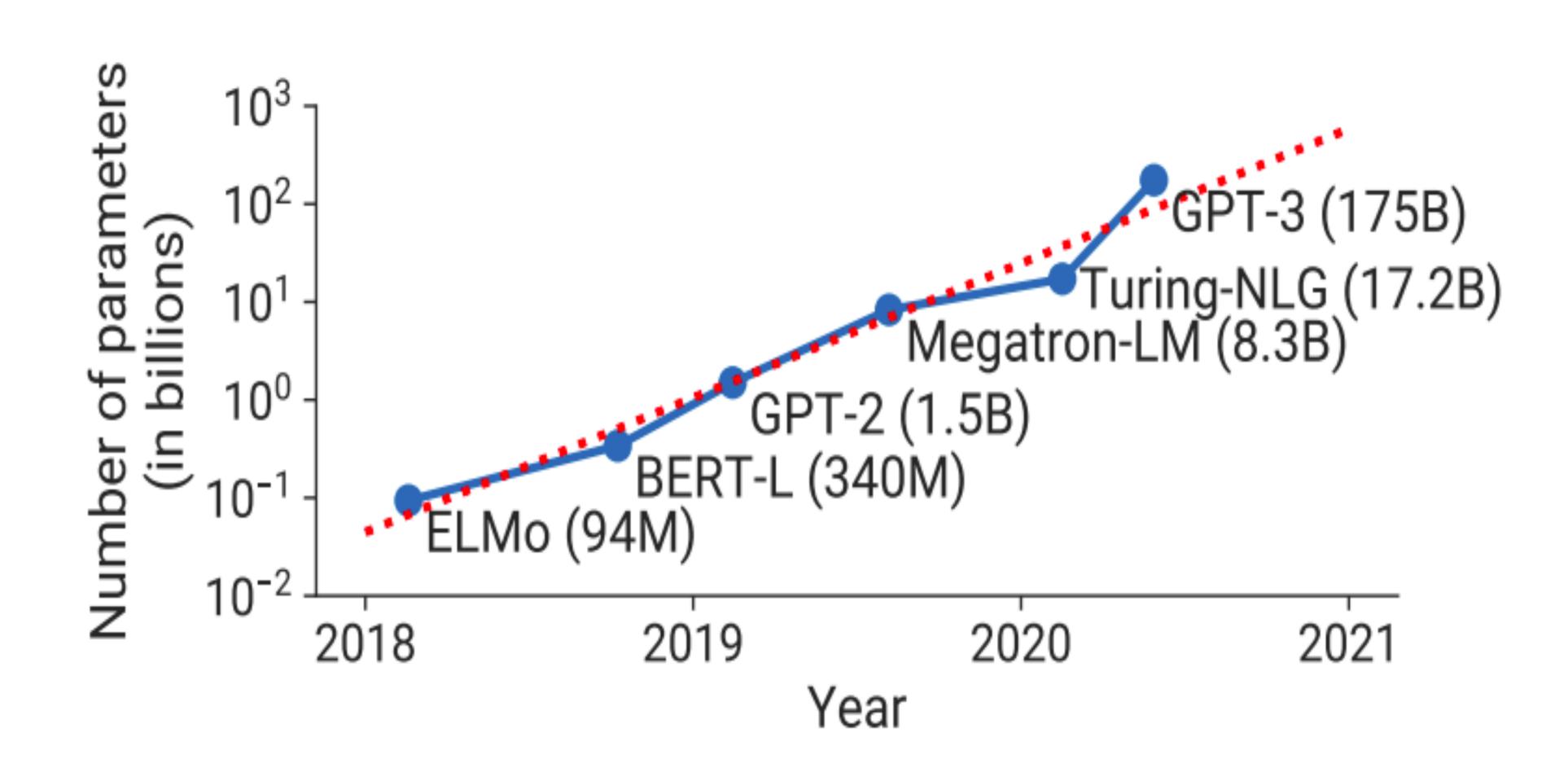
Distributed Deep Learning

Max Ryabinin*

Yandex Research

Motivation

arxiv.org/abs/2104.04473



Large problems need large models

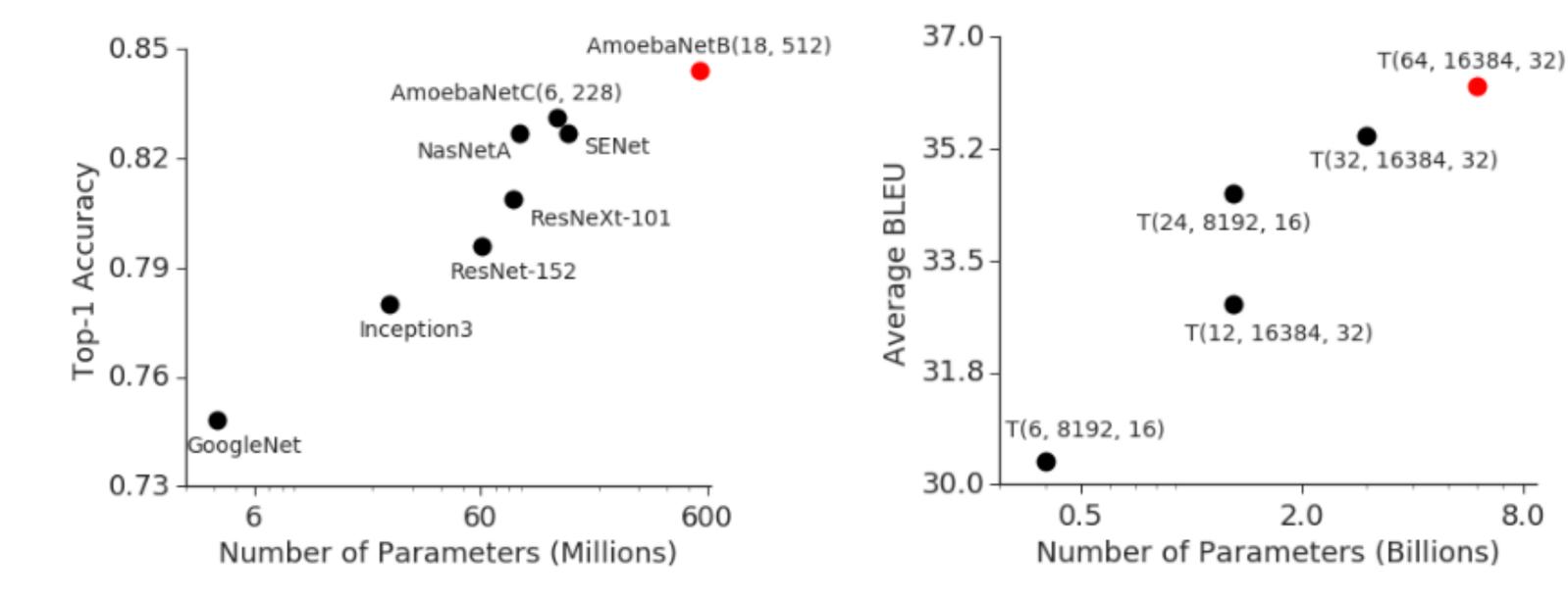
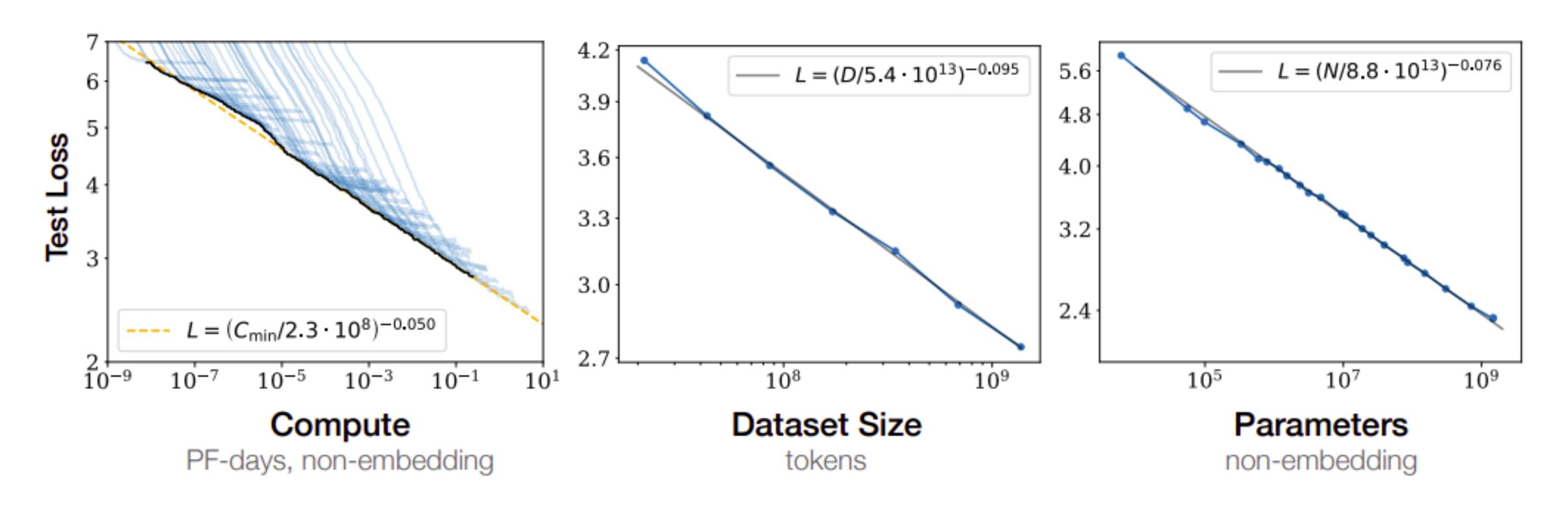


Image classification ImageNet

Machine translation average over WMT

Source: arxiv.org/abs/1811.06965

Scaling Laws for Neural Language Models



Source: arxiv.org/abs/2001.08361

Machine Learning supertasks

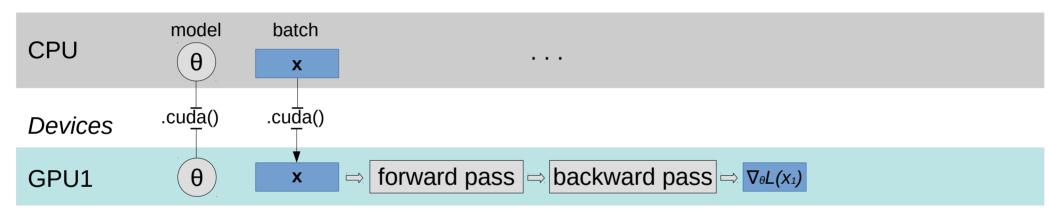
- Image classification ImageNet, JFT300M
- Image generation ImageNet (BigGAN)
- Language models CommonCrawl, BERT/MLM
- Machine Translation multilingual translation

Distributed training to the rescue!

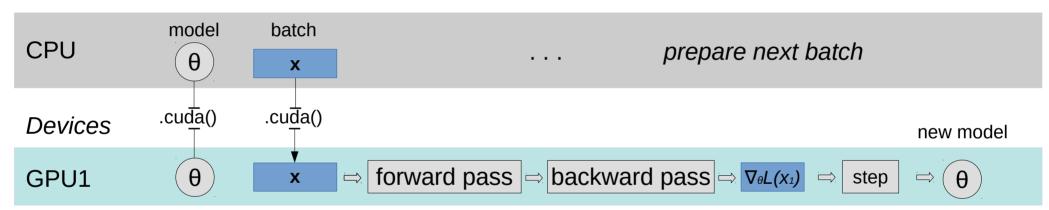
- To gather sufficient computational resources, train on multiple computers
- Goal of this talk: a broad overview of practical algorithms in Distributed DL
- Two main groups of methods:
 - Data-parallel training: parallelize SGD over the batch axis
 - Model-parallel training: shard the model, run it on several devices

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

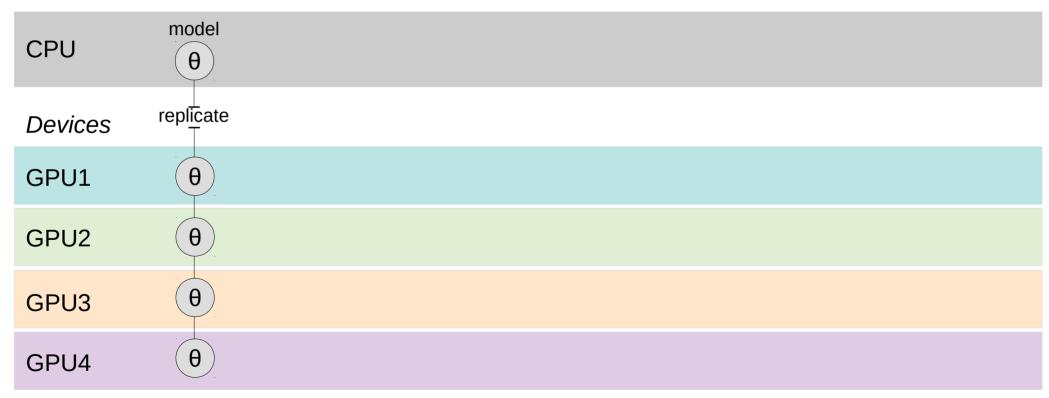
cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf



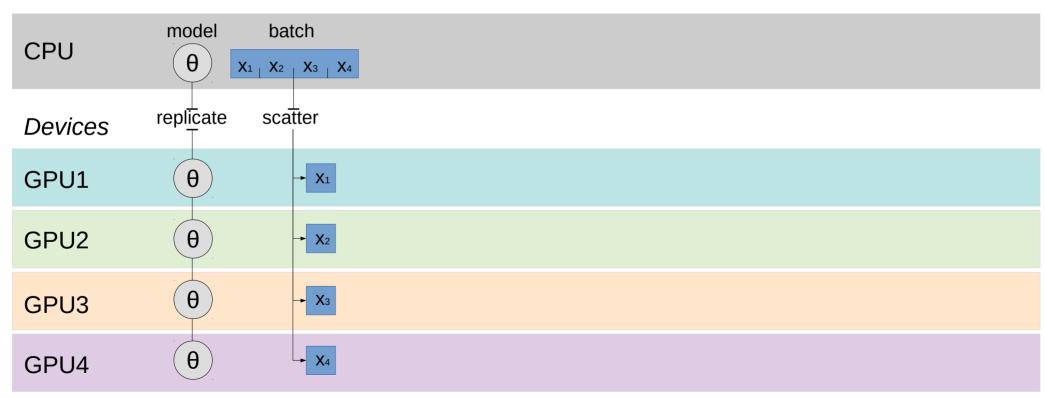
cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf



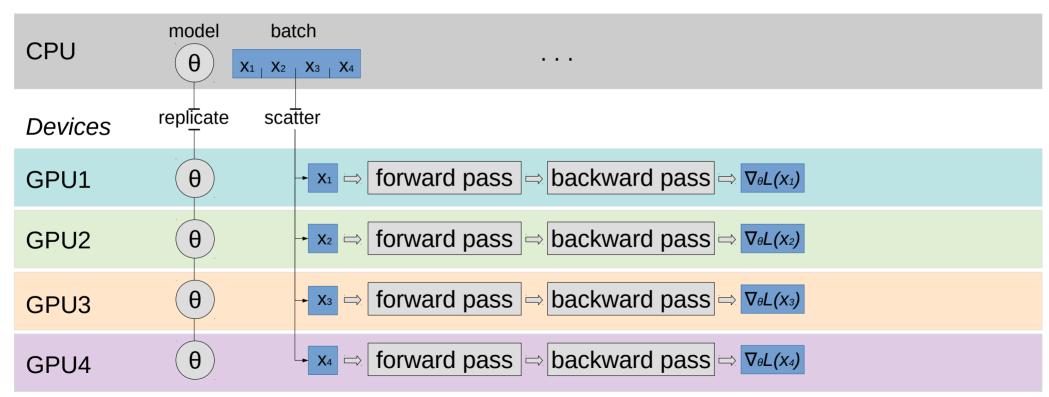
cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf



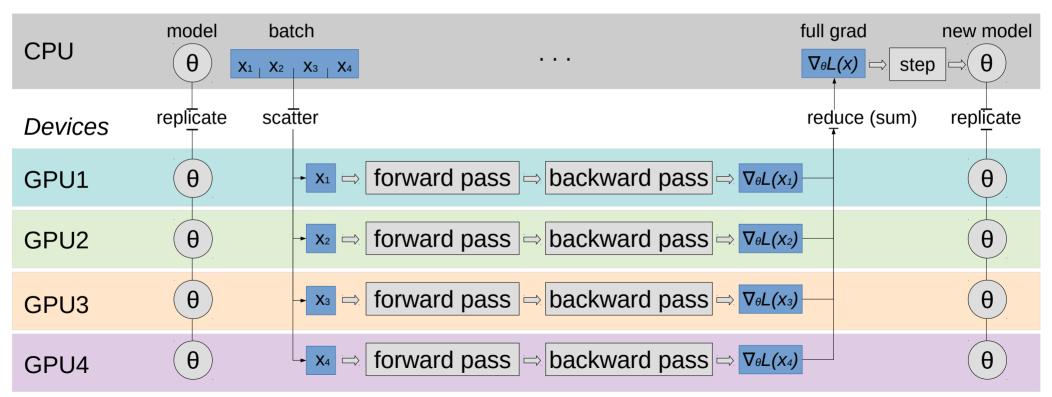
cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf



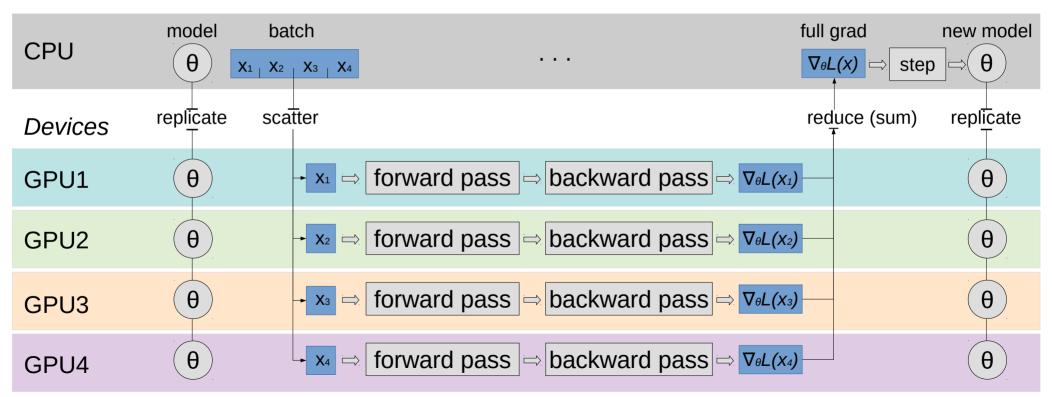
cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf



cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf



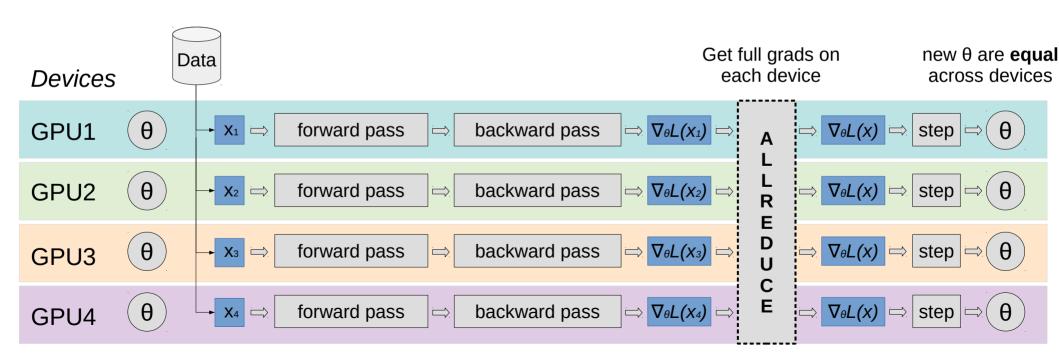
cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf



All-Reduce data parallel

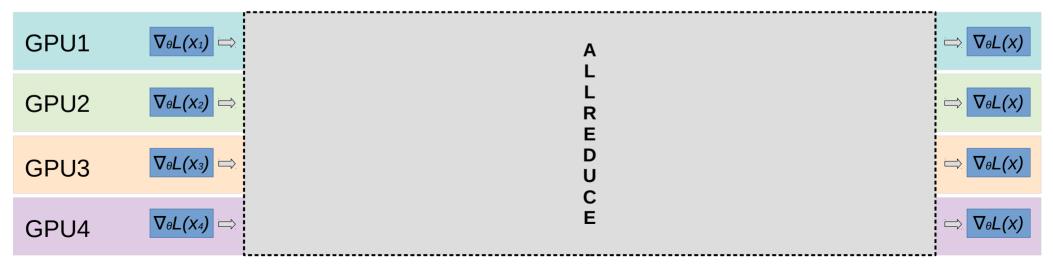
arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?



Input: each device has its its own vector

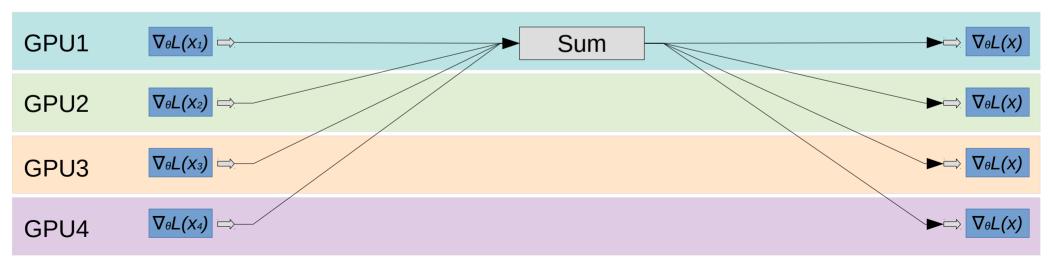
Output: each device gets a sum of all vectors



Input: each device has its its own vector

Output: each device gets a sum of all vectors

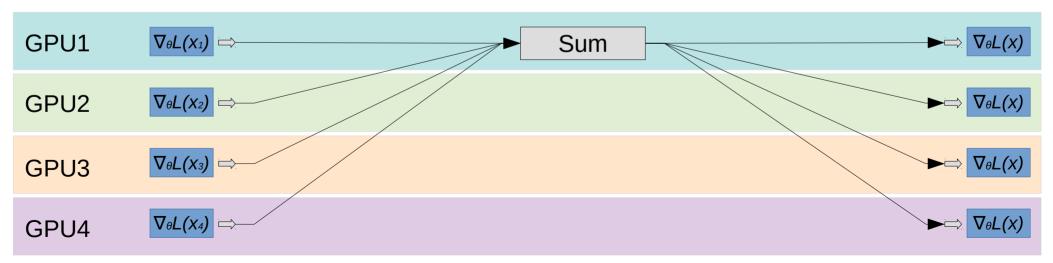
Naive implementation



Input: each device has its its own vector

Output: each device gets a sum of all vectors

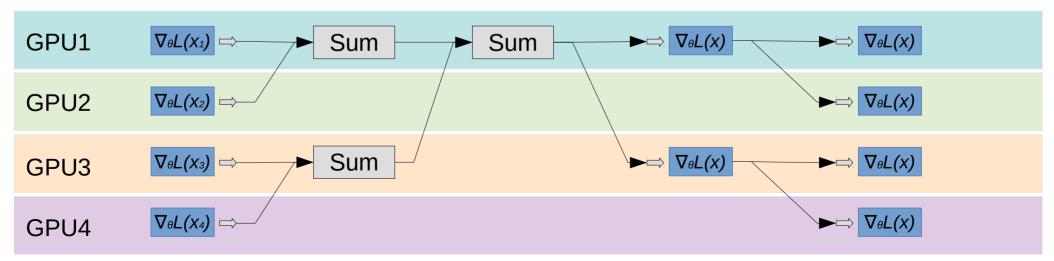
Q: Can we do better?



