}/2 + \dim \mathbf{Y} + \dim \mathbf{O}/2 - \dim \mathbf{O} = \dim \mathbf{X} + \dim \mathbf{Y}$$

Ingredients of the proof of Theorem 1

Theorem 4 (Aizenbud - G. 2021)

 \forall parabolic $\mathfrak{p}\subset\mathfrak{g}$, \forall orbit $\mathbf{O}\subset\overline{\mathbf{O}_{\mathbf{P}}}$ we have

$$\dim \mathfrak{p}^{\perp} \cap \mathbf{O} = \dim \mathbf{O}/2.$$

Lemma

Let **P** act on **X** and $\mathbf{S} := \mu_{\mathbf{P},\mathbf{X}}^{-1}(\{0\})$. Then the following are equivalent:

- P has finitely many orbits on X.
- \bigcirc dim $S \leq \dim X$

Proof.

S = union of conormal bundles to orbits.

If $\mathbf{G} \supset \mathbf{P}$ acts on \mathbf{X} , $\mu_{\mathbf{P},\mathbf{X}} : T^*\mathbf{X} \to \mathfrak{g}^* \to \mathfrak{p}^*$, and $\mathbf{S} = \mu_{\mathbf{P},\mathbf{Y}}^{-1}(\{0\}) = \mu_{\mathbf{G},\mathbf{Y}}^{-1}(\mathfrak{p}^{\perp})$.

- \forall parabolic $\mathfrak{p} \subset \mathfrak{g}$,orbit $\mathbf{O} \subset \overline{\mathbf{O}_{\mathbf{P}}}$ we have $\dim \mathfrak{p}^{\perp} \cap \mathbf{O} = \dim \mathbf{O}/2$.
- For $\mathbf{S} := \mu_{\mathbf{P}, \mathbf{X}}^{-1}(\{0\})$, $\mathbf{P} \setminus \mathbf{X} < \infty \iff \dim \mathbf{S} \le \dim \mathbf{X}$.

Theorem 1

Let $P \subset G$ be a parabolic subgroup, and $O_P \subset \mathcal{N}(\mathfrak{g}^*)$ be its Richardson orbit. Then X is $\overline{O_P}$ -spherical \iff P has finitely many orbits on X.

Proof.

Let
$$\mathbf{S} := \mu^{-1}(\mathfrak{p}^{\perp}) = \mu_{\mathbf{P},\mathbf{X}}^{-1}(\{0\})$$
. Then $\mathbf{P} \setminus \mathbf{X} < \infty \iff \dim \mathbf{S} \le \dim \mathbf{X}$. Further, $\dim \mathbf{S} = \max_{\mathbf{O} \subset \overline{\mathbf{O}_{\mathbf{P}}}} \dim \mu^{-1}(\mathfrak{p}^{\perp} \cap \mathbf{O})$. $\forall \mathbf{O} \subset \overline{\mathbf{O}_{\mathbf{P}}}$ we have

$$\dim \mu^{-1}(\mathfrak{p}^{\perp} \cap \mathbf{O}) = \dim \mu^{-1}(\mathbf{O}) + \dim \mathfrak{p}^{\perp} \cap \mathbf{O} - \dim \mathbf{O} =$$
$$= \dim \mu^{-1}(\mathbf{O}) - \dim \mathbf{O}/2.$$

Thus

$$\dim \mathbf{S} \leq \dim \mathbf{X} \iff \forall \mathbf{O} \subset \overline{\mathbf{O}_{\mathbf{P}}}, \ \dim \mu^{-1}(\mathbf{O}) \leq \dim \mathbf{X} + \dim \mathbf{O}/2.$$

Main geometric questions:

- Give a criterion for \overline{O} -sphericity of X for non-Richardson O.
- What should be the definition of *O*-real spherical *X*?

Further geometric questions:

- Does *O*-spherical $\Rightarrow \overline{O}$ -spherical?
- Does dim $O \cap \mathfrak{h}^{\perp} \leq \dim O/2$ imply $O \cap \mathfrak{h}^{\perp}$ being isotropic in O? Wen-Wei Li: for spherical \mathfrak{h} , and any $O: O \cap \mathfrak{h}^{\perp}$ is isotropic in O.
- For $X = U \coprod Z$, when is $X \overline{O}$ -spherical in terms of U and Z?

More questions:

- Can we bound $m_{\sigma}(S(X))$? Have to use some invariant of σ .
- By Theorem 3, relative characters given by $\mathcal{S}(X) \to \sigma$ and $\mathcal{S}(X) \to \tilde{\sigma}$ for $\mathcal{V}(\mathrm{Ann}(\sigma))$ -spherical **X** are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical **X** they are.
- If \mathbf{G}/\mathbf{H} is $\mathcal{V}(\mathrm{Ann}(\sigma))$ -spherical, is $\sigma^{HC}|_{\mathfrak{h}}$ finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).
- Conjecture: Theorem 1 holds over non-archimedean fields as well.

Thank you for your attention!

Examples by I.Karshon

Example ($\bar{\mathbf{O}}$ -spherical \mathbf{X} for non-Richardson \mathbf{O})

 $\begin{aligned} \mathbf{G} &:= \mathsf{GL}(V) \times \mathsf{GL}(W) \times \mathsf{Sp}(V \otimes W \oplus V^* \otimes W^*), \\ \iota &: \mathsf{GL}(V) \times \mathsf{GL}(W) \to \mathsf{Sp}(V \otimes W \oplus V^* \otimes W^*), \ \mathbf{H} := \mathit{Graph}(\iota) \subset \mathbf{G}. \\ \mathit{Then} \ \mathbf{G} / \mathbf{H} \ \mathit{is} \ \overline{\mathbf{O}_{\mathrm{reg}} \times \mathbf{O}_{\mathrm{reg}} \times \mathbf{O}_{\mathrm{min}}} \mathit{-spherical}. \end{aligned}$

Example (Strict inequality)

W:=symplectic vector space, $\mathbf{G}:=\operatorname{Sp}(W)\times\operatorname{Sp}(W\oplus W)$, and

$$\mathbf{H} := \{ (Y, \begin{pmatrix} Y & 0 \\ 0 & Y \end{pmatrix}) \} \subset \mathbf{G}$$

Let $\mathbf{O} := O_{\min} \times O_{\min} \subset \mathfrak{g}^* = \mathfrak{sp}^*(W) \times \mathfrak{sp}^*(W \oplus W)$. Then $\dim \mathfrak{h}^{\perp} \cap \mathbf{O} = \dim W + 1$, while $\dim \mathbf{O} = 3 \dim W$. Thus for $\dim W > 2$ we have $\dim \mathfrak{h}^{\perp} \cap \mathbf{O} < \dim \mathbf{O}/2$ and thus

$$\dim \mu_{\mathbf{G}/\mathbf{H}}^{-1}(\mathbf{O}) < \dim \mathbf{G}/\mathbf{H} + \dim \mathbf{O}/2.$$