Input: each device has its its own vector

Output: each device gets a sum of all vectors

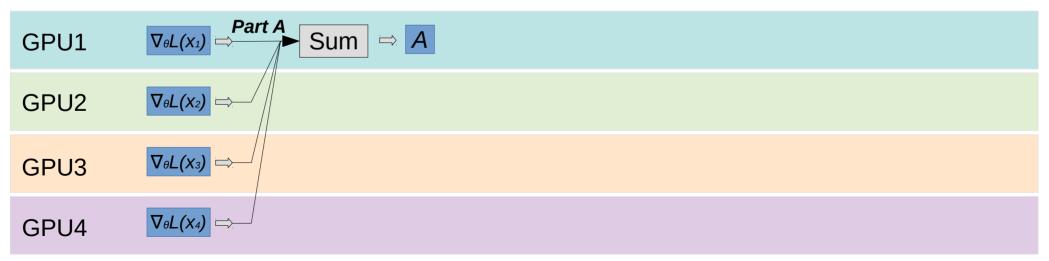
Tree-allreduce



Input: each device has its its own vector

Output: each device gets a sum of all vectors

Butterfly-allreduce – split data into chunks (ABCD)



Input: each device has its its own vector

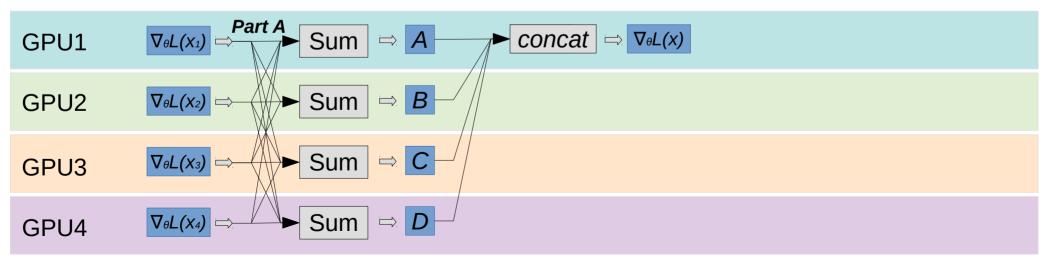
Output: each device gets a sum of all vectors

Butterfly-allreduce – split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

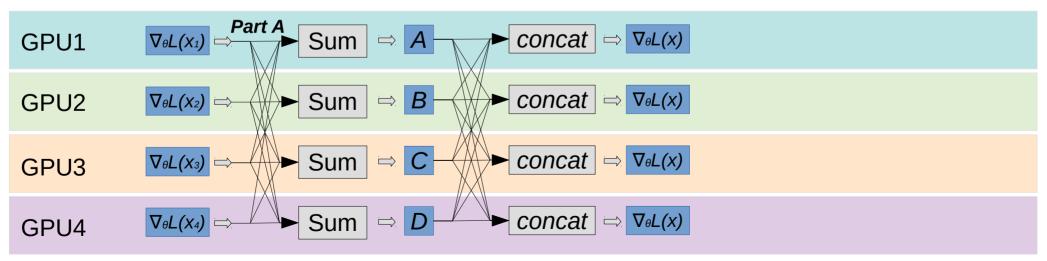
Butterfly-allreduce – split data into chunks (ABCD)



Input: each device has its its own vector

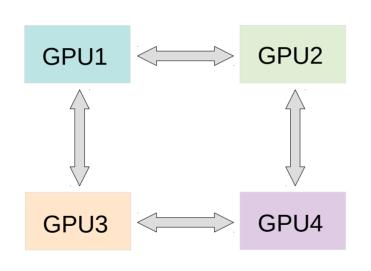
Output: each device gets a sum of all vectors

Ring-allreduce – split data into chunks (ABCD)



Ring allreduce

Bonus quest: you can only send data between adjacent gpus



Ring topology

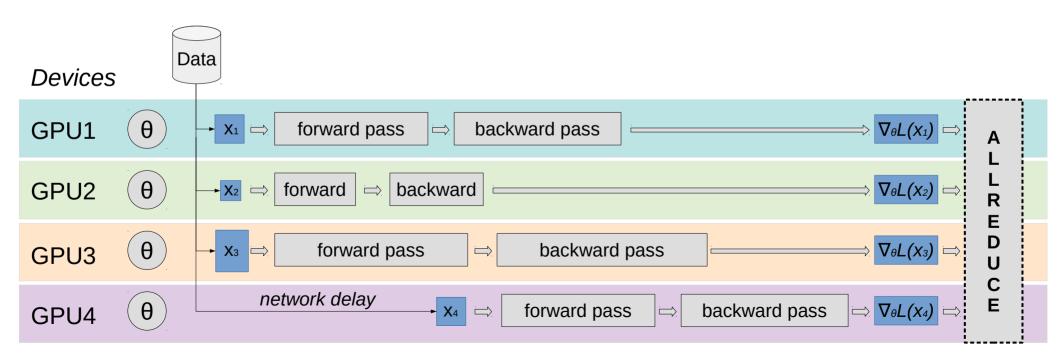
Image: graphcore ipu server

Answer & more: tinyurl.com/ring-allreduce-blog

All-Reduce data parallel VS reality

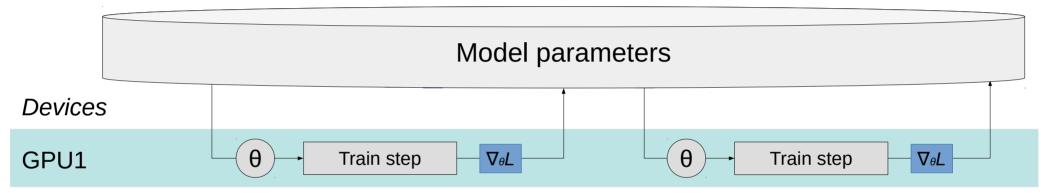
arxiv.org/abs/1706.02677

Each gpu has different processing time & delays **Q:** can we improve device utilization?



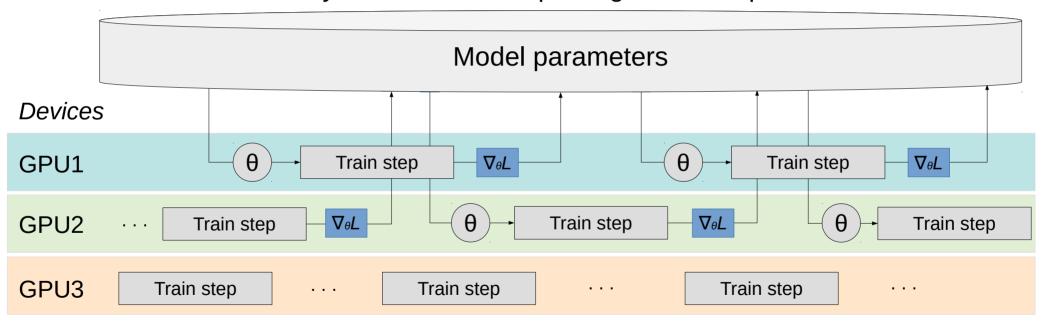
HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server



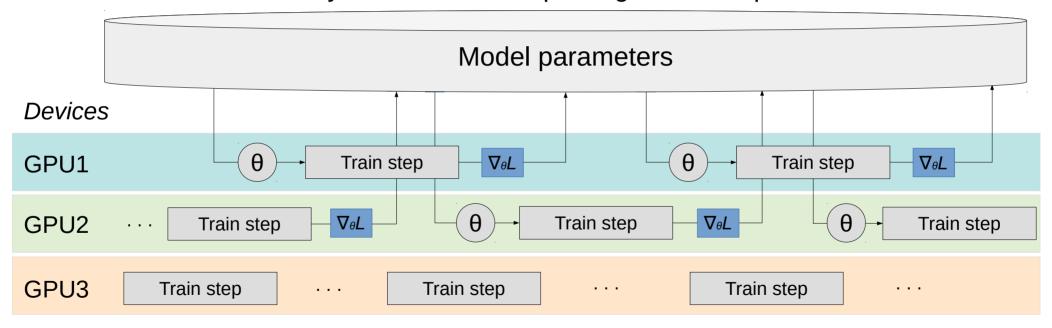
HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server



HOGWILD! arxiv.org/abs/1106.5730

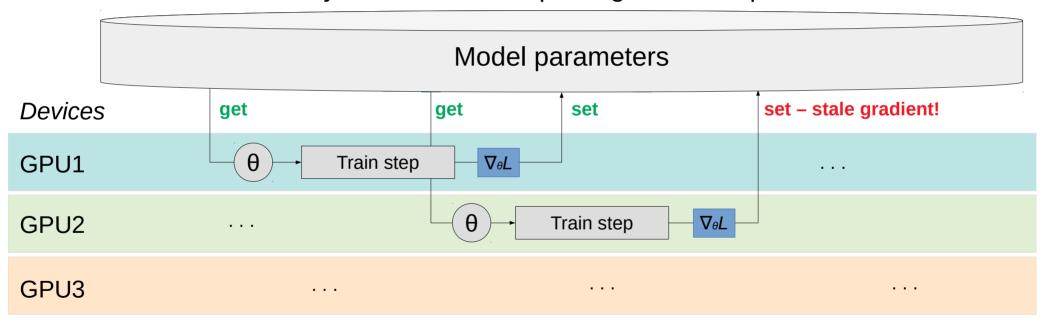
Idea: remove synchronization step alltogether, use parameter server



Q: have we lost anything by going asynchronous?

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

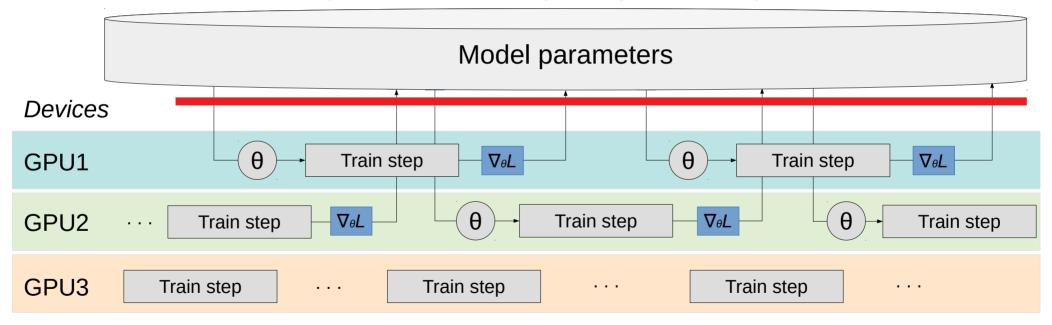


Correction for staleness: arxiv.org/abs/1511.05950 & many others

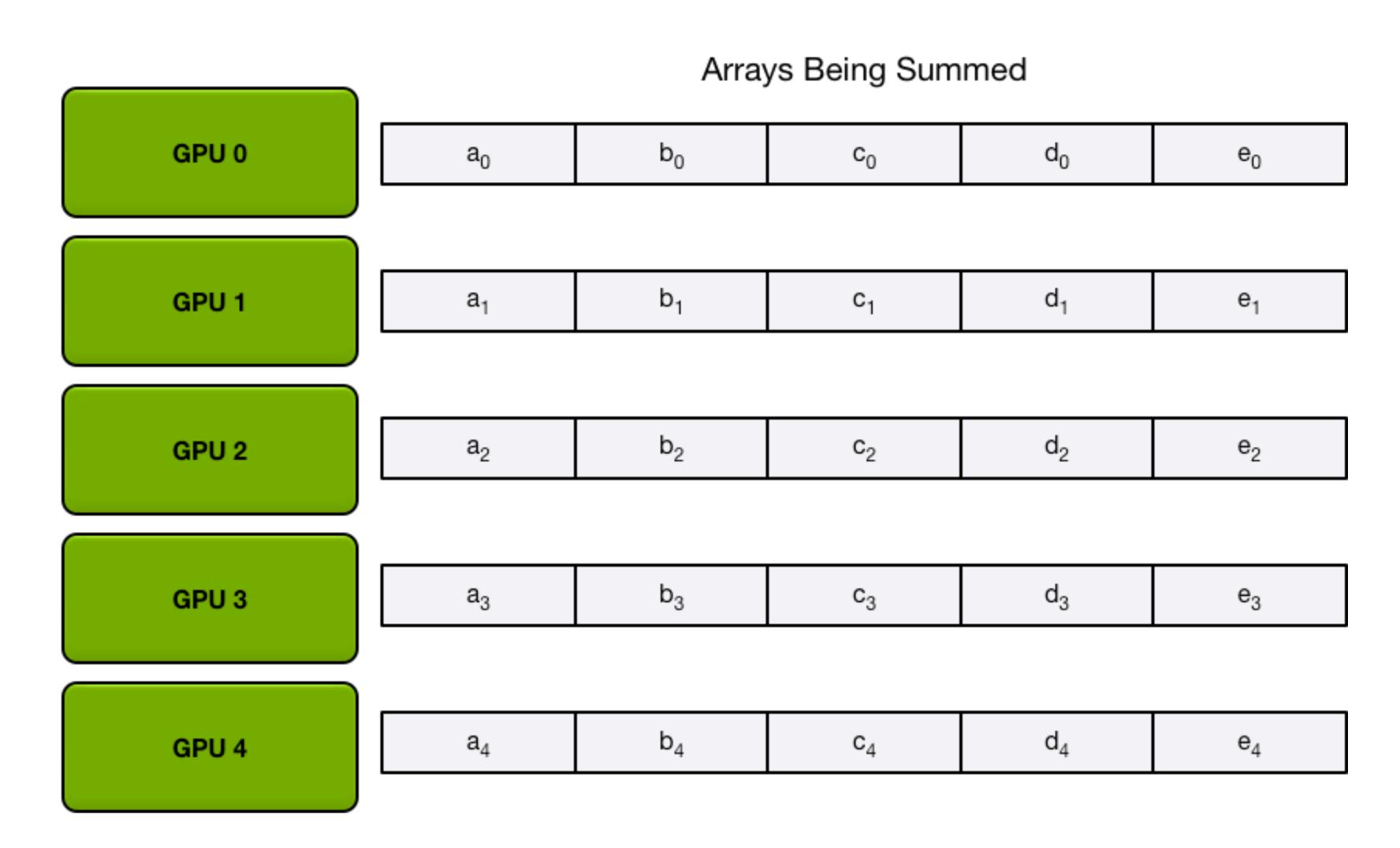
Recap: Parameter Server

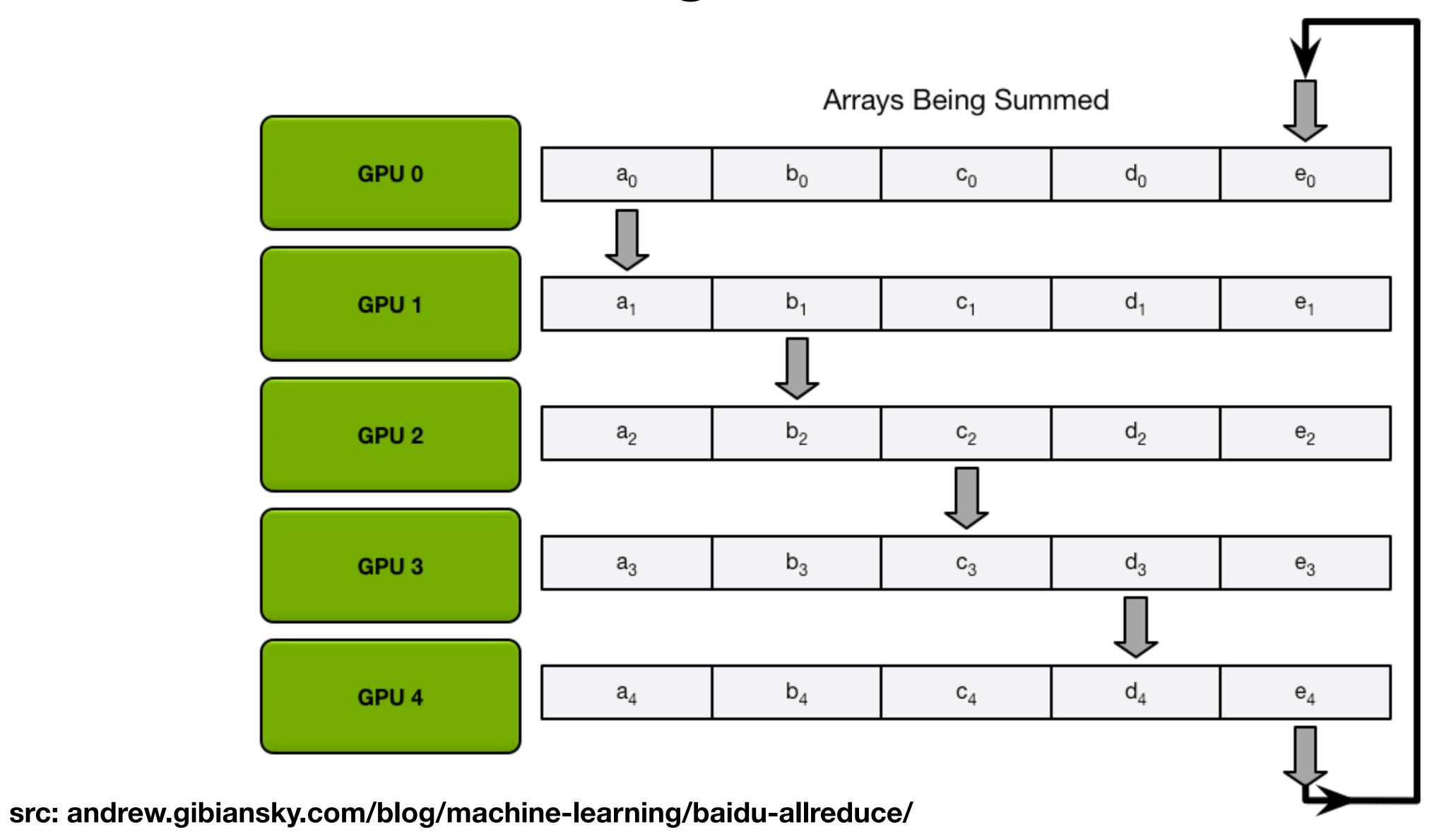
HOGWILD! arxiv.org/abs/1106.5730

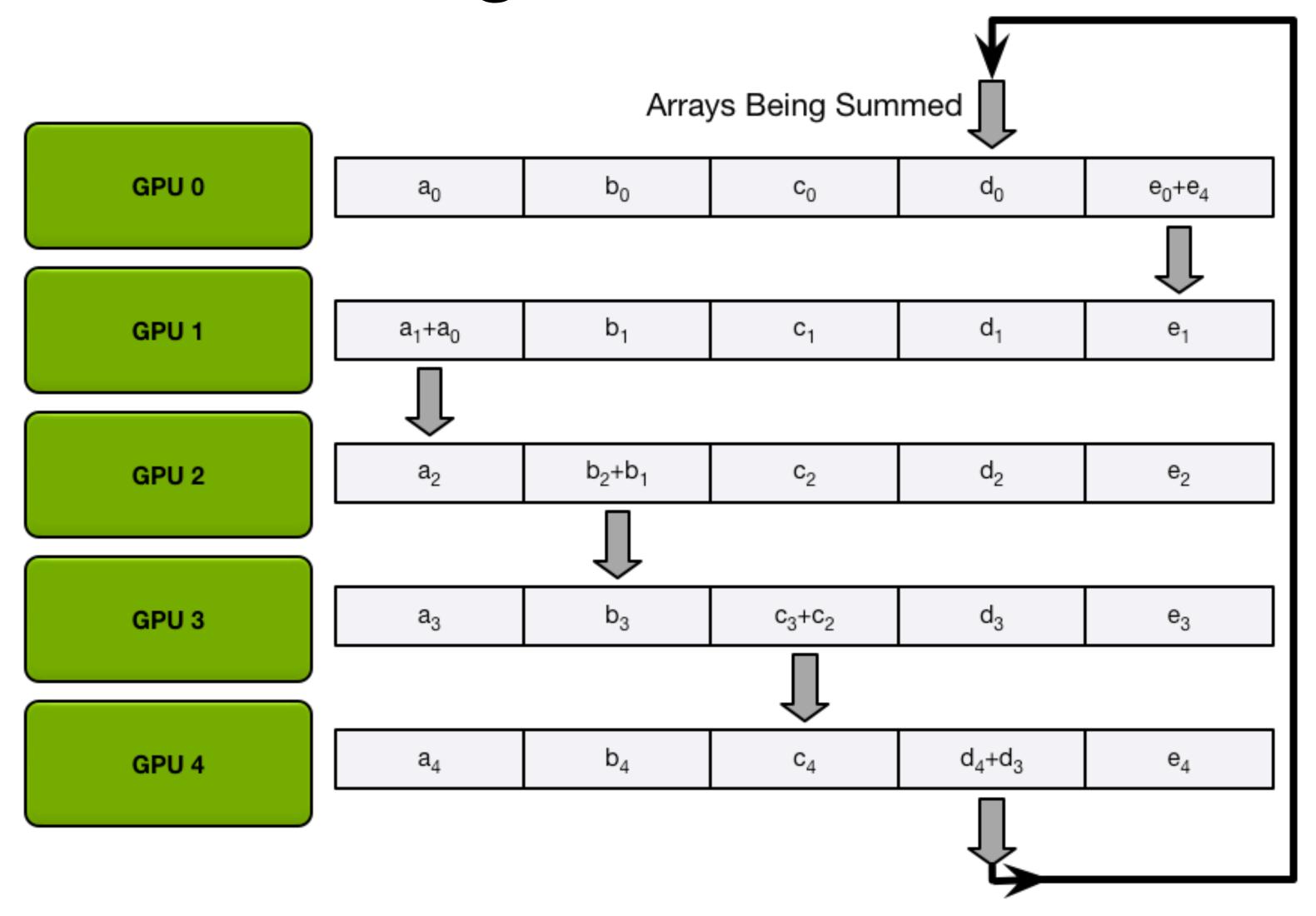
Idea: remove synchronization step alltogether, use parameter server

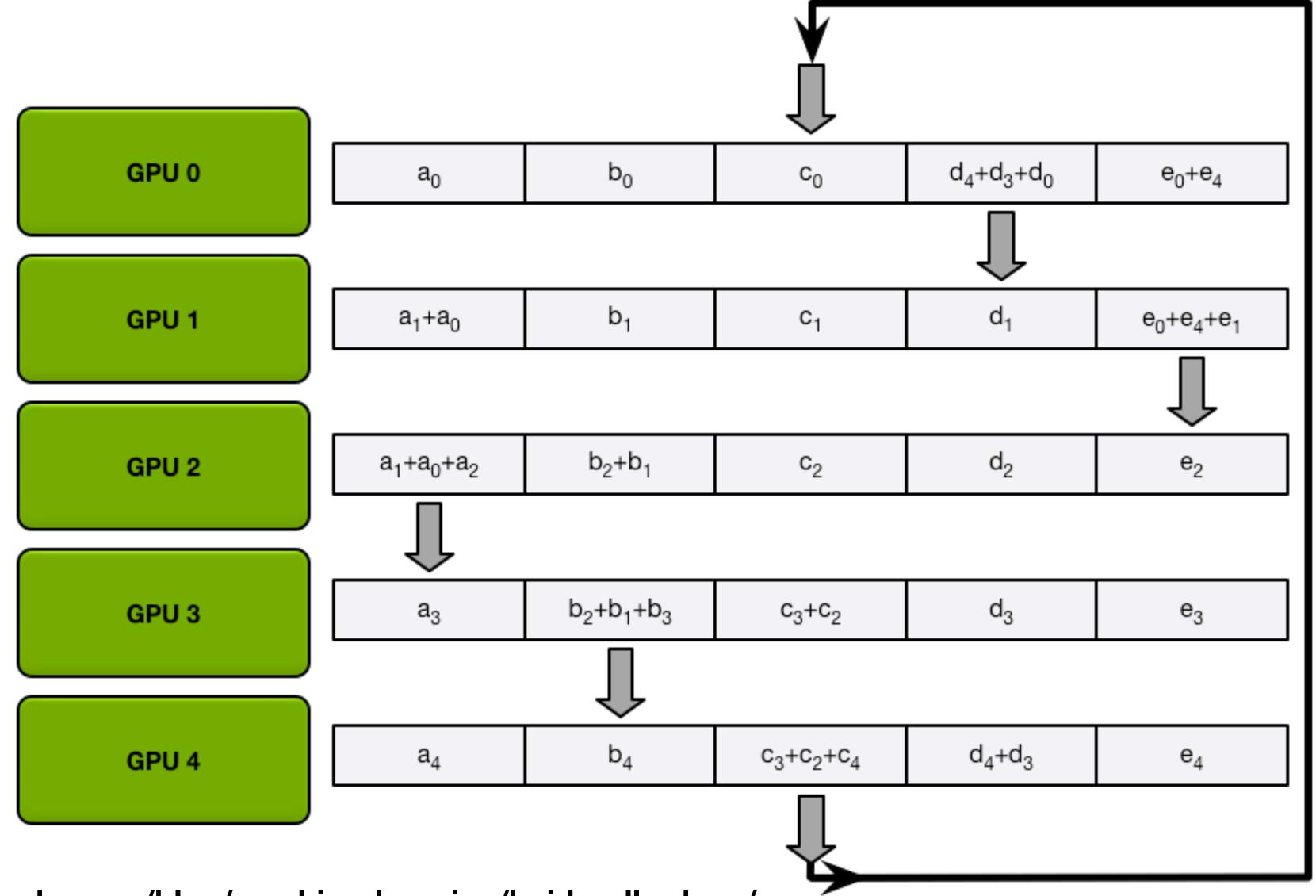


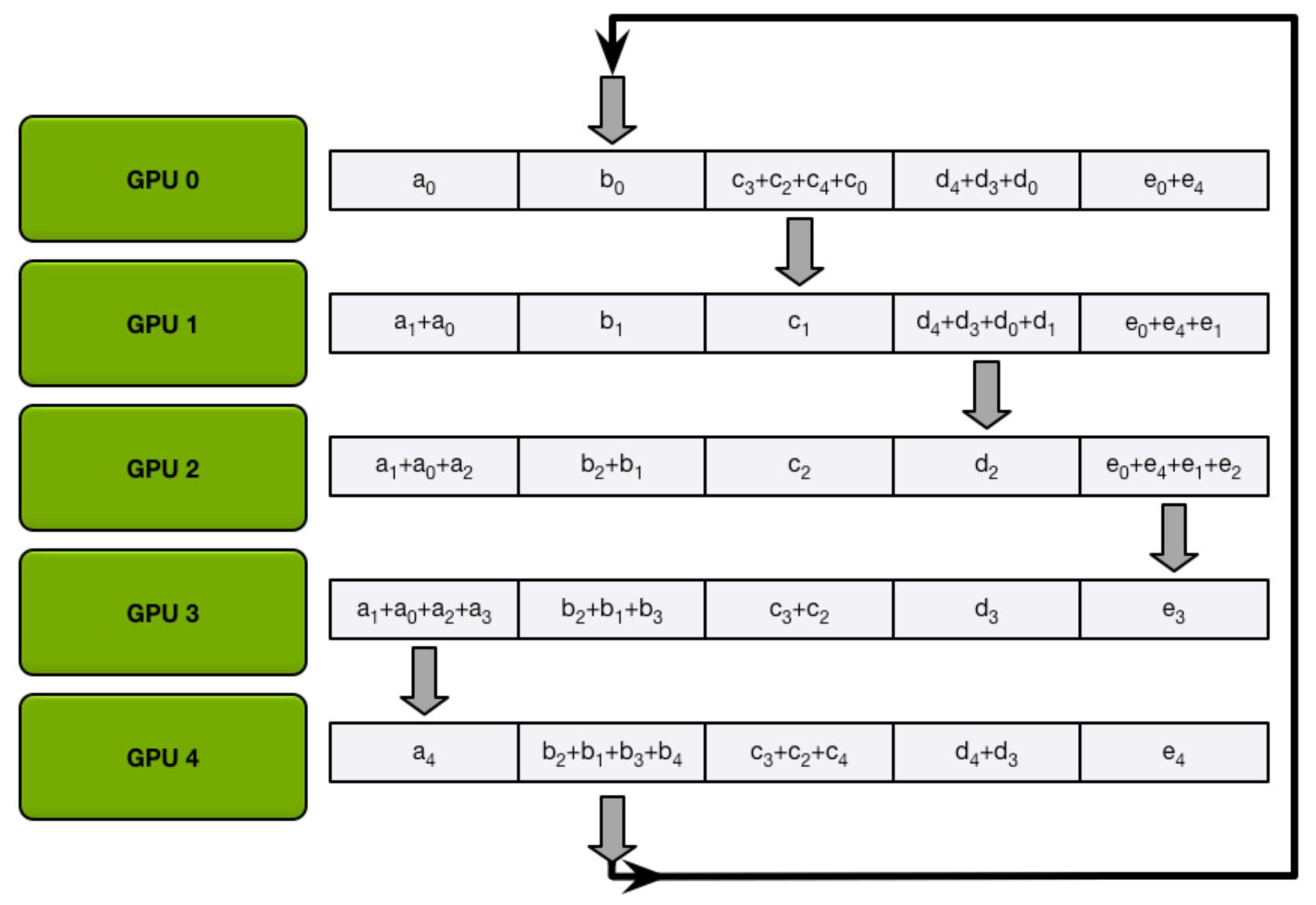
Problem: parameter servers need to ingest tons of data over training

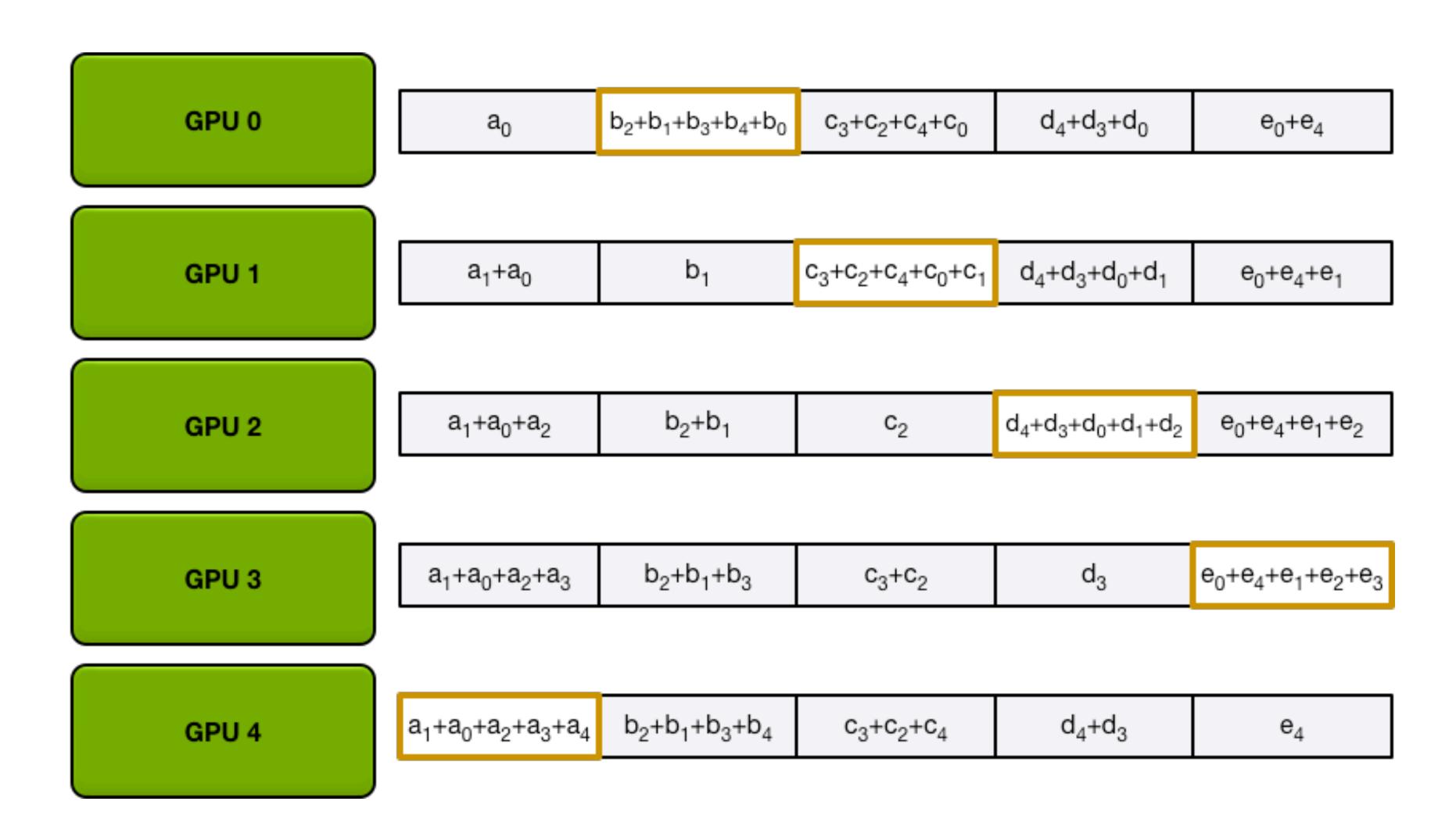


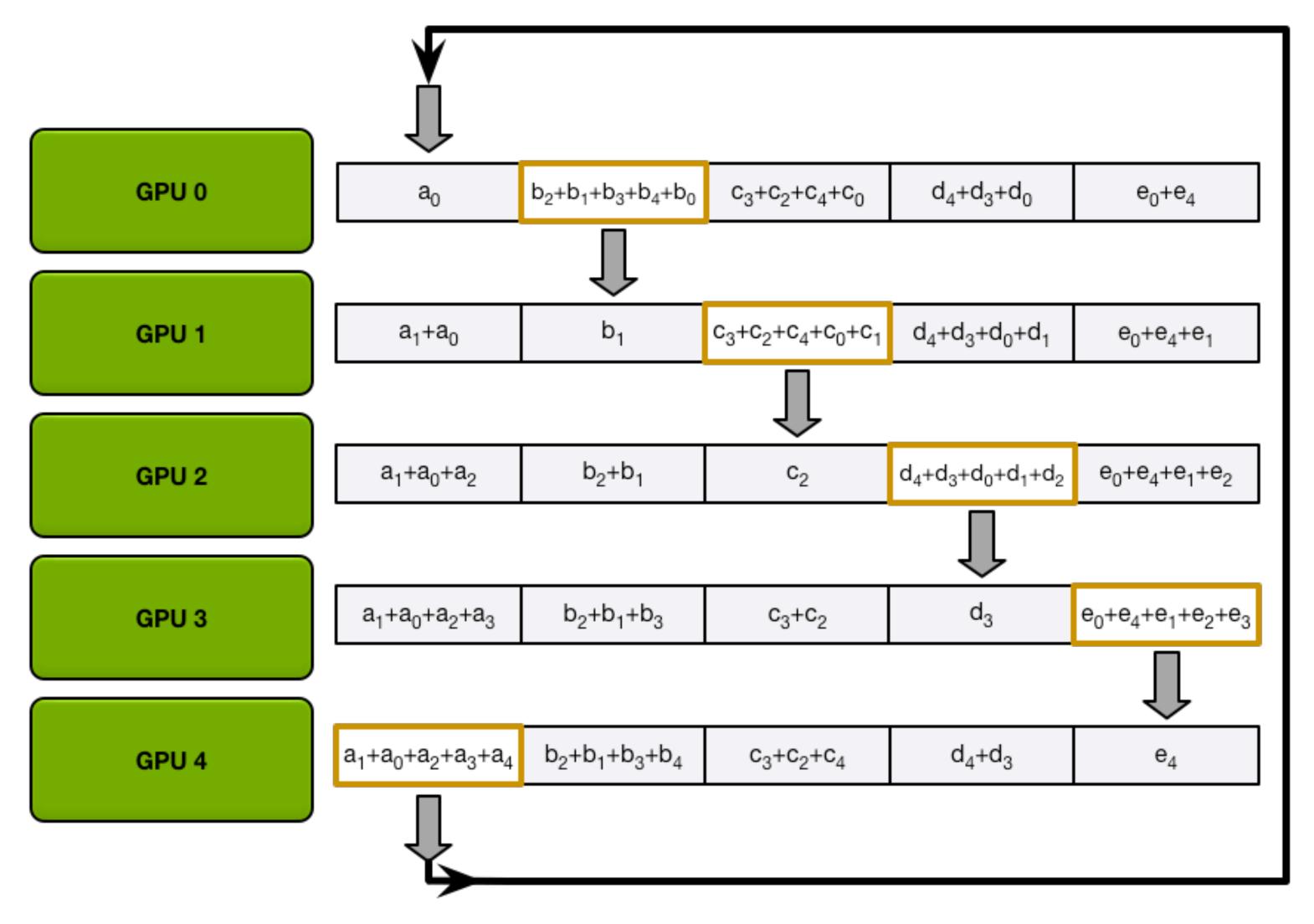


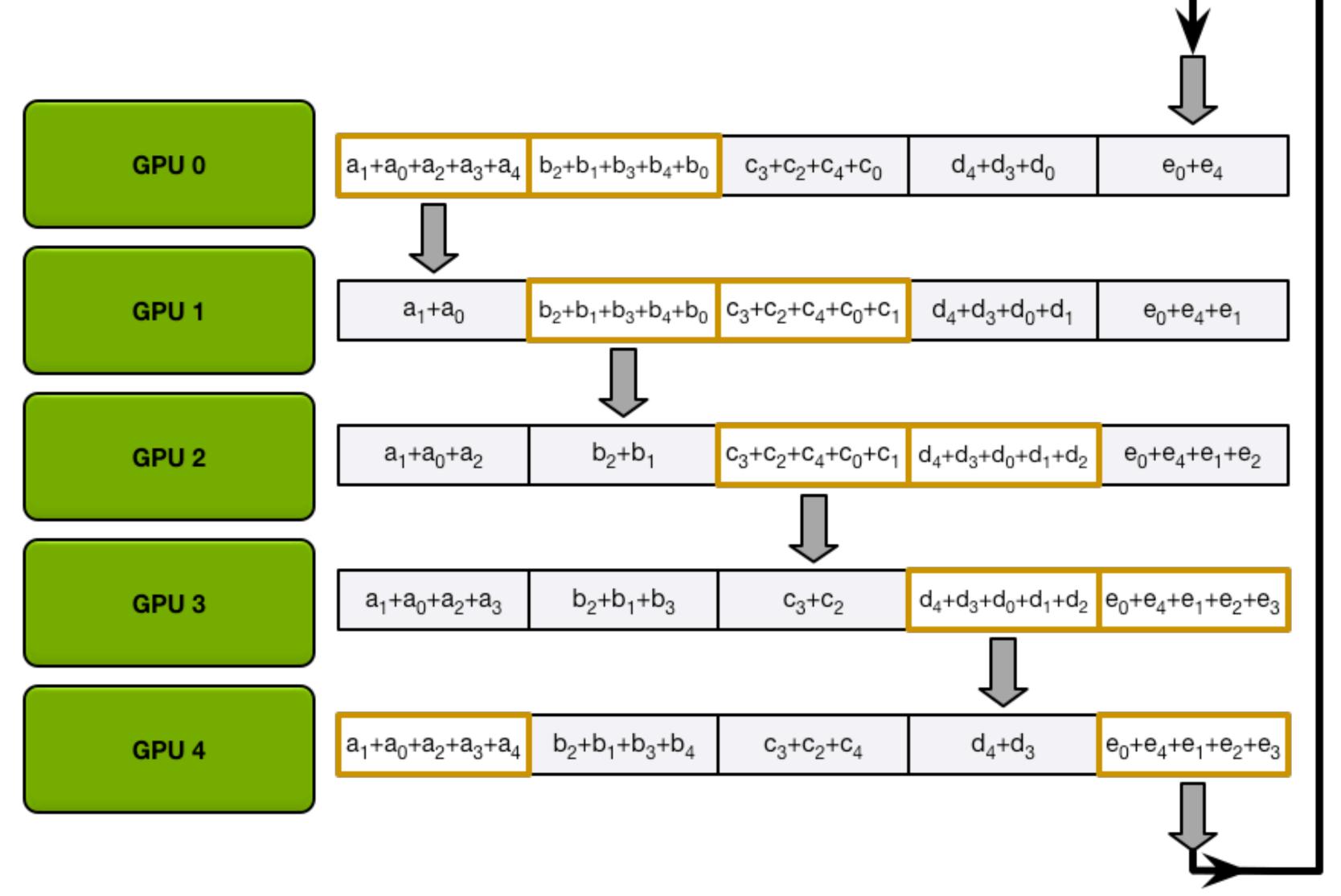


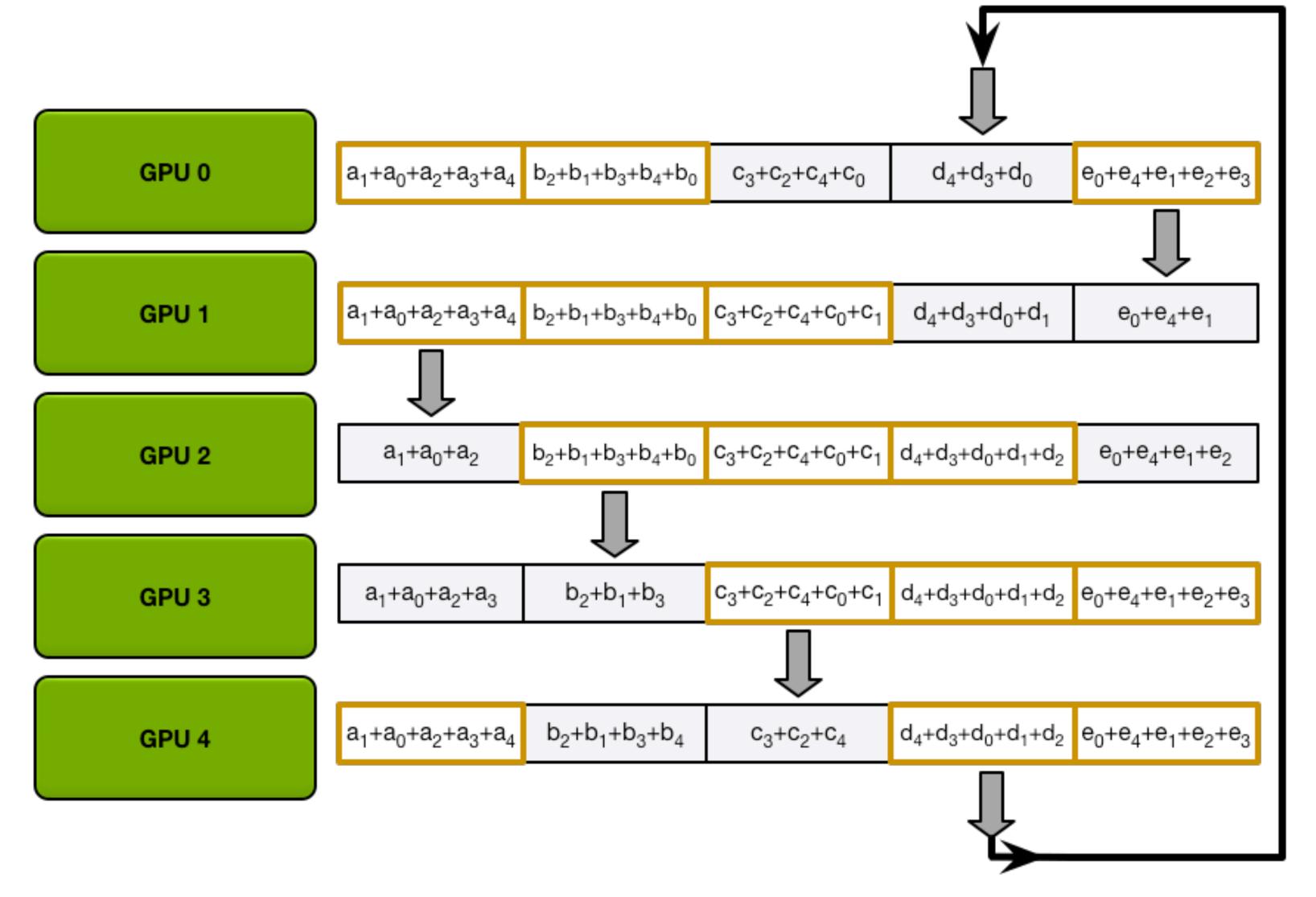


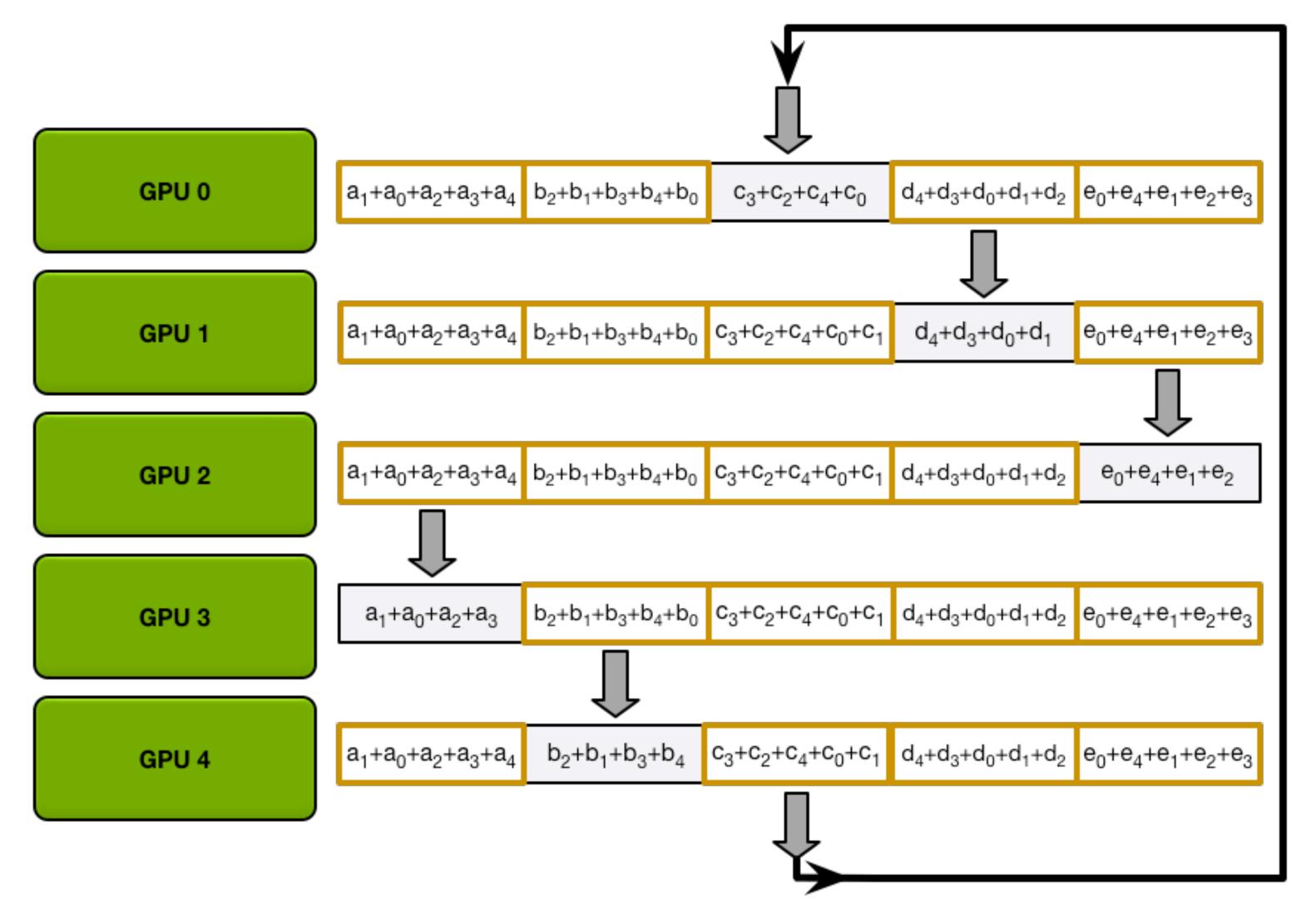


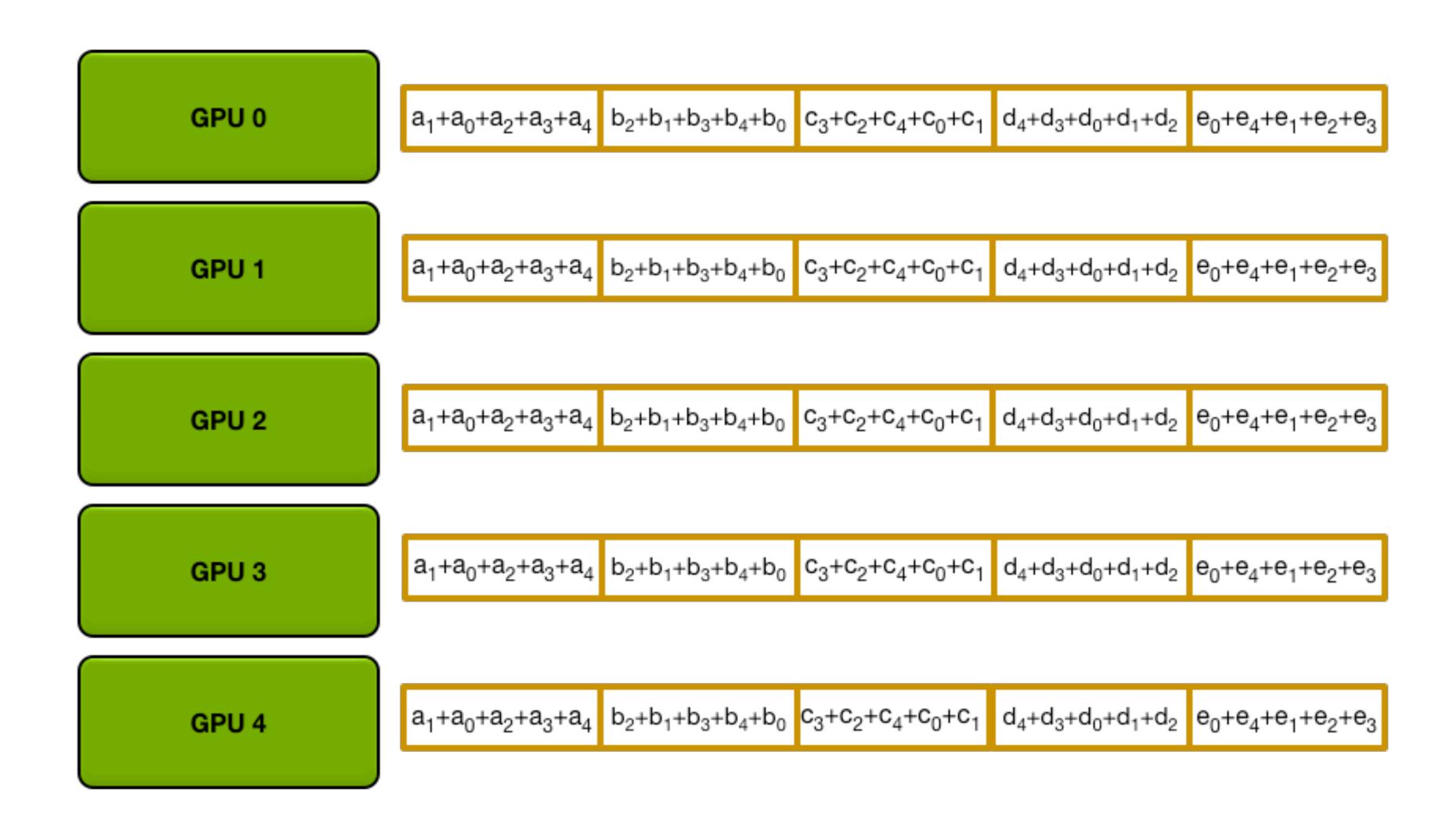






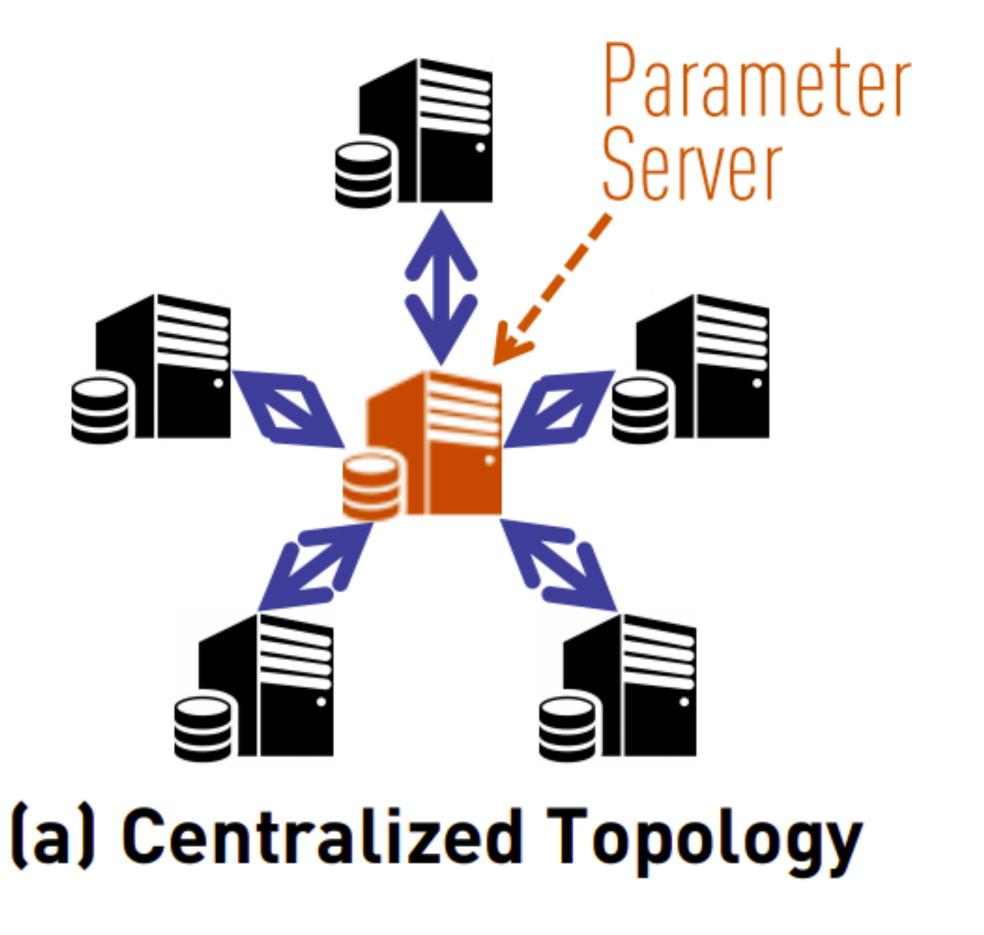


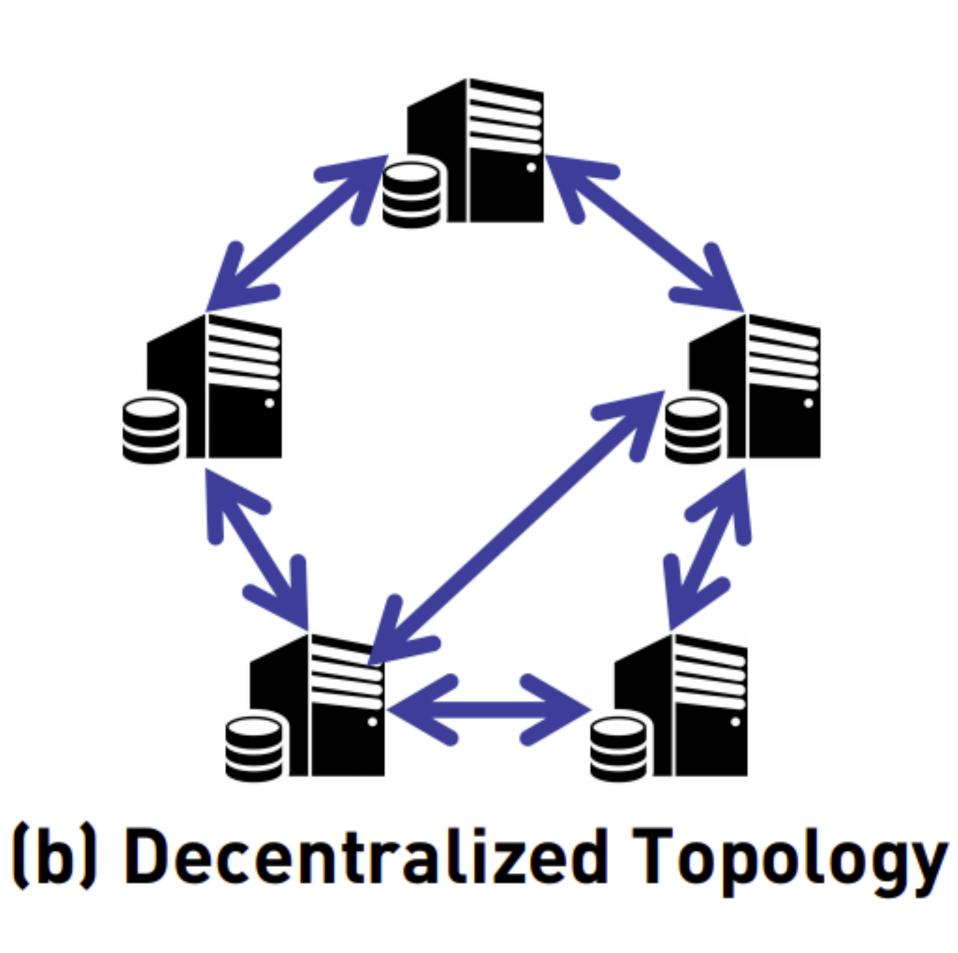




Decentralized Training with Gossip

Gossip (communication): https://tinyurl.com/boyd-gossip-2006
Gossip outperforms All-Reduce: https://tinyurl.com/can-dsgd-outperform





Decentralized Training with Gossip Source: https://tinyurl.com/can-dsgd-outperform

Seconds/Epoch Slower Network Slower Network Seconds/Epoch **Training Loss Fraining Loss** Centralized Centralized Centralized Centralized Decentralized 0.5 500 500 1000 Time (Seconds) Network Latency (ms) Time (Seconds) 1/Bandwidth (1 / 1Mbps) (a) ResNet-20, 7GPU, 10Mbps (b) ResNet-20, 7GPU, 5ms (c) Impact of Network Bandwidth (d) Impact of Network Latency

Figure 2: Comparison between D-PSGD and two centralized implementations (7 and 10 GPUs).

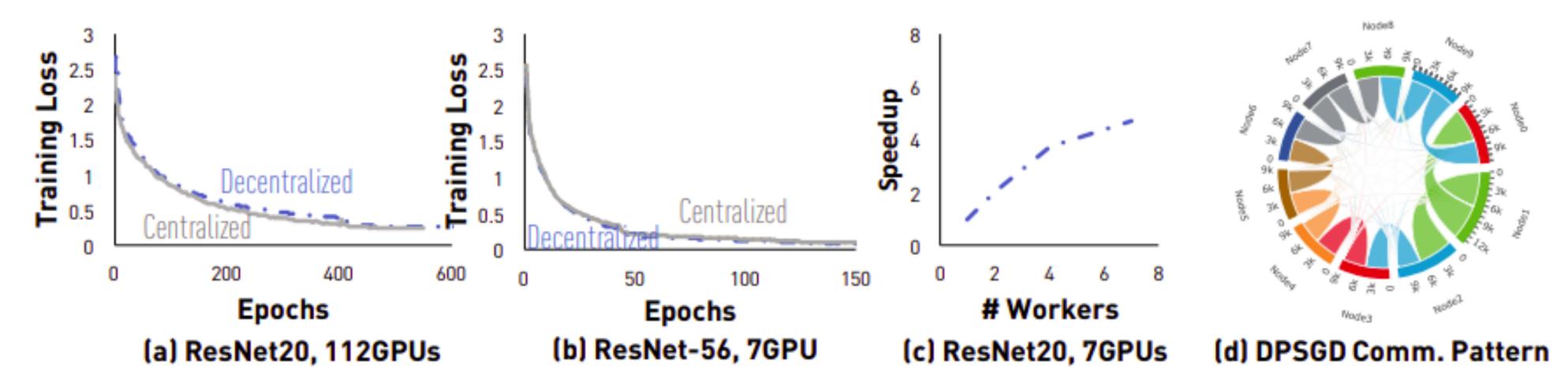


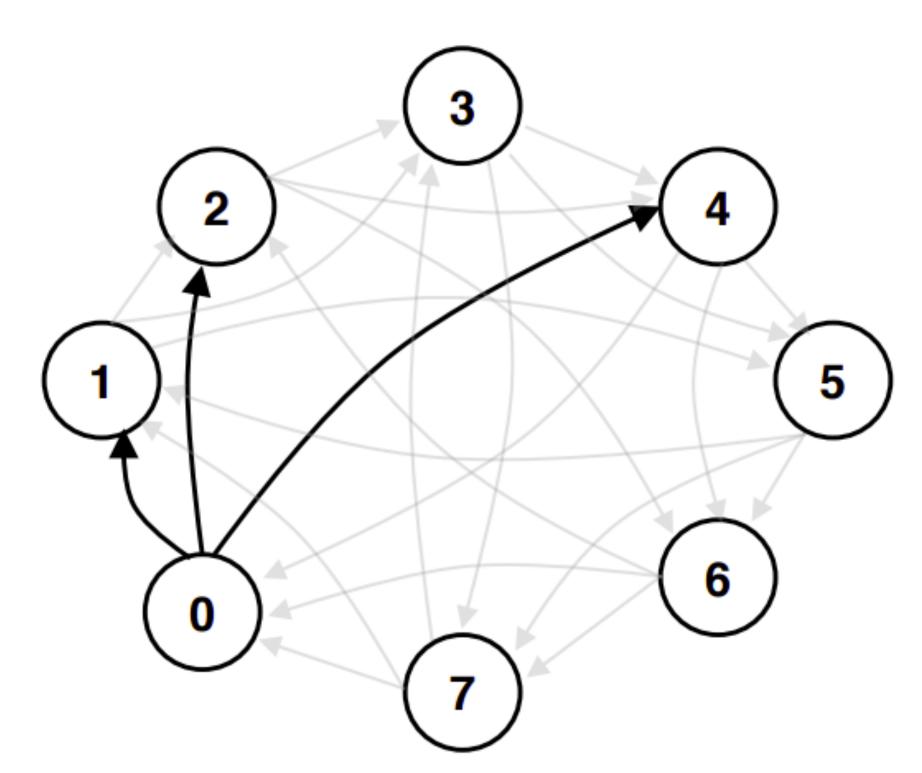
Figure 3: (a) Convergence Rate; (b) D-PSGD Speedup; (c) D-PSGD Communication Patterns.

Stochastic Gradient Push Source: https://arxiv.org/abs/1811.10792



(a) Directed Exponential Graph highlighting node 0's out-neighbours

Source: https://arxiv.org/abs/1811.10792



(a) Directed Exponential Graph highlighting node 0's out-neighbours

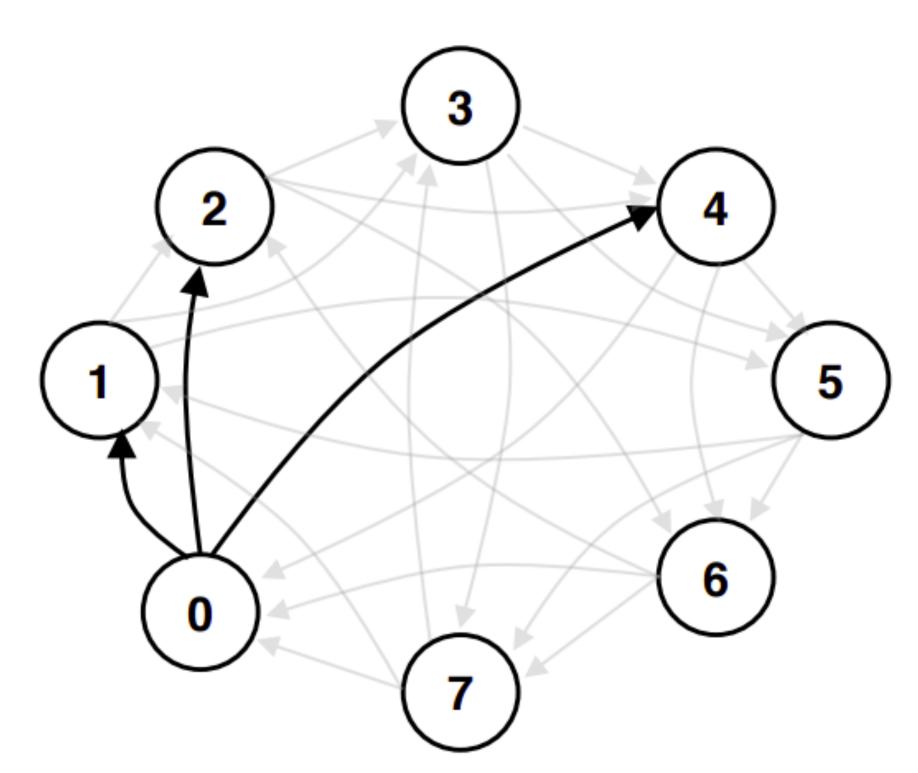
Algorithm 1 Stochastic Gradient Push (SGP)

Require: Initialize $\gamma > 0$, $\boldsymbol{x}_i^{(0)} = \boldsymbol{z}_i^{(0)} \in \mathbb{R}^d$ and $w_i^{(0)} = 1$ for all nodes $i \in \{1, 2, \dots, n\}$

- 1: **for** $k = 0, 1, 2, \dots, K$, at node i, **do**
- 2: Sample new mini-batch $\xi_i^{(k)} \sim \mathcal{D}_i$ from local distribution
- 3: Compute mini-batch gradient at $\boldsymbol{z}_i^{(k)}$: $\nabla \boldsymbol{F}_i(\boldsymbol{z}_i^{(k)}; \boldsymbol{\xi}_i^{(k)})$

<to be continued>

Source: https://arxiv.org/abs/1811.10792



(a) Directed Exponential Graph highlighting node 0's out-neighbours

Algorithm 1 Stochastic Gradient Push (SGP)

Require: Initialize $\gamma > 0$, $\boldsymbol{x}_i^{(0)} = \boldsymbol{z}_i^{(0)} \in \mathbb{R}^d$ and $w_i^{(0)} = 1$ for all nodes $i \in \{1, 2, \dots, n\}$

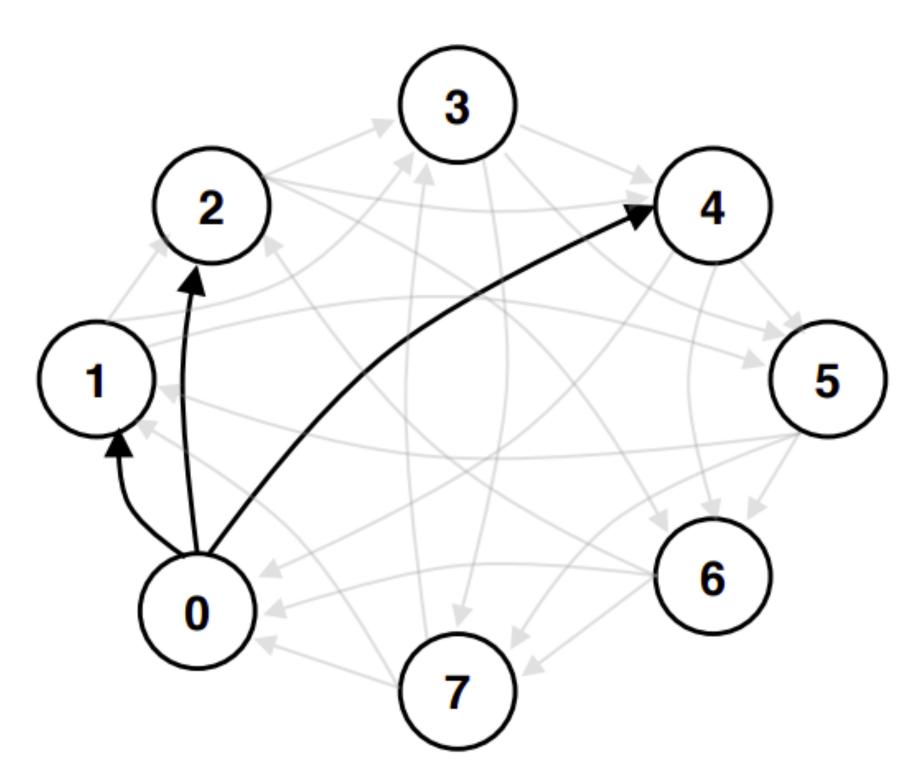
- 1: **for** $k = 0, 1, 2, \dots, K$, at node i, **do**
- 2: Sample new mini-batch $\xi_i^{(k)} \sim \mathcal{D}_i$ from local distribution
- 3: Compute mini-batch gradient at $z_i^{(k)}$: $\nabla F_i(z_i^{(k)}; \xi_i^{(k)})$

4:
$$\boldsymbol{x}_{i}^{(k+\frac{1}{2})} = \boldsymbol{x}_{i}^{(k)} - \gamma \nabla \boldsymbol{F}_{i}(\boldsymbol{z}_{i}^{(k)}; \boldsymbol{\xi}_{i}^{(k)})$$

normal GD step

<to be continued>

Source: https://arxiv.org/abs/1811.10792



(a) Directed Exponential Graph highlighting node 0's out-neighbours

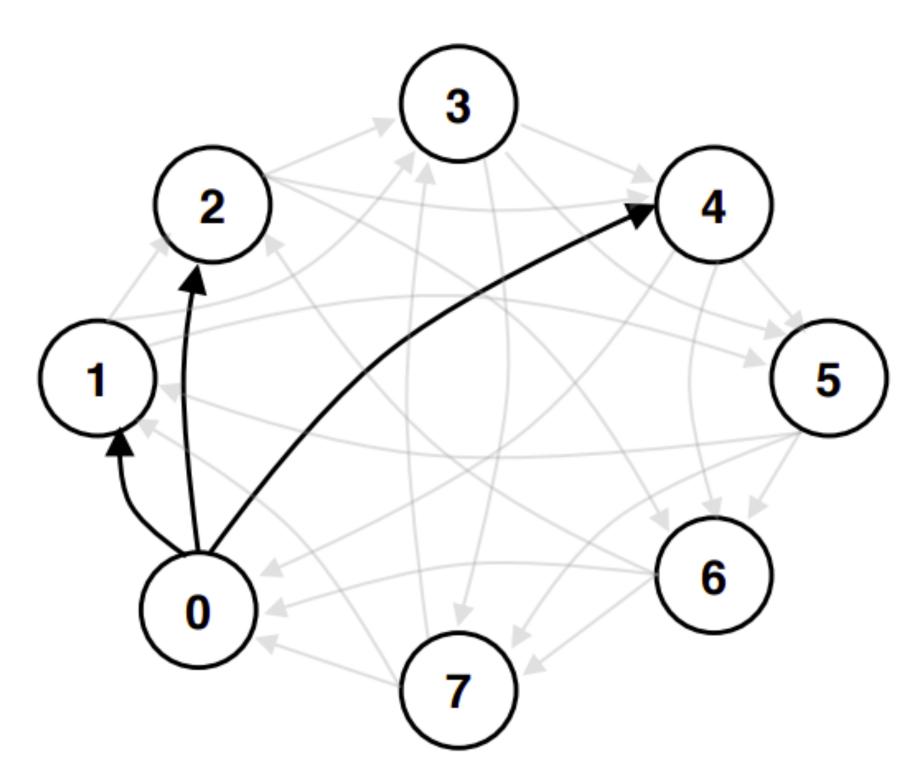
Algorithm 1 Stochastic Gradient Push (SGP)

Require: Initialize $\gamma > 0$, $\boldsymbol{x}_i^{(0)} = \boldsymbol{z}_i^{(0)} \in \mathbb{R}^d$ and $w_i^{(0)} = 1$ for all nodes $i \in \{1, 2, \dots, n\}$

- 1: **for** $k = 0, 1, 2, \dots, K$, at node i, **do**
- 2: Sample new mini-batch $\xi_i^{(k)} \sim \mathcal{D}_i$ from local distribution
- 3: Compute mini-batch gradient at $\boldsymbol{z}_i^{(k)}$: $\nabla \boldsymbol{F}_i(\boldsymbol{z}_i^{(k)}; \xi_i^{(k)})$
- 4: $\boldsymbol{x}_{i}^{(k+\frac{1}{2})} = \boldsymbol{x}_{i}^{(k)} \gamma \nabla \boldsymbol{F}_{i}(\boldsymbol{z}_{i}^{(k)}; \boldsymbol{\xi}_{i}^{(k)})$
- 5: Send $\left(p_{j,i}^{(k)}\boldsymbol{x}_i^{(k+\frac{1}{2})}, p_{j,i}^{(k)}w_i^{(k)}\right)$ to out-neighbors; receive $\left(p_{i,j}^{(k)}\boldsymbol{x}_j^{(k+\frac{1}{2})}, p_{i,j}^{(k)}w_j^{(k)}\right)$ from in-neighbors

<to be continued>

Source: https://arxiv.org/abs/1811.10792



(a) Directed Exponential Graph highlighting node 0's out-neighbours

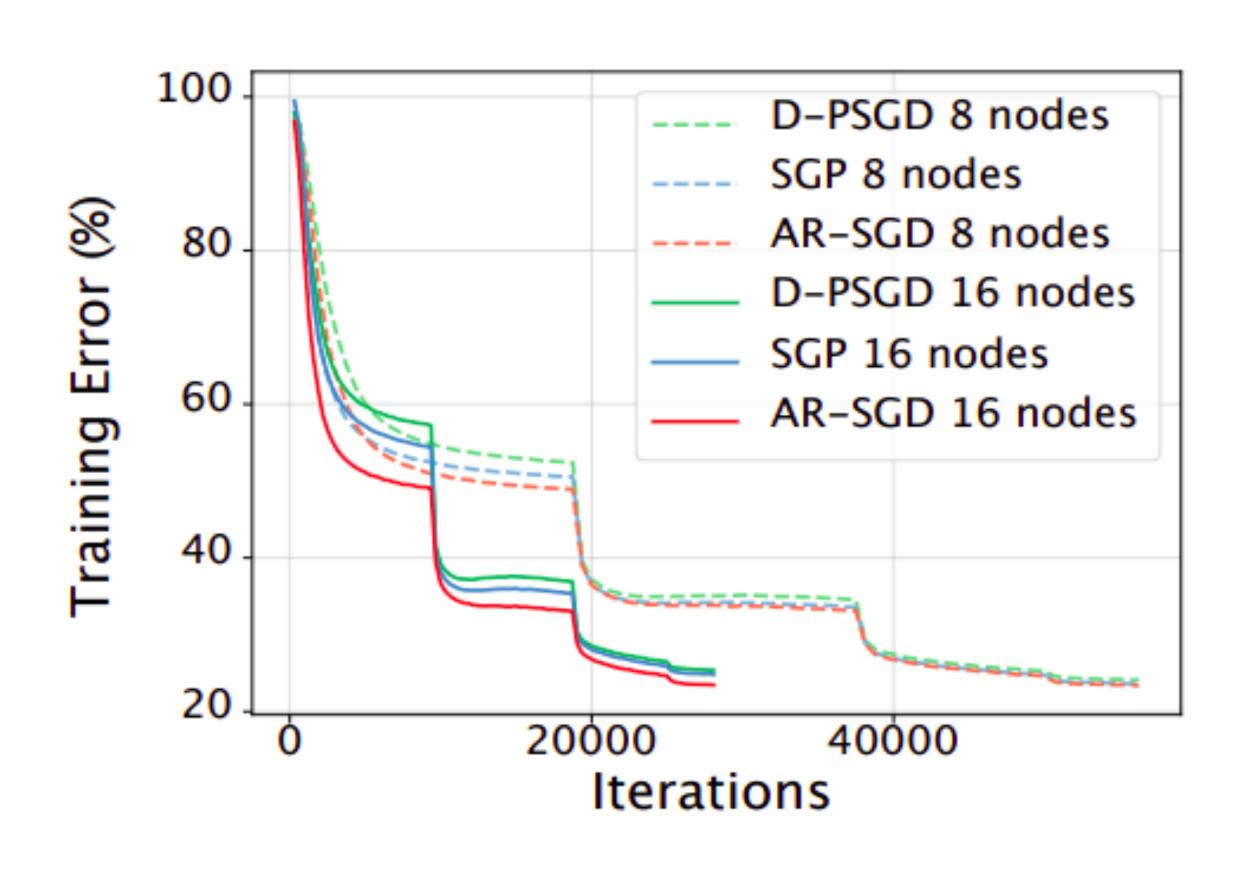
Algorithm 1 Stochastic Gradient Push (SGP)

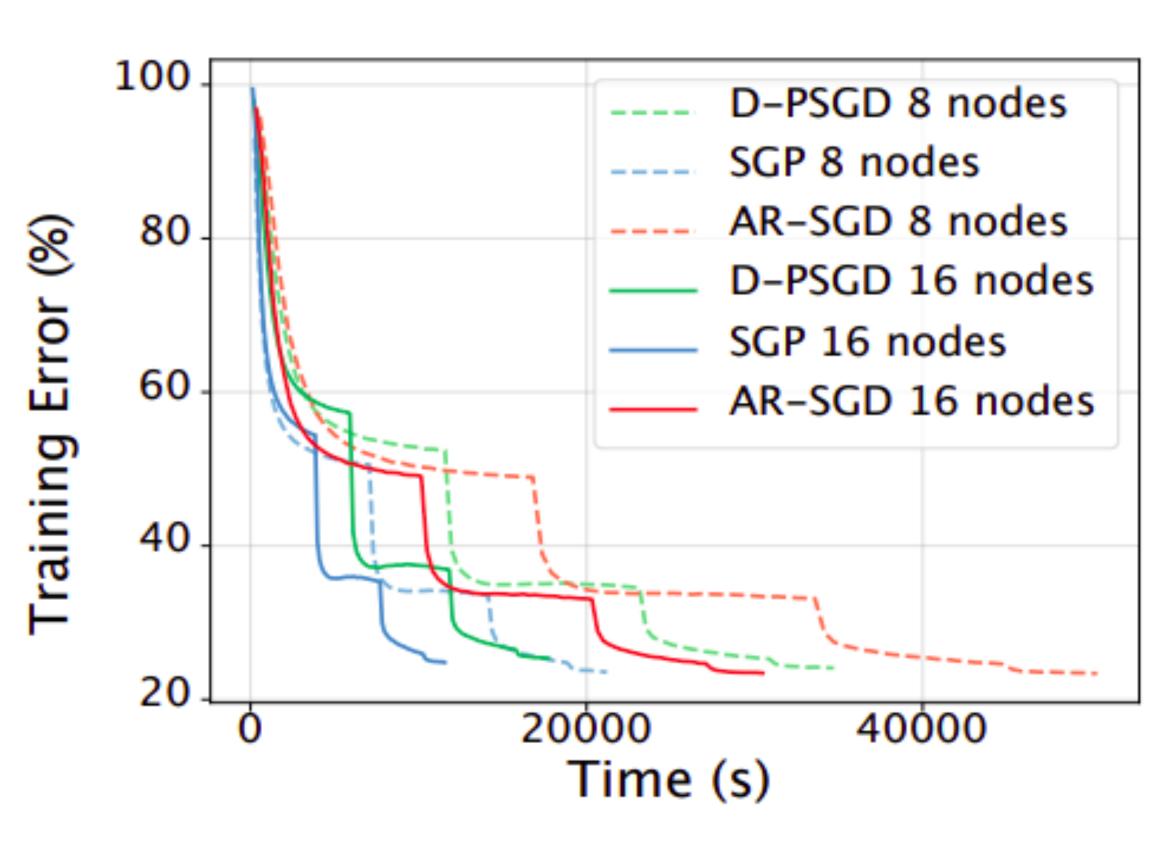
Require: Initialize $\gamma > 0$, $\boldsymbol{x}_i^{(0)} = \boldsymbol{z}_i^{(0)} \in \mathbb{R}^d$ and $w_i^{(0)} = 1$ for all nodes $i \in \{1, 2, \dots, n\}$

- 1: **for** $k = 0, 1, 2, \dots, K$, at node i, **do**
- 2: Sample new mini-batch $\xi_i^{(k)} \sim \mathcal{D}_i$ from local distribution
- 3: Compute mini-batch gradient at $\boldsymbol{z}_i^{(k)}$: $\nabla \boldsymbol{F}_i(\boldsymbol{z}_i^{(k)}; \xi_i^{(k)})$
- 4: $\boldsymbol{x}_{i}^{(k+\frac{1}{2})} = \boldsymbol{x}_{i}^{(k)} \gamma \nabla \boldsymbol{F}_{i}(\boldsymbol{z}_{i}^{(k)}; \boldsymbol{\xi}_{i}^{(k)})$
- 5: Send $(p_{j,i}^{(k)} \boldsymbol{x}_i^{(k+\frac{1}{2})}, p_{j,i}^{(k)} w_i^{(k)})$ to out-neighbors; receive $\left(p_{i,j}^{(k)} \boldsymbol{x}_j^{(k+\frac{1}{2})}, p_{i,j}^{(k)} w_j^{(k)}\right)$ from in-neighbors
- 6: $x_i^{(k+1)} = \sum_j p_{i,j}^{(k)} x_j^{(k+\frac{1}{2})}$ weighted 7: $w_i^{(k+1)} = \sum_j p_{i,j}^{(k)} w_j^{(k)}$ average
- 8: $\boldsymbol{z}_i^{(k+1)} = \boldsymbol{x}_i^{(k+1)} / w_i^{(k+1)}$
- 9: **end for**

Source: https://arxiv.org/abs/1811.10792

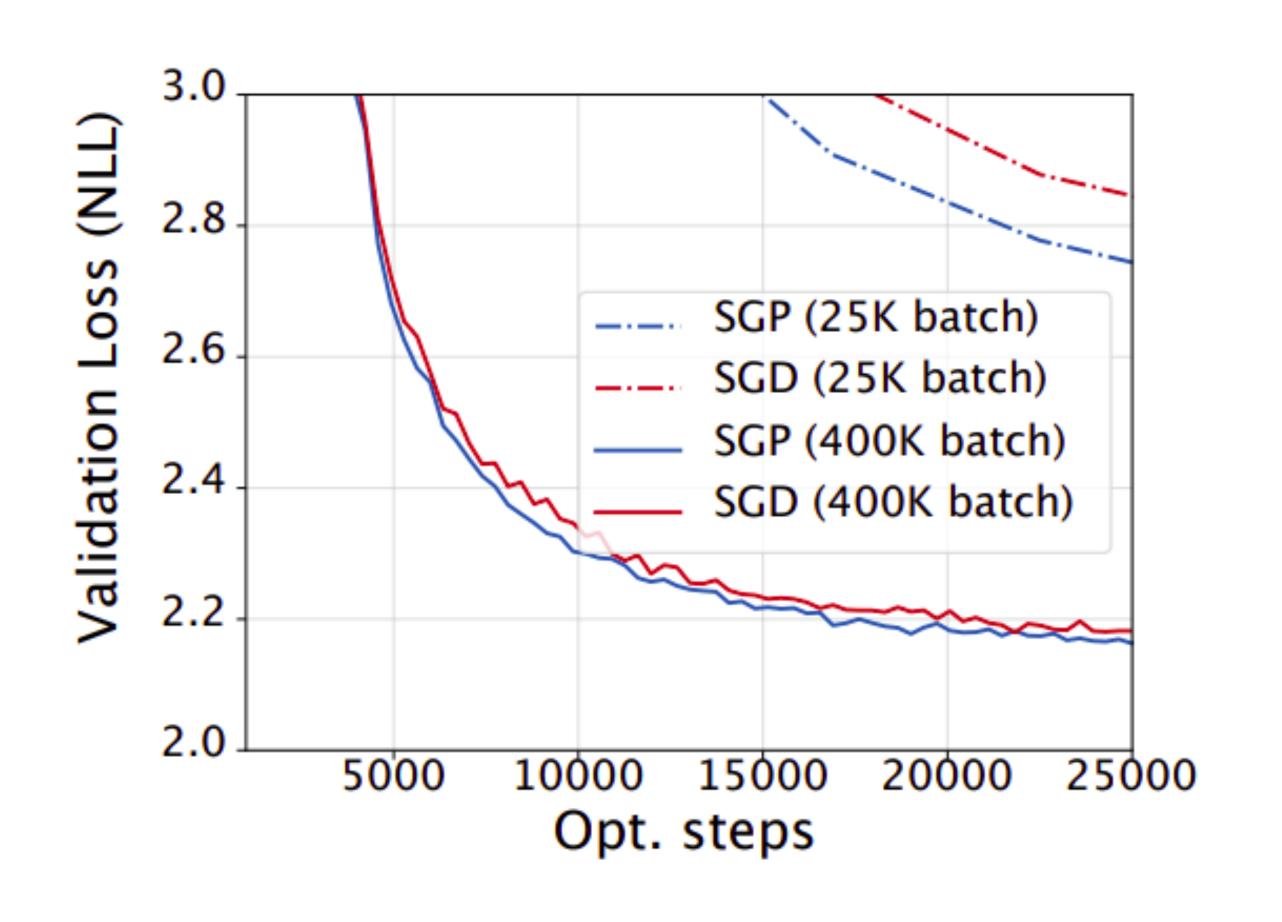
SGP vs ImageNet (ResNet50 + SGD w/ momentum)

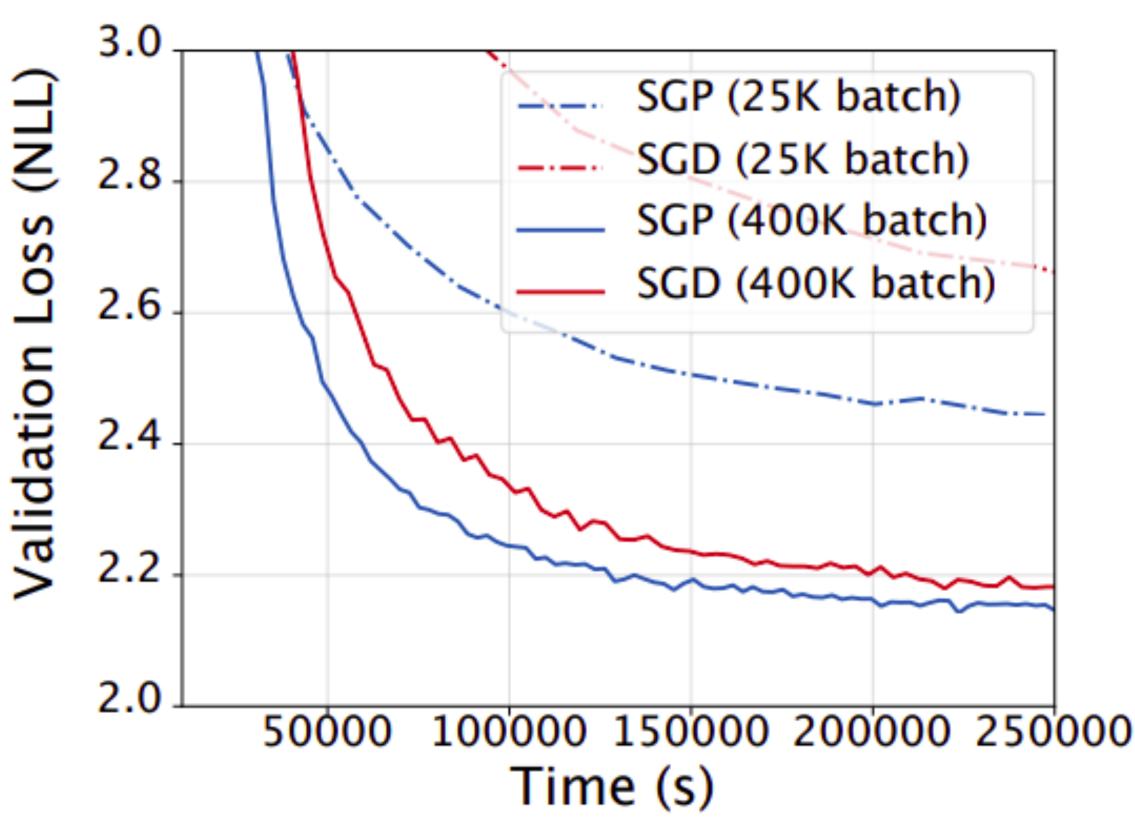




Source: https://arxiv.org/abs/1811.10792

SGP vs WMT English-German (Transformer, Adam)





Communication Efficiency

Your thoughts?

Quantization

https://arxiv.org/abs/1511.04561

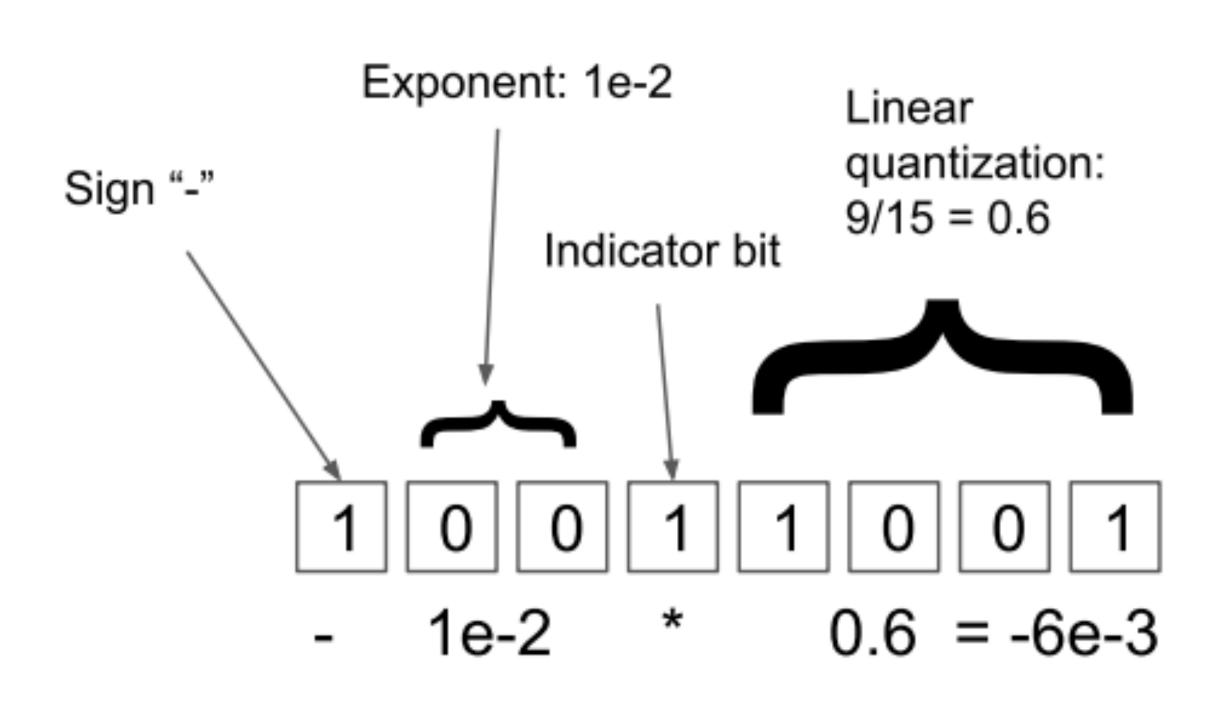
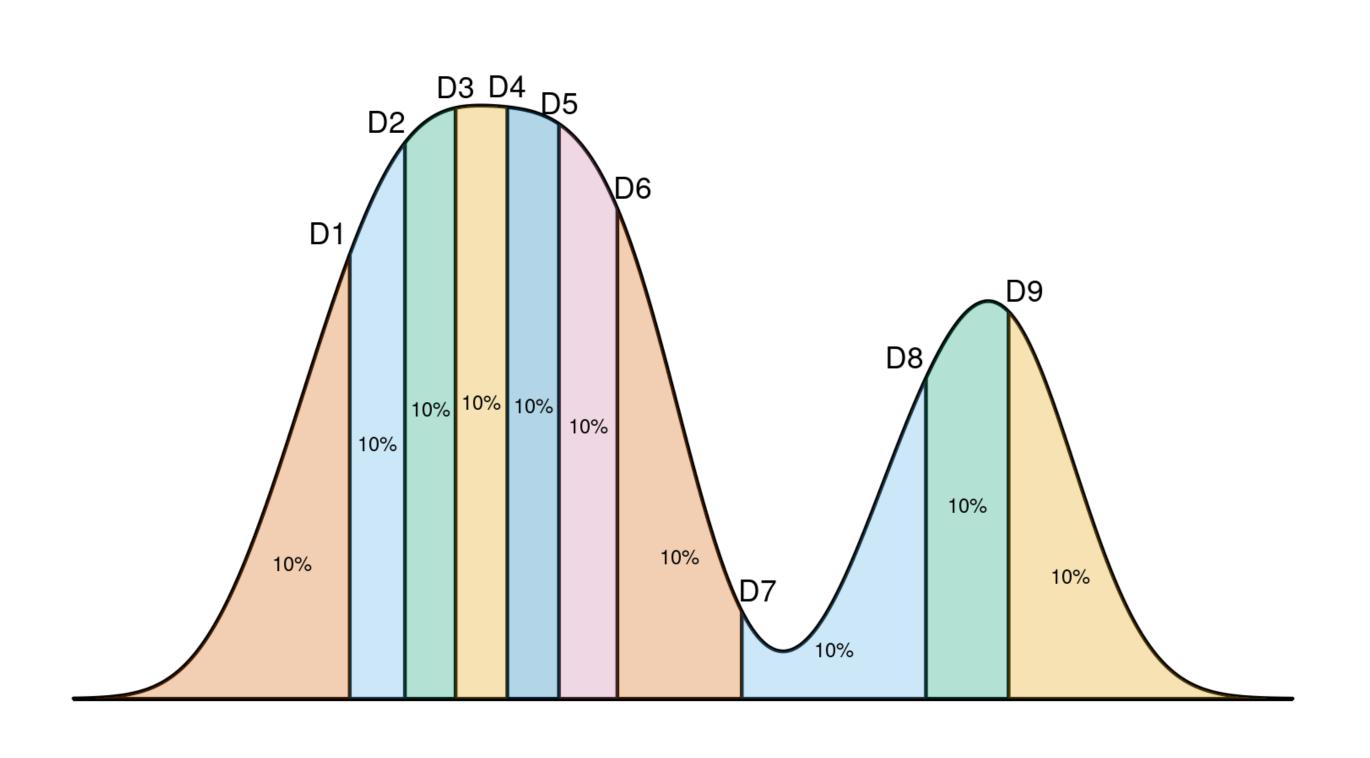


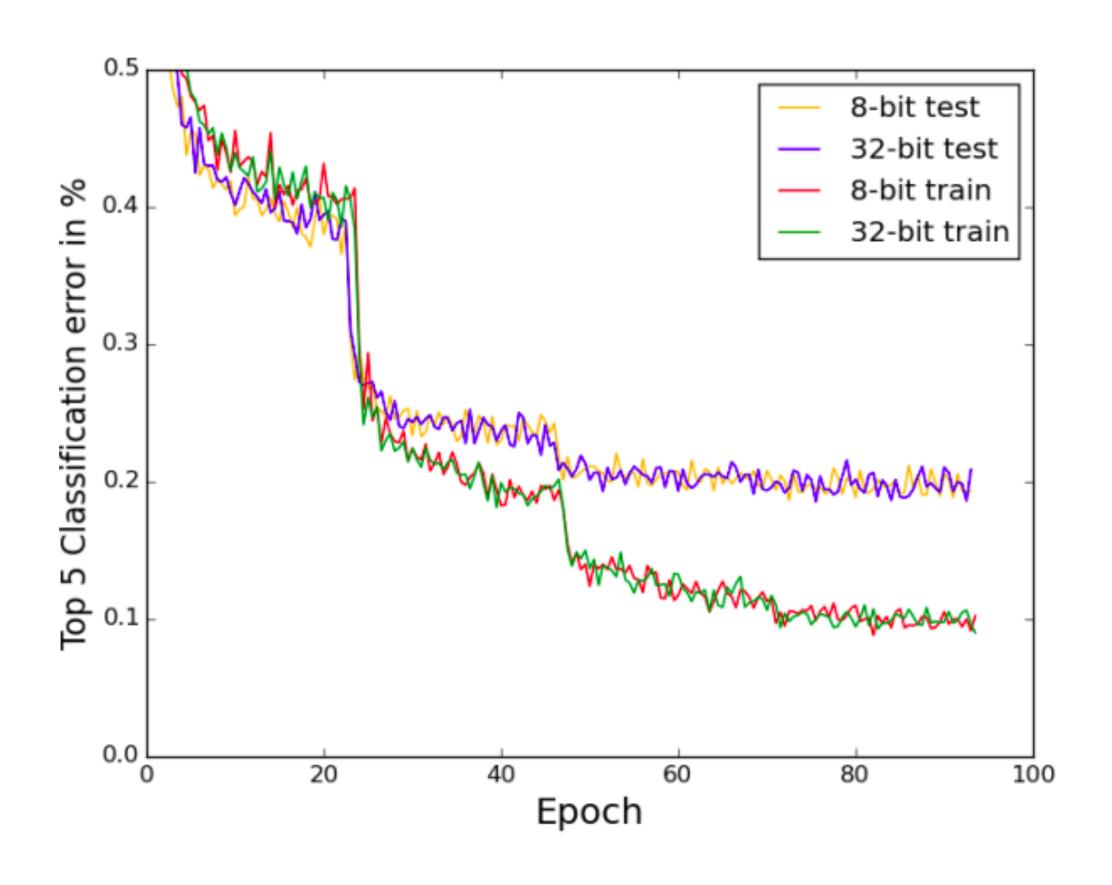


Image source: https://arxiv.org/pdf/2110.02861.pdf

Quantization

https://arxiv.org/abs/1511.04561





Biased Compression

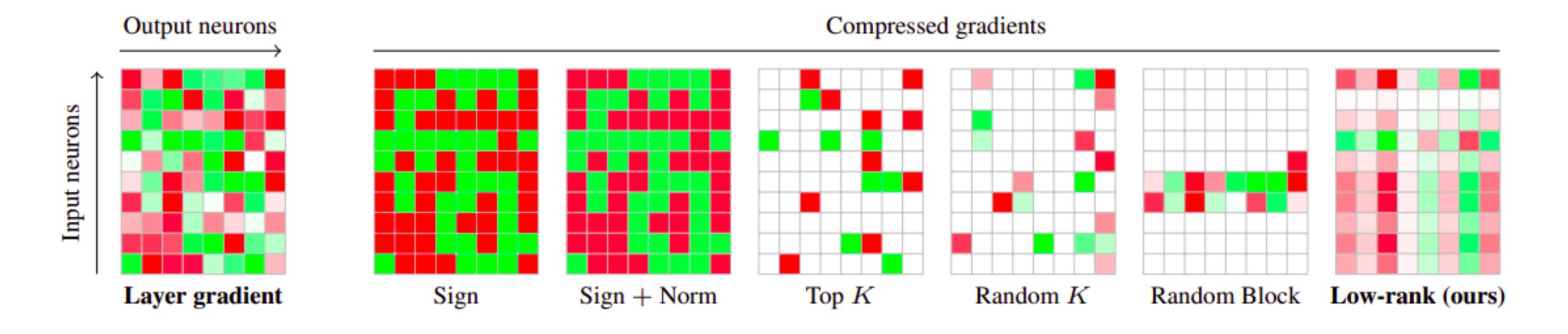
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/IS140694.pdf

Algorithm 2 Distributed Error-feedback SGD with Momentum

```
1: hyperparameters: learning rate \gamma, momentum parameter \lambda
 2: initialize model parameters \mathbf{x} \in \mathbb{R}^d, momentum \mathbf{m} \leftarrow \mathbf{0} \in \mathbb{R}^d, replicated across workers
 3: at each worker w = 1, \dots, W do
           initialize memory \mathbf{e}_w \leftarrow \mathbf{0} \in \mathbb{R}^d
           for each iterate t = 0, \dots do
 5:
                 Compute a stochastic gradient \mathbf{g}_w \in \mathbb{R}^d.
 6:
                                                                                          ▷ Incorporate error-feedback into update
                 \Delta_w \leftarrow \mathbf{g}_w + \mathbf{e}_w
                 \mathcal{C}(\Delta_w) \leftarrow \text{COMPRESS}(\Delta_w)
                 \mathbf{e}_w \leftarrow \Delta_w - \text{DECOMPRESS}(\mathcal{C}(\Delta_w))
                                                                                                                    ▶ Memorize local errors
                 \mathcal{C}(\Delta) \leftarrow \text{AGGREGATE}(\mathcal{C}(\Delta_1), \dots, \mathcal{C}(\Delta_W))
                                                                                                                        10:
                 \Delta' \leftarrow \text{DECOMPRESS}(\mathcal{C}(\Delta))
                                                                                                           \triangleright Reconstruct an update \in \mathbb{R}^d
11:
                      \leftarrow \lambda \mathbf{m} + \Delta'
12:
                 \mathbf{m}
                             \leftarrow \mathbf{x} - \gamma \left( \Delta' + \mathbf{m} \right)
13:
                 \mathbf{X}
           end for
14:
15: end at
```

Biased Compression

https://arxiv.org/abs/1905.13727



Biased Compression

https://arxiv.org/abs/1905.13727

Algorithm 1 Rank-r POWERSGD compression

- 1: The update vector Δ_w is treated as a list of tensors corresponding to individual model parameters. Vector-shaped parameters (biases) are aggregated uncompressed. Other parameters are reshaped into matrices. The functions below operate on such matrices independently. For each matrix $M \in \mathbb{R}^{n \times m}$, a corresponding $Q \in \mathbb{R}^{m \times r}$ is initialized from an i.i.d. standard normal distribution.
- 2: function COMPRESS+AGGREGATE(update matrix $M \in \mathbb{R}^{n \times m}$, previous $Q \in \mathbb{R}^{m \times r}$)
- 3: $P \leftarrow MQ$
- 4: $P \leftarrow \text{ALL REDUCE MEAN}(P)$
- 5: $\hat{P} \leftarrow \text{ORTHOGONALIZE}(P)$
- 6: $Q \leftarrow M^{\top} \hat{P}$
- 7: $Q \leftarrow \text{ALL REDUCE MEAN}(Q)$
- 8: **return** the compressed representation (\hat{P}, Q) .
- 9: end function
- 10: function DECOMPRESS $(\hat{P} \in \mathbb{R}^{n \times r}, Q \in \mathbb{R}^{m \times r})$
- 11: return $\hat{P}Q^{\top}$
- 12: end function

$$\triangleright$$
 Now, $P = \frac{1}{W}(M_1 + \ldots + M_W)Q$

▶ Orthonormal columns

$$\triangleright$$
 Now, $Q = \frac{1}{W}(M_1 + ... + M_W)^{\top} \hat{P}$

Max Ryabinin*

Yandex, Russia HSE University, Russia Eduard Gorbunov*

MIPT, Russia HSE University, Russia Yandex, Russia Vsevolod Plokhotnyuk

Yandex, Russia HSE University, Russia

Gennady Pekhimenko

University of Toronto, Canada Vector Institute, Canada

Max Ryabinin* Yandex, Russia

HSE University, Russia

Eduard Gorbunov*
MIPT, Russia
HSE University, Russia
Yandex, Russia

Vsevolod Plokhotnyuk Yandex, Russia HSE University, Russia

Gennady Pekhimenko
University of Toronto, Canada
Vector Institute, Canada

We propose a new algorithm for decentralized AllReduce-like averaging

Max Ryabinin*
Yandex, Russia
HSE University, Russia

Eduard Gorbunov*
MIPT, Russia
HSE University, Russia
Yandex, Russia

Vsevolod Plokhotnyuk Yandex, Russia HSE University, Russia

Gennady Pekhimenko
University of Toronto, Canada
Vector Institute, Canada

- > We propose a new algorithm for decentralized AllReduce-like averaging
- Main idea: average in smaller non-overlapping groups

Max Ryabinin*
Yandex, Russia
HSE University, Russia

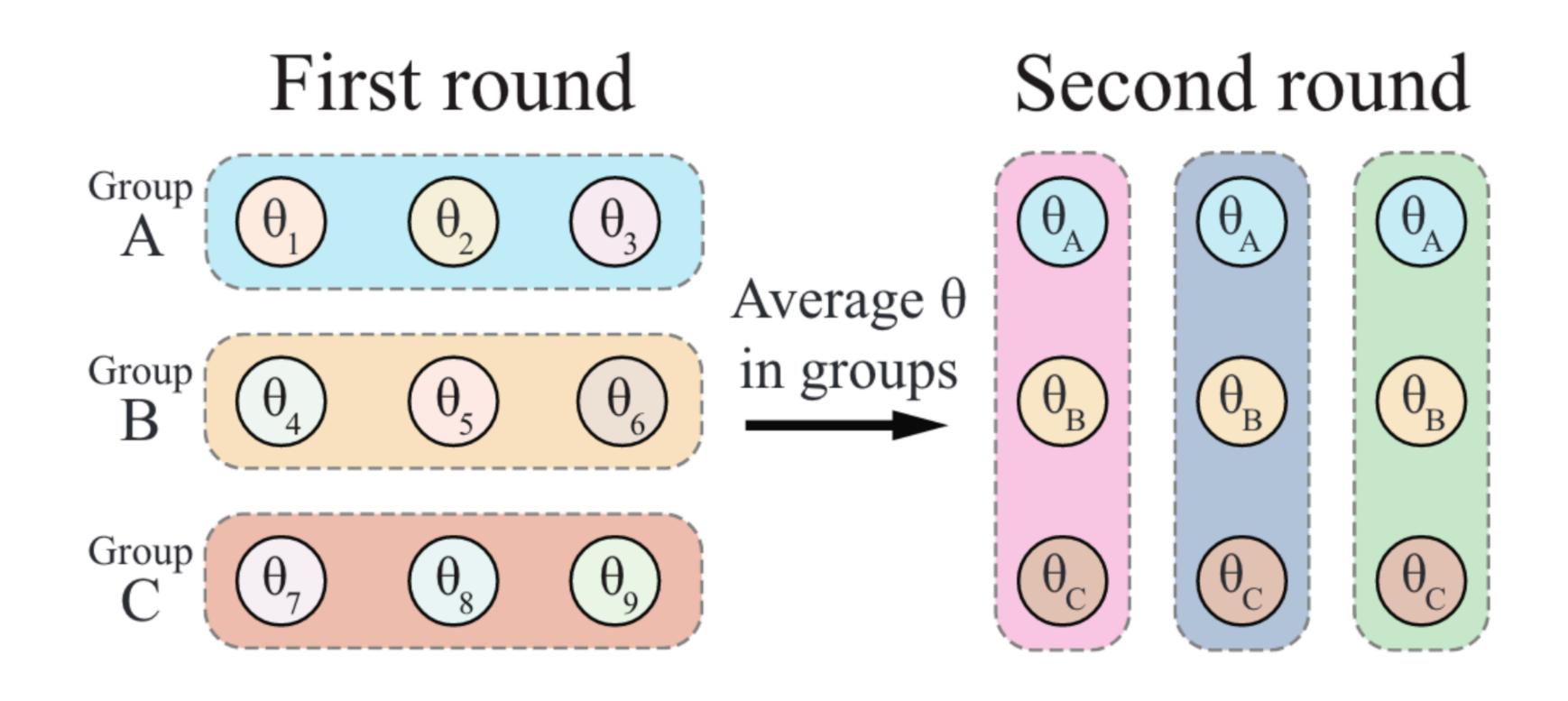
Eduard Gorbunov*
MIPT, Russia
HSE University, Russia
Yandex, Russia

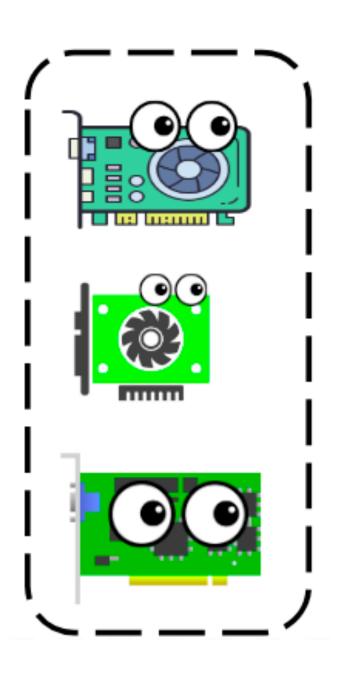
Vsevolod Plokhotnyuk Yandex, Russia HSE University, Russia

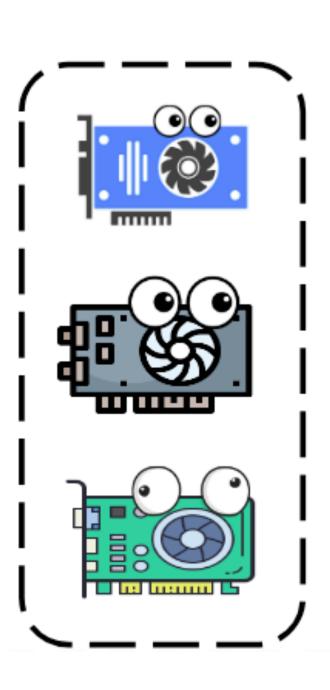
Gennady Pekhimenko
University of Toronto, Canada
Vector Institute, Canada

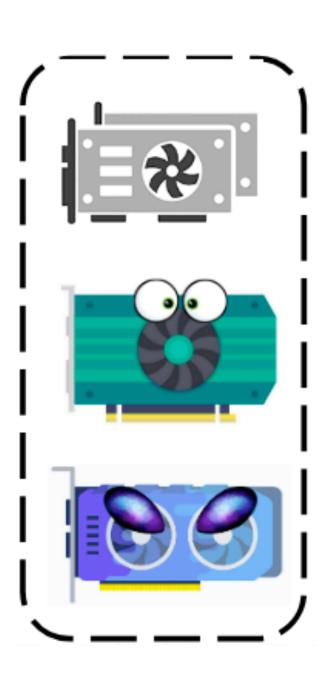
- We propose a new algorithm for decentralized AllReduce-like averaging
- Main idea: average in smaller non-overlapping groups
- > Communication-efficient and fault-tolerant method

Moshpit Averaging: core idea

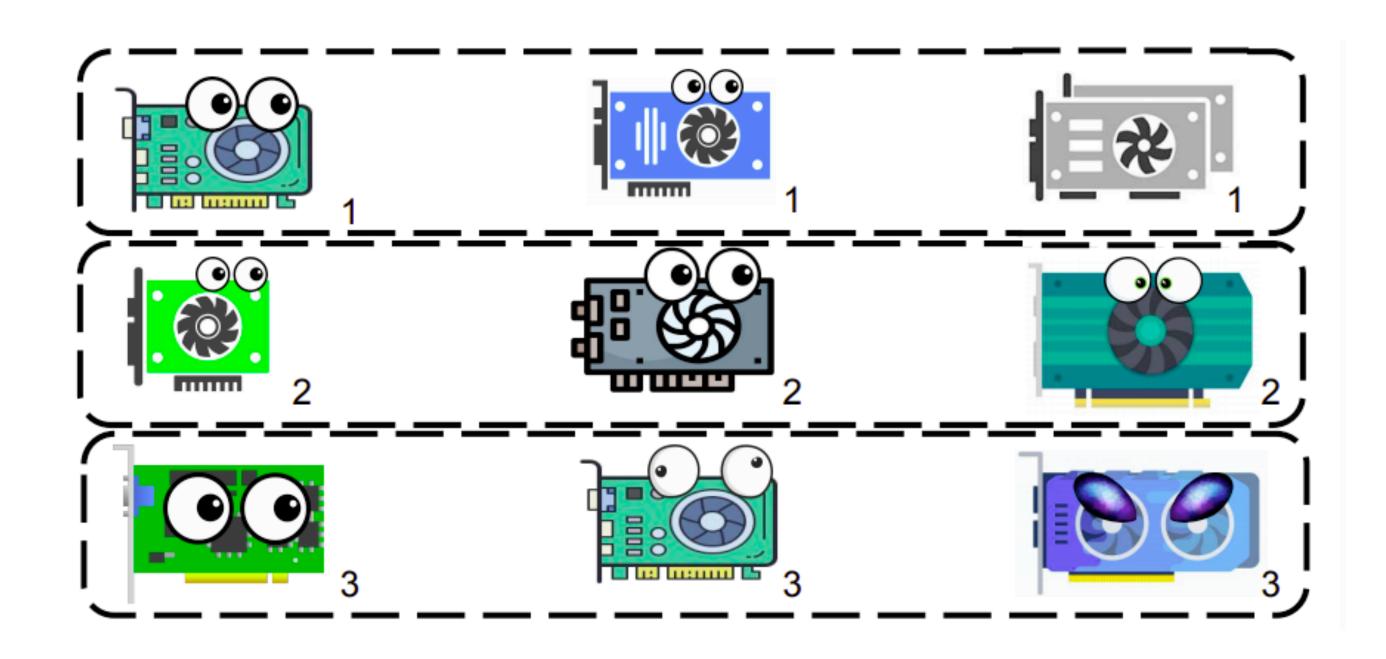


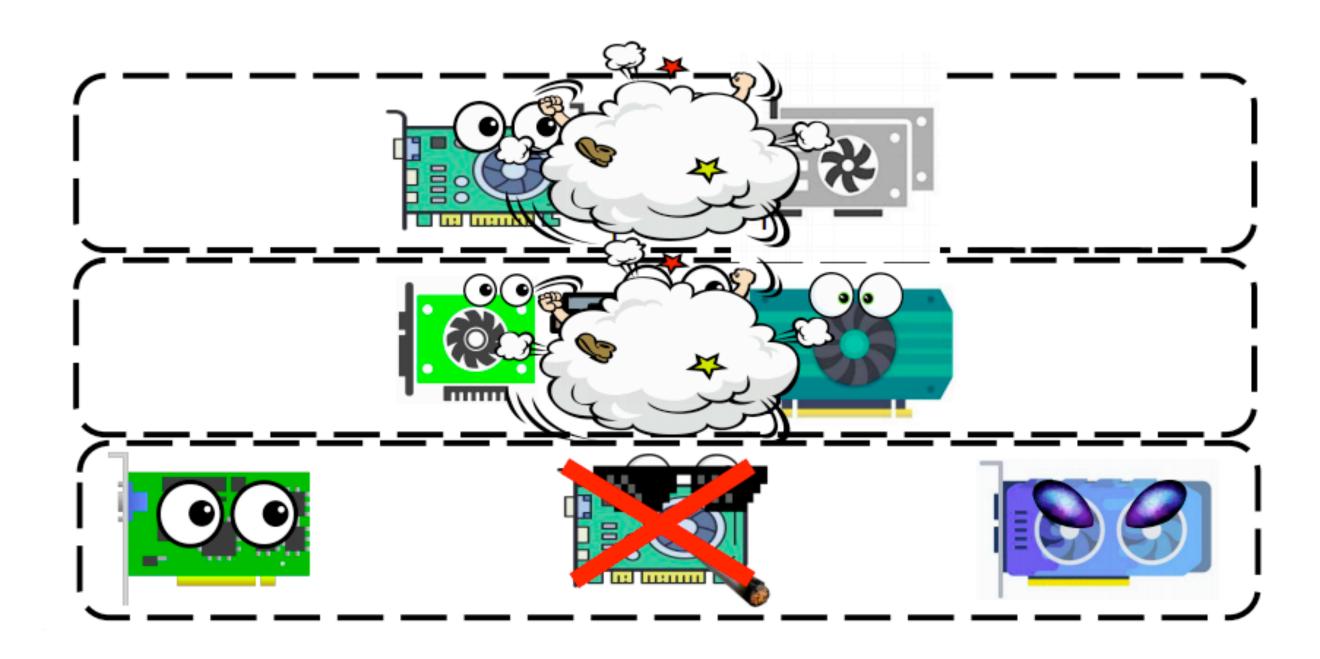












Experiments

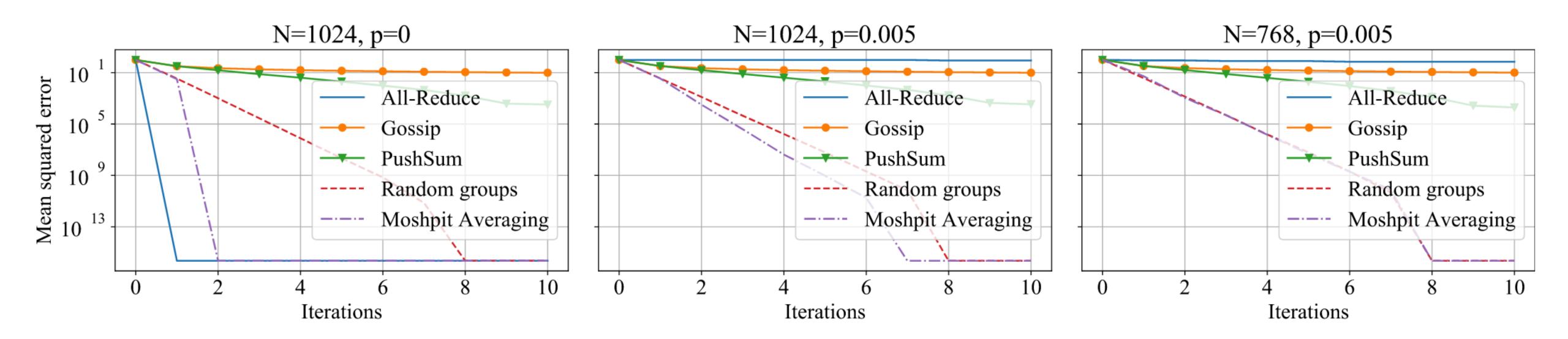
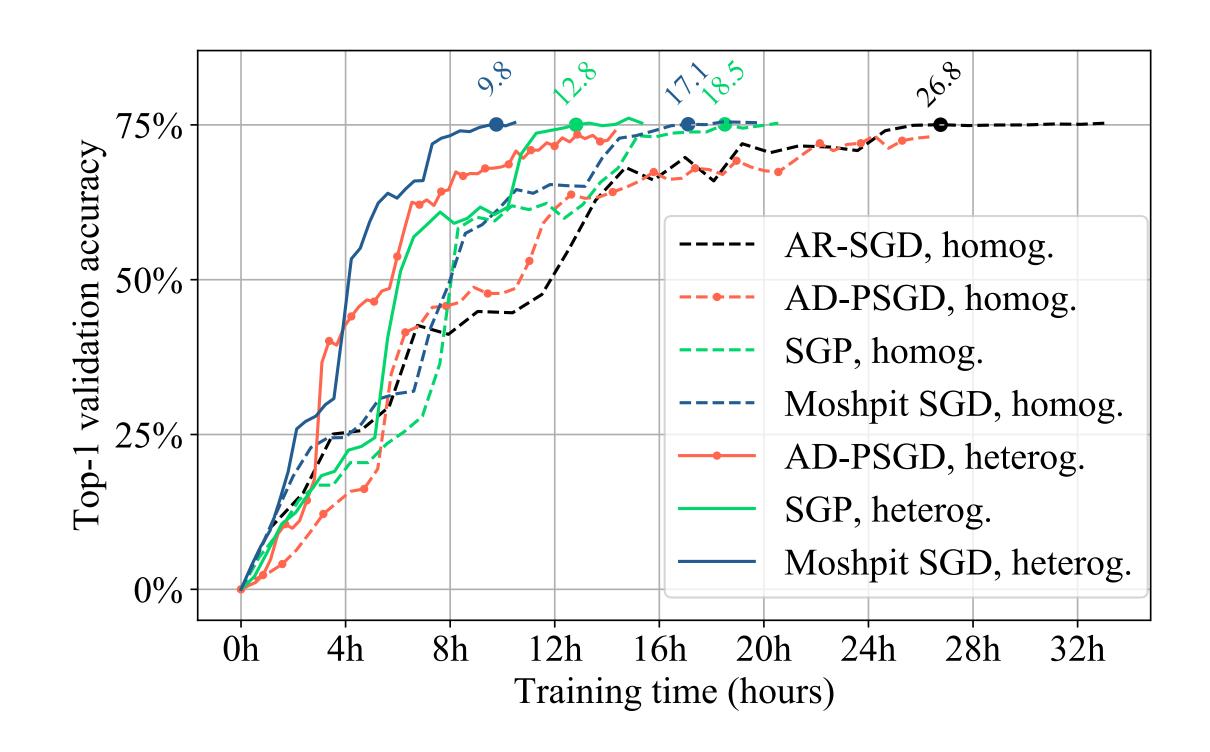
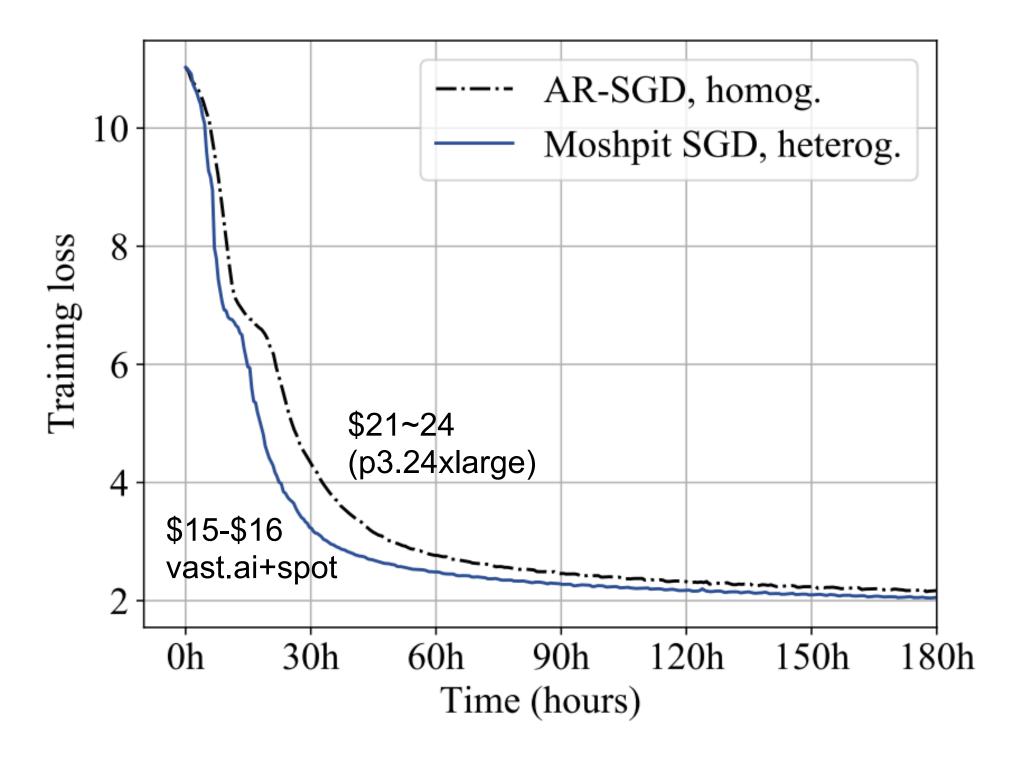


Figure 3: Convergence of averaging algorithms in different configurations.

Experiments





Analysis TL;DR

> The averaging converges exponentially quickly

Theorem 3.2. Consider a modification of Moshpit All-Reduce that works as follows: at each iteration $k \geq 1$, 1) peers are randomly split in r disjoint groups of sizes M_1^k, \ldots, M_r^k in such a way that $\sum_{i=1}^r M_i^k = N$ and $M_i^k \geq 1$ for all $i = 1, \ldots, r$ and 2) peers from each group compute their group average via All-Reduce. Let $\theta_1, \ldots, \theta_N$ be the input vectors of this procedure and $\theta_1^T, \ldots, \theta_N^T$ be the outputs after T iterations. Also, let $\overline{\theta} = \frac{1}{N} \sum_{i=1}^N \theta_i$ Then,

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\|\theta_{i}^{T} - \overline{\theta}\|^{2}\right] = \left(\frac{r-1}{N} + \frac{r}{N^{2}}\right)^{T}\frac{1}{N}\sum_{i=1}^{N}\|\theta_{i} - \overline{\theta}\|^{2}.$$
 (5)

Analysis TL;DR

> The averaging converges exponentially quickly

Theorem 3.2. Consider a modification of Moshpit All-Reduce that works as follows: at each iteration $k \geq 1$, 1) peers are randomly split in r disjoint groups of sizes M_1^k, \ldots, M_r^k in such a way that $\sum_{i=1}^r M_i^k = N$ and $M_i^k \geq 1$ for all $i = 1, \ldots, r$ and 2) peers from each group compute their group average via All-Reduce. Let $\theta_1, \ldots, \theta_N$ be the input vectors of this procedure and $\theta_1^T, \ldots, \theta_N^T$ be the outputs after T iterations. Also, let $\overline{\theta} = \frac{1}{N} \sum_{i=1}^N \theta_i$ Then,

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\|\theta_{i}^{T} - \overline{\theta}\|^{2}\right] = \left(\frac{r-1}{N} + \frac{r}{N^{2}}\right)^{T}\frac{1}{N}\sum_{i=1}^{N}\|\theta_{i} - \overline{\theta}\|^{2}.$$
 (5)

For Moshpit SGD — equivalent results to Local SGD

Theorem 3.4 (Non-convex case). Let $f_1 = \ldots = f_N = f$, function f be L-smooth and bounded from below by f_* , and Assumptions 3.1 and 3.2 hold with $\Delta_{pv}^k = \delta_{pv,1} \gamma \mathbb{E}[\|\nabla f(\theta^k)\|^2] + L\gamma^2 \delta_{pv,2}^2$, $\delta_{pv,1} \in [0,1/2)$, $\delta_{pv,2} \geq 0$. Then there exists such choice of γ that $\mathbb{E}[\|\nabla f(\theta_{rand}^K)\|^2] \leq \varepsilon^2$ after K iterations of Moshpit SGD, where K equals

$$\mathcal{O}\left(\frac{L\Delta_0}{(1-2\delta_{pv,1})^2\varepsilon^2}\left[1+\tau\sqrt{1-2\delta_{pv,1}}+\frac{\delta_{pv,2}^2+\sigma^2/N_{\min}}{\varepsilon^2}+\frac{\sqrt{(1-2\delta_{pv,1})(\delta_{aq}^2+(\tau-1)\sigma^2)}}{\varepsilon}\right]\right),$$

 $\Delta_0 = f(\theta^0) - f(\theta^*)$ and θ_{rand}^K is chosen uniformly from $\{\theta^0, \theta^1, \dots, \theta^{K-1}\}$ defined in As. 3.2.

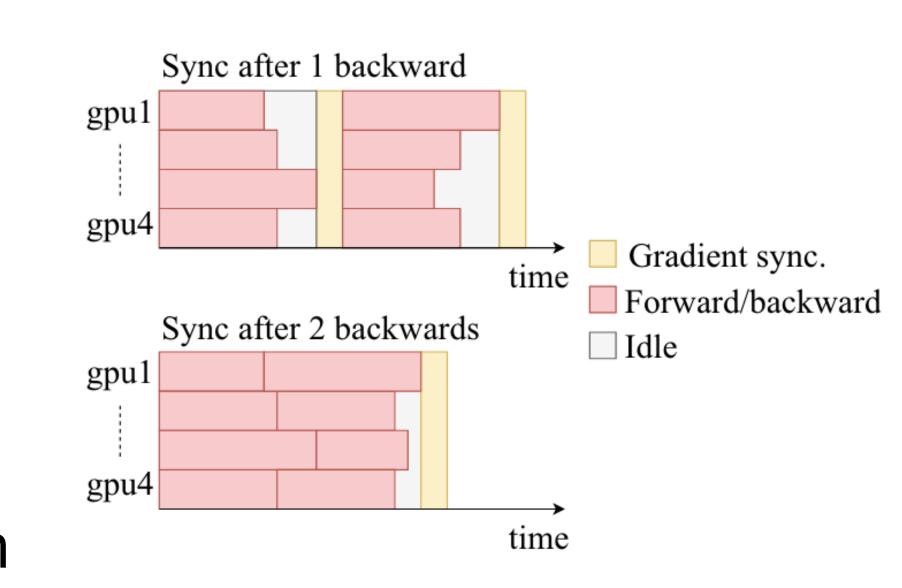
Again, if $\delta_{pv,1} \leq 1/3$, $N_{\min} = \Omega(N)$, $\delta_{pv,2}^2 = \mathcal{O}(\sigma^2/N_{\min})$, and $\delta_{aq}^2 = \mathcal{O}((\tau - 1)\sigma)$, then the above theorem recovers the state-of-the-art results in the non-convex case for Local-SGD [64, 63].

</Data-parallel>

- + easy to implement
- + can scale to 100s of GPUs
 - + can be fault-tolerant
 - model must fit in 1 GPU
- large batches aren't always good for generalization

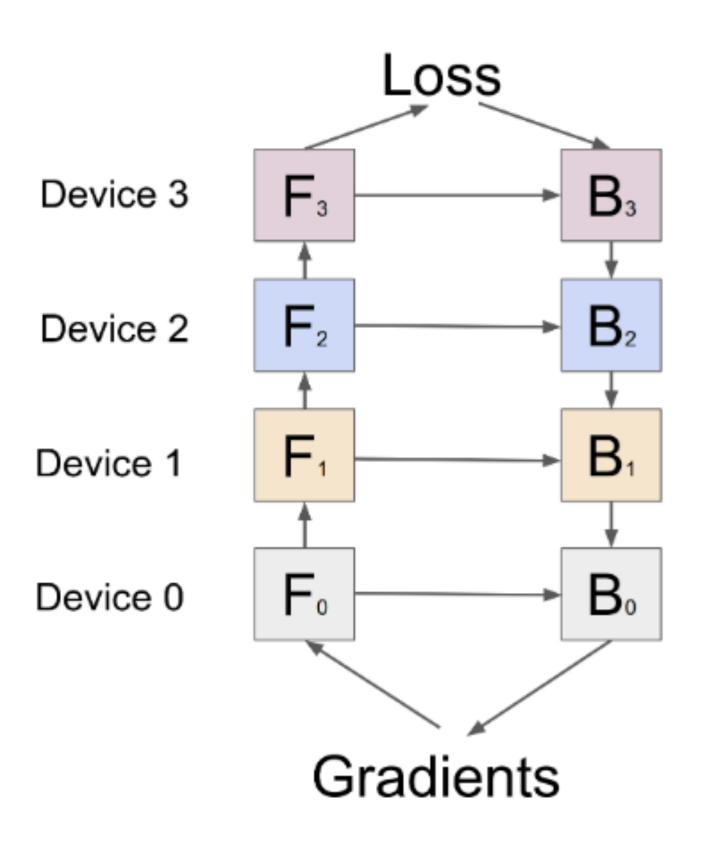
Practical considerations:

- Gradient accumulation helps balance the load (see <u>arxiv.org/abs/1806.00187</u>)
- Communication can be overlapped with computation



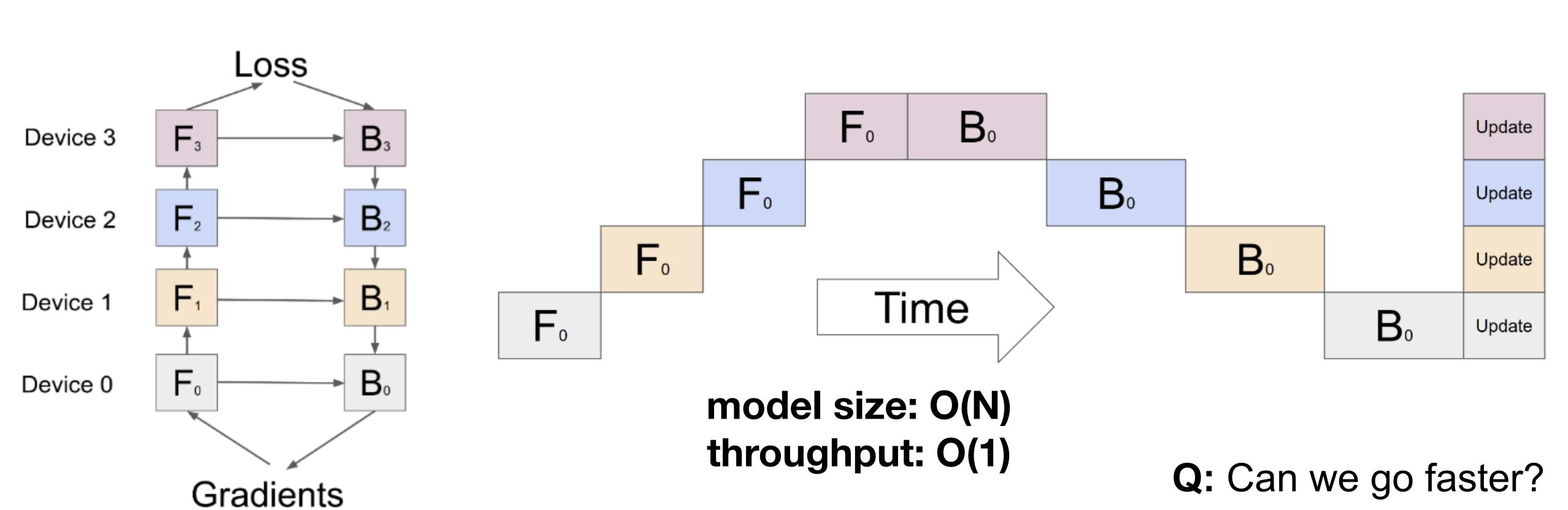
Model-parallel training

Q: What if a model is larger than GPU?



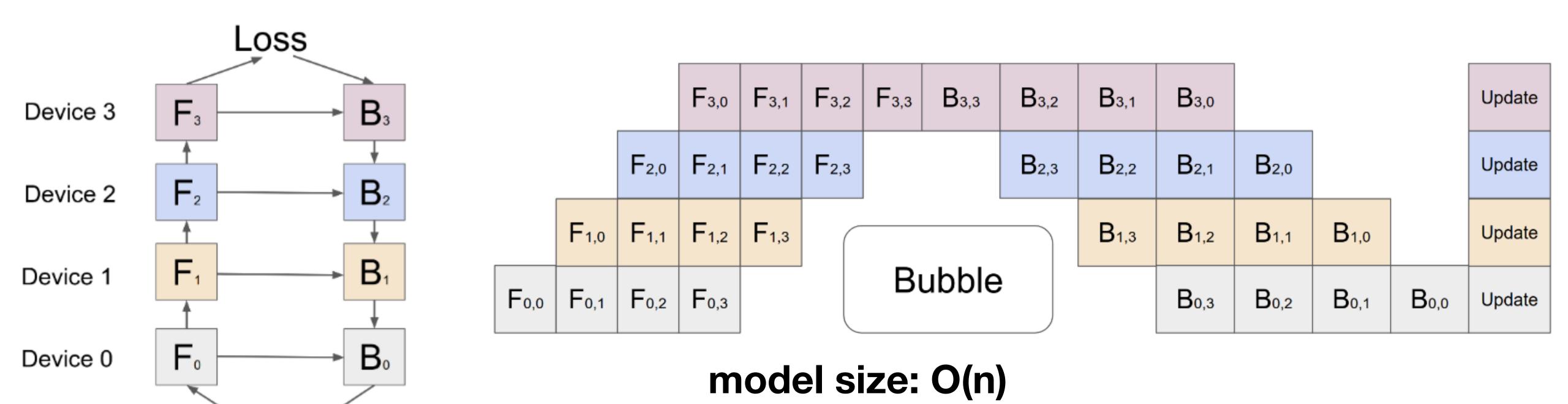
Model-parallel training

Q: What if a model is larger than GPU?



Pipelining

Idea: split data into micro-batches and form a pipeline (right)



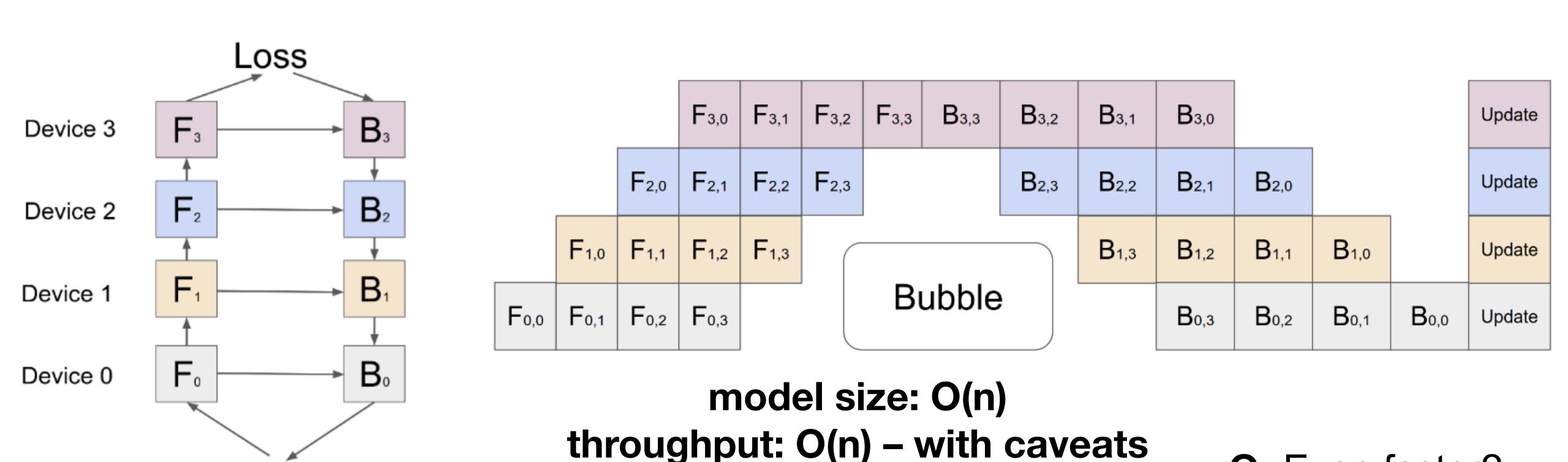
GPipe: <u>arxiv.org/abs/1811.06965</u> – good starting point, *not* the first paper

Gradients

throughput: O(n) – with caveats

Pipelining

Idea: split data into micro-batches and form a pipeline (right)



GPipe: arxiv.org/abs/1811.06965 - good starting point, not the first paper

Gradients

Q: Even faster?

Pipeline-parallel training

PipeDream: arxiv.org/abs/1806.03377

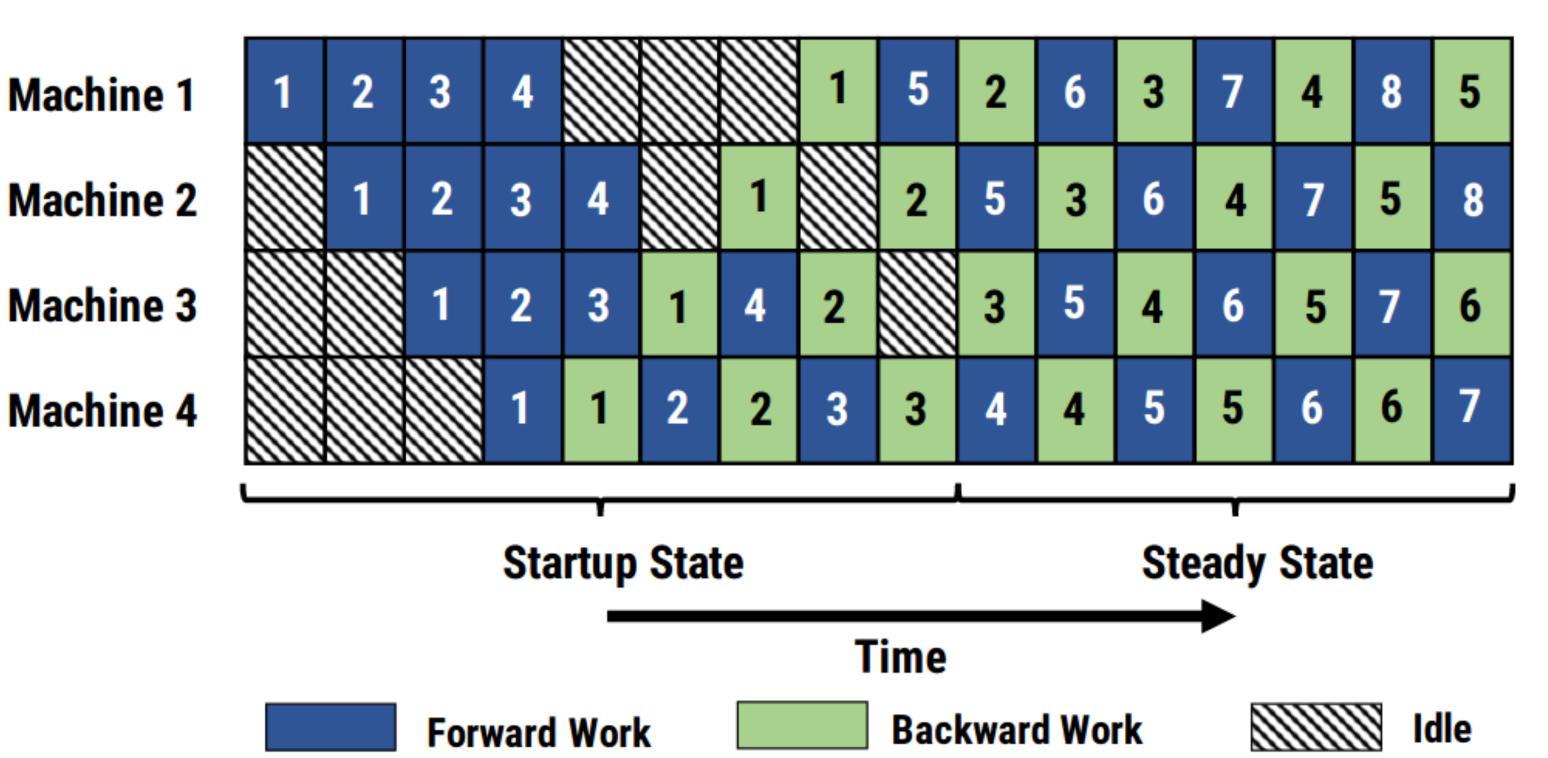
Idea: apply gradients with every microbatch for maximum throughput

Also neat:

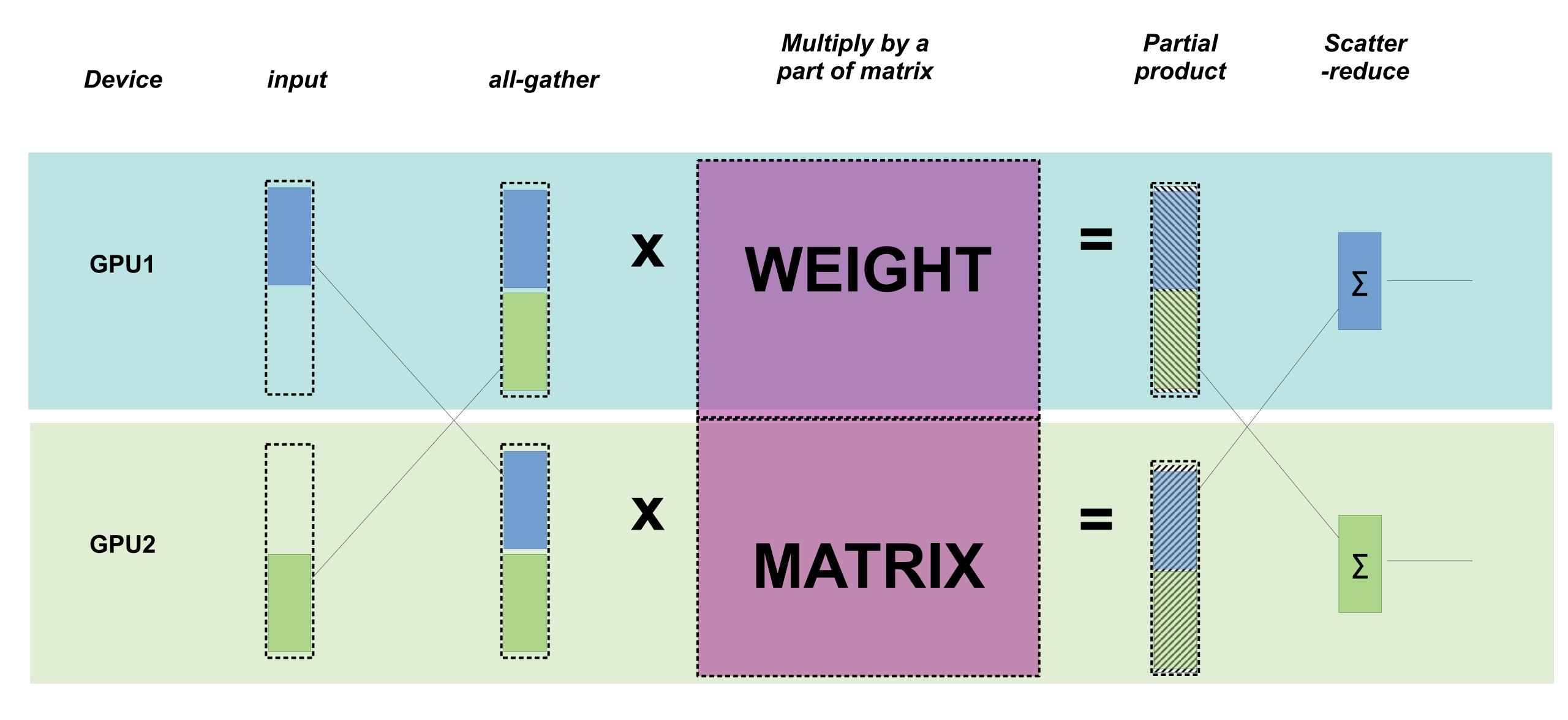
 Automatically partition layers to GPUs via dynamic programming

 Store k past weight versions to reduce gradient staleness

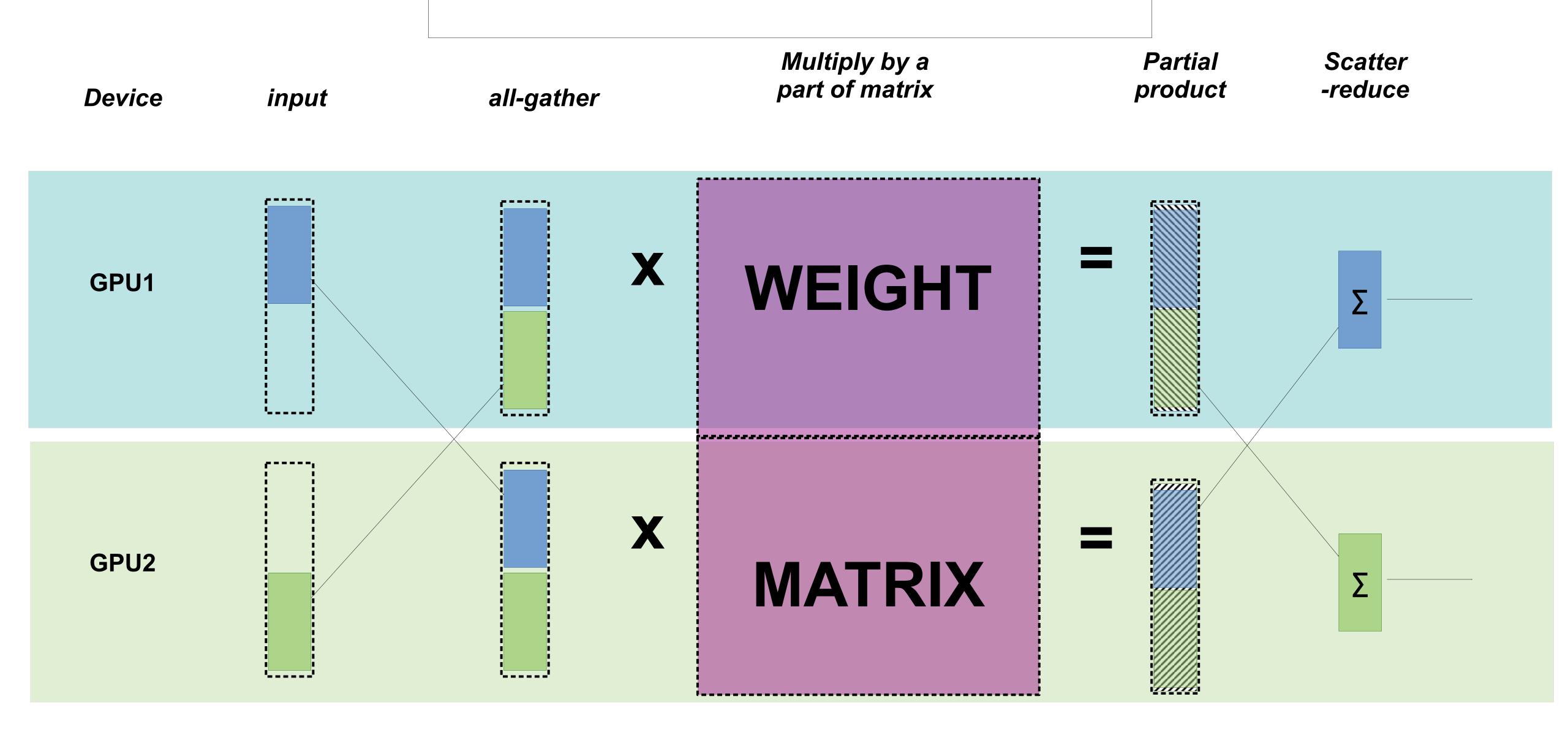
Aims at high latency



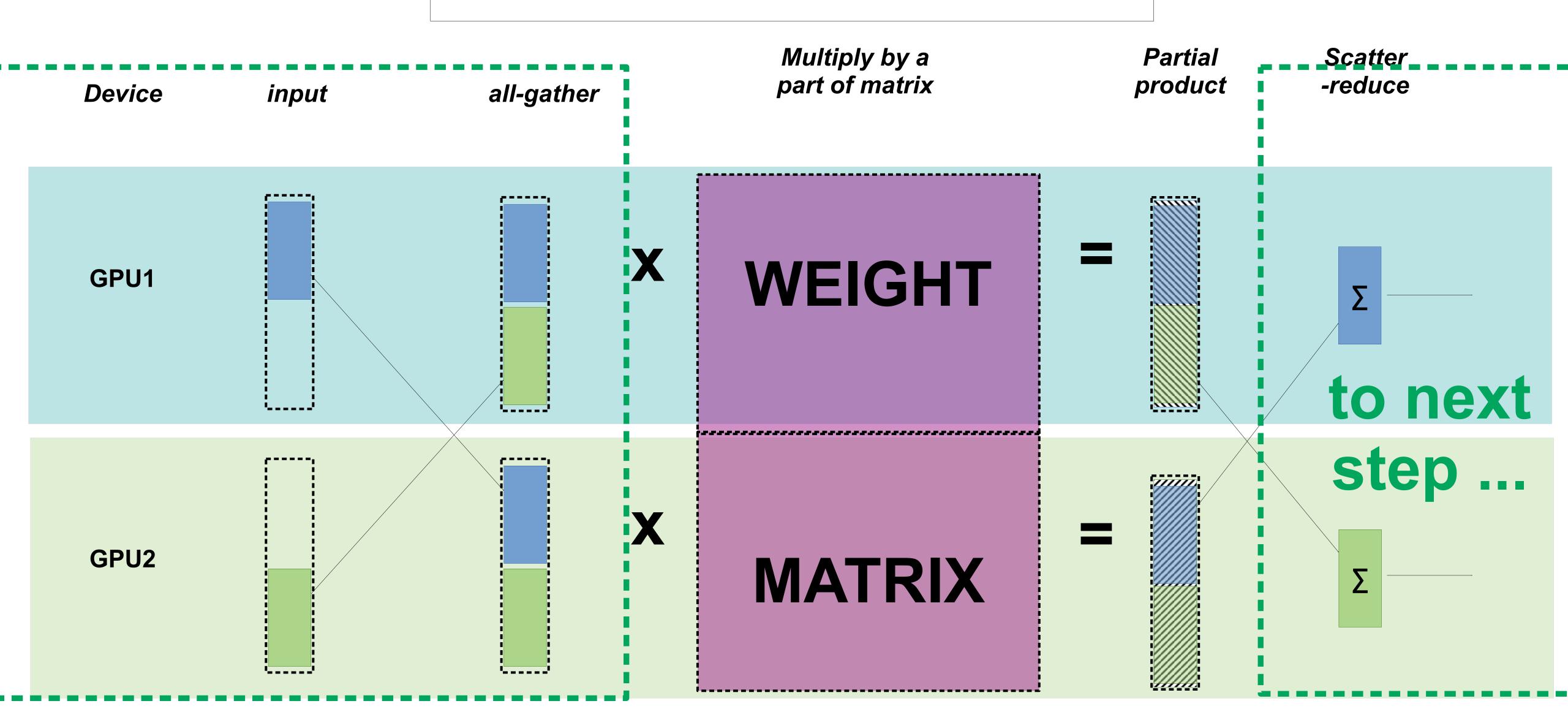
Tensor-parallel training



Q: find AllReduce op here



Q: find AllReduce op here



</Model-parallel>

- + model larger than GPU
 - + faster for small
 - * typical size: 2-8 gpus
- -model partitioning is tricky

tensor parallelism is easier, but requires ultra low latency

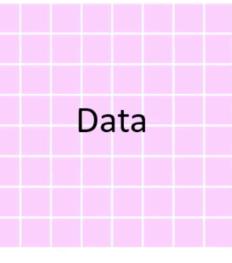
-latency is critical, go buy nvlink

except for PipeDream

- often combined with gradient checkpointing

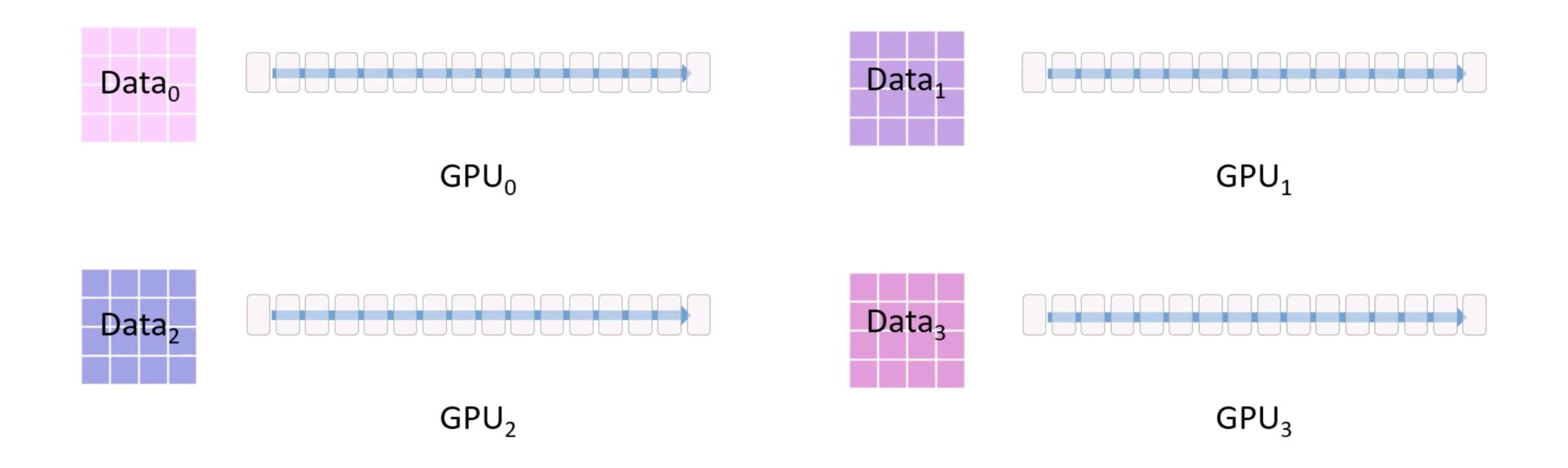
Tensor parallelism: Mesh TensorFlow (arxiv.org/abs/1811.02084)

Source: microsoft



Here is a big training dataset

Source: microsoft

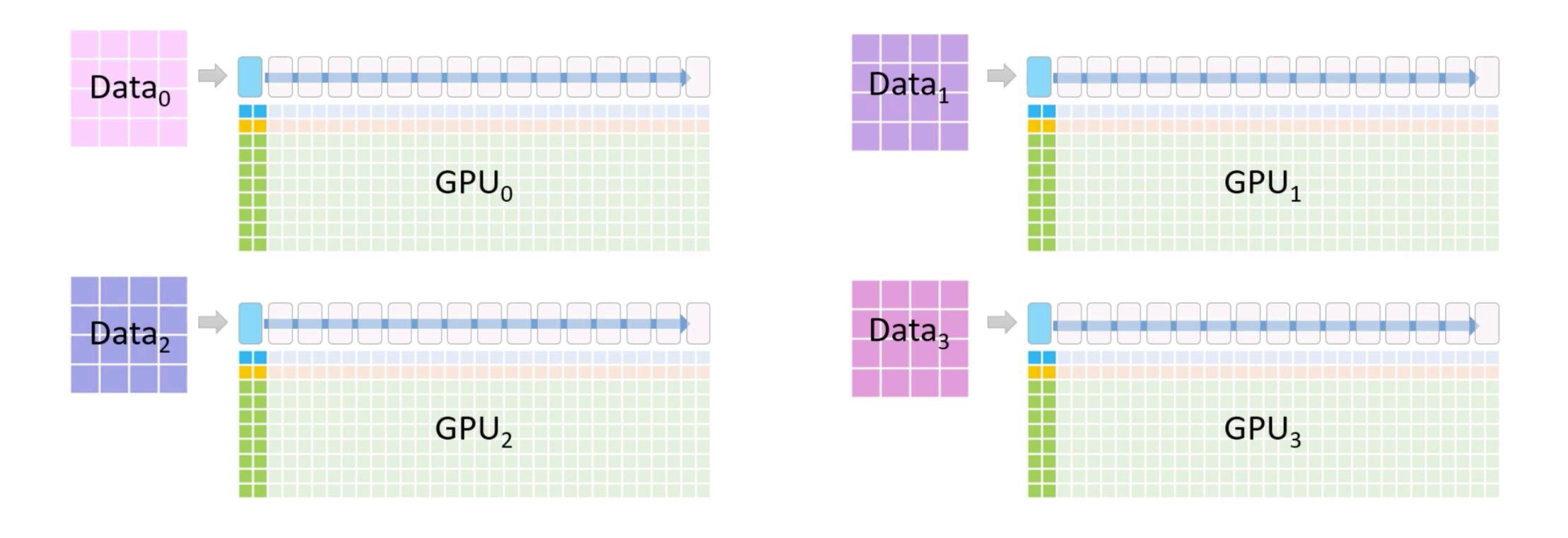


We will use 4-way data parallelism and ZeRO P_{os+g+p} memory optimization Each GPU will optimize the same model on different data

Source: microsoft

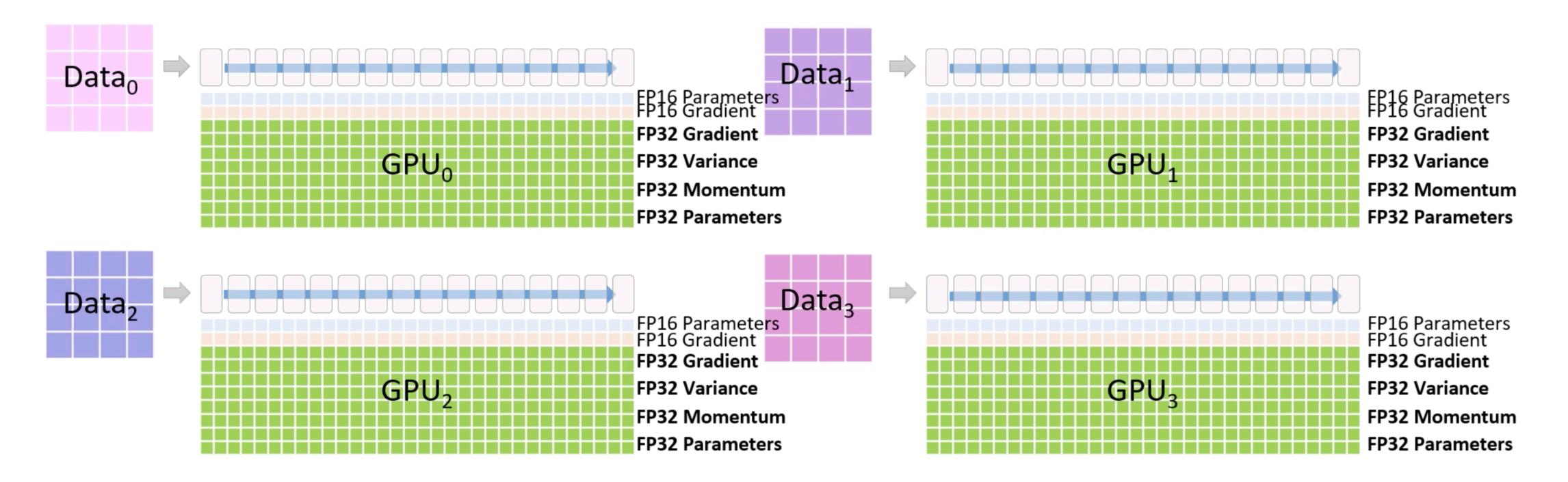
Each cell represents GPU memory used by its corresponding transformer layer

Source: microsoft



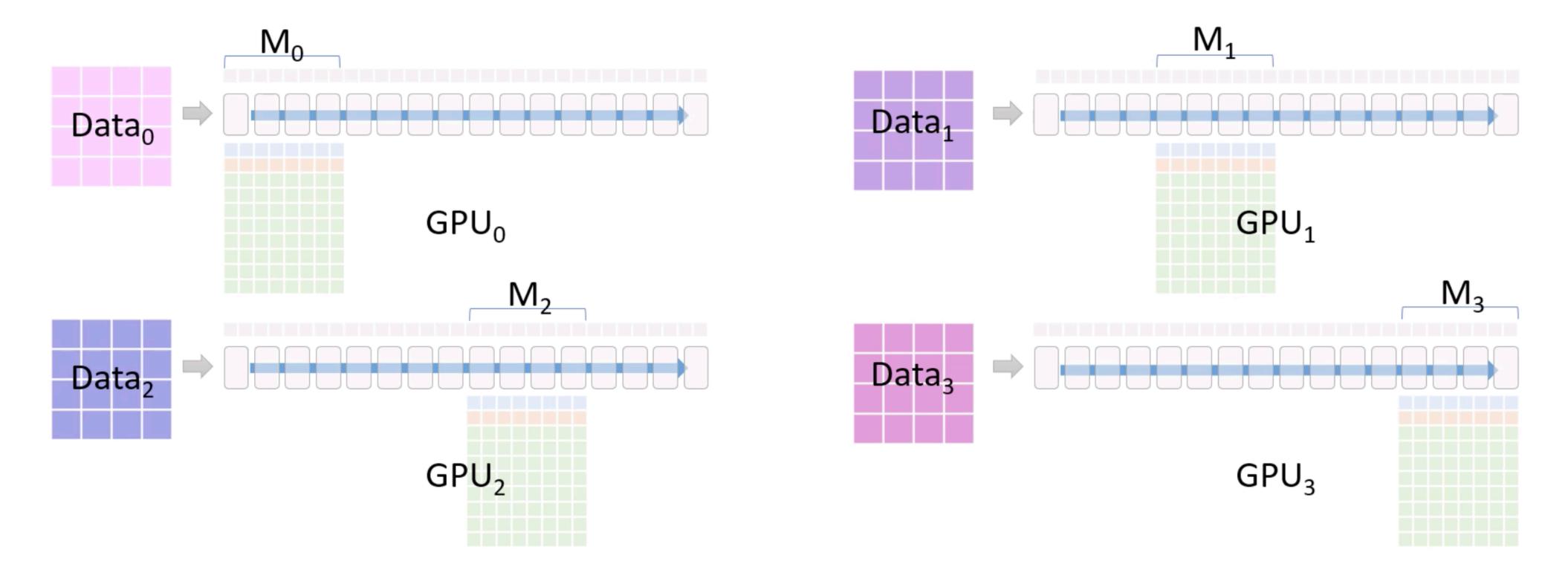
Each cell represents GPU memory used by its corresponding transformer layer

Source: microsoft



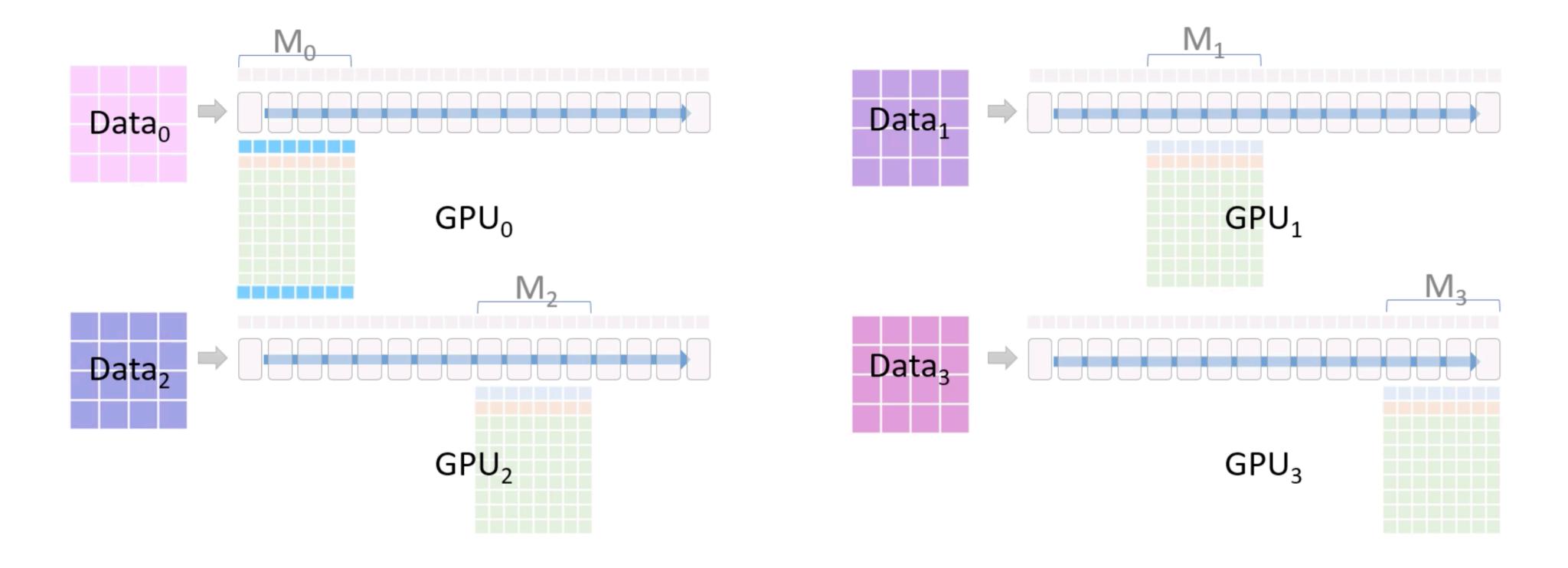
The last (massive) block of memory is used by the Optimizer. This is not used until after the fp16 gradients are computed

Source: microsoft



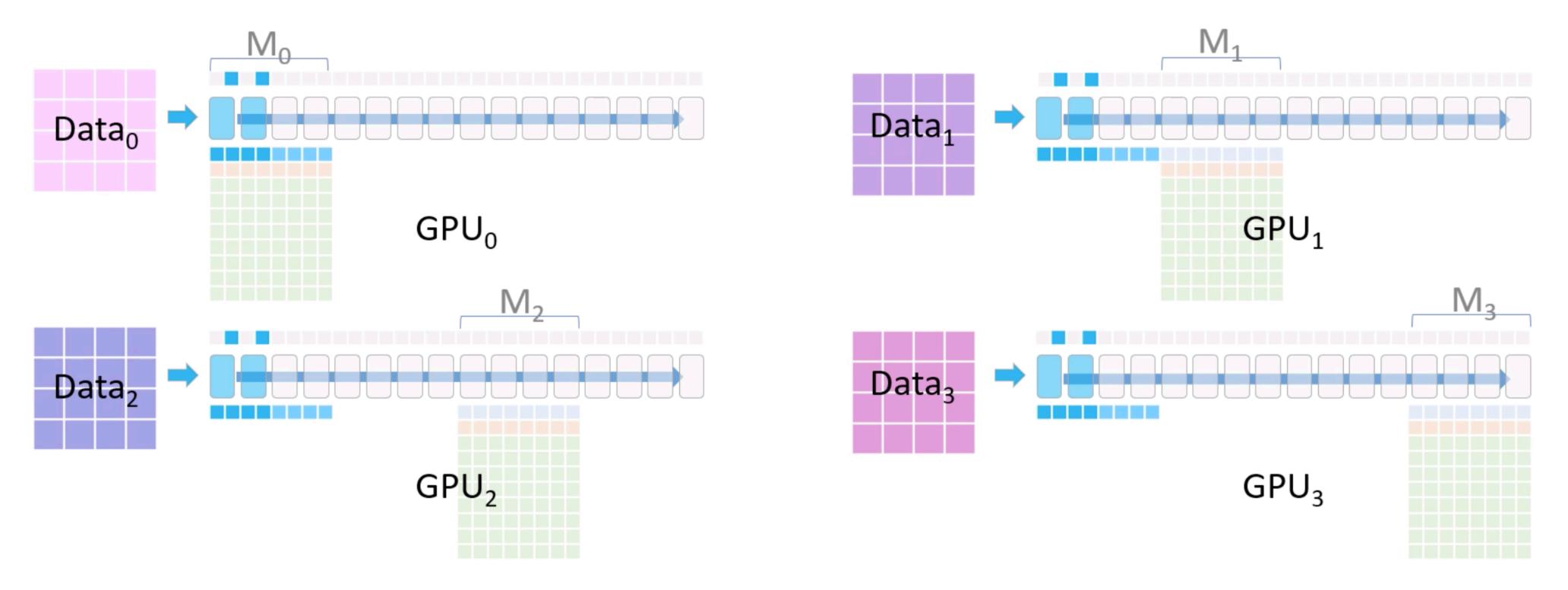
Each GPU is responsible for 1 piece of the end model ZeRO P_{os+g+p} and Gradient accumulation are used with the 4-way data parallelism

Source: microsoft



Only GPU_0 initially has the model parameters for M_0 . It broadcasts them to $GPU_{1,2,3}$

Source: microsoft

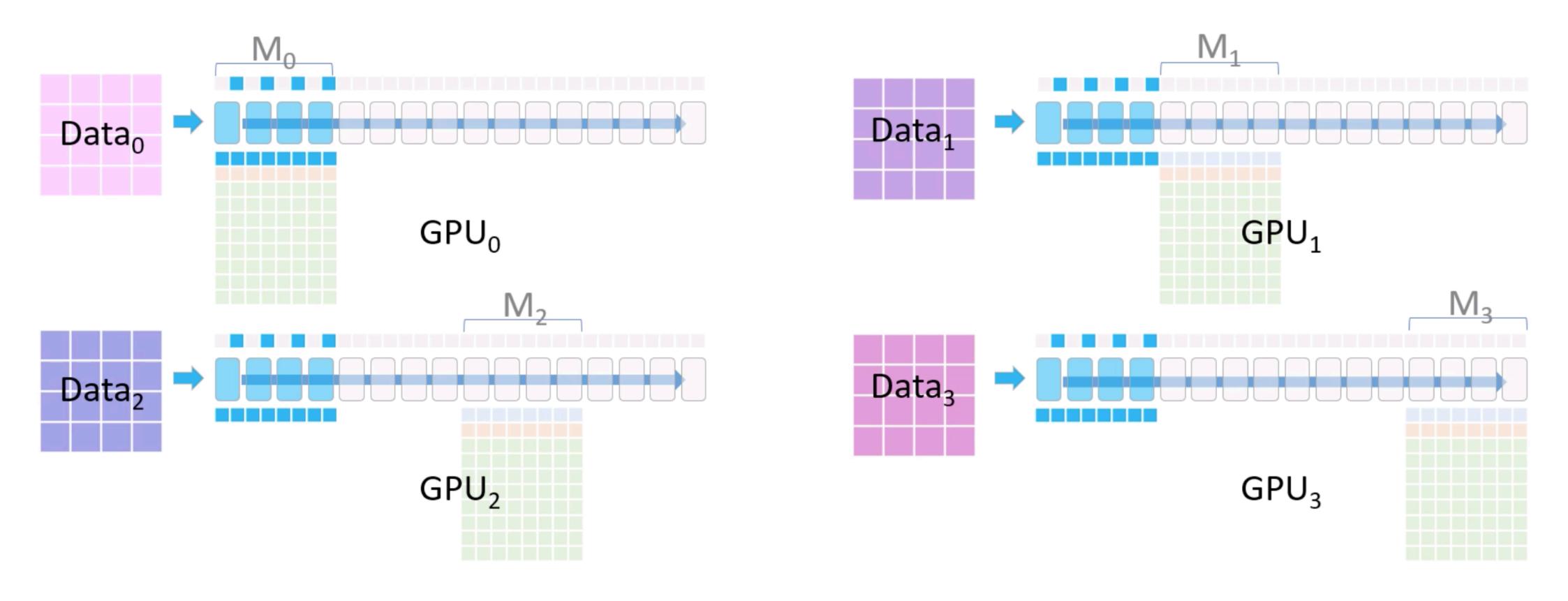


Run the forward pass

Each GPU runs on M₀'s parameters using its own data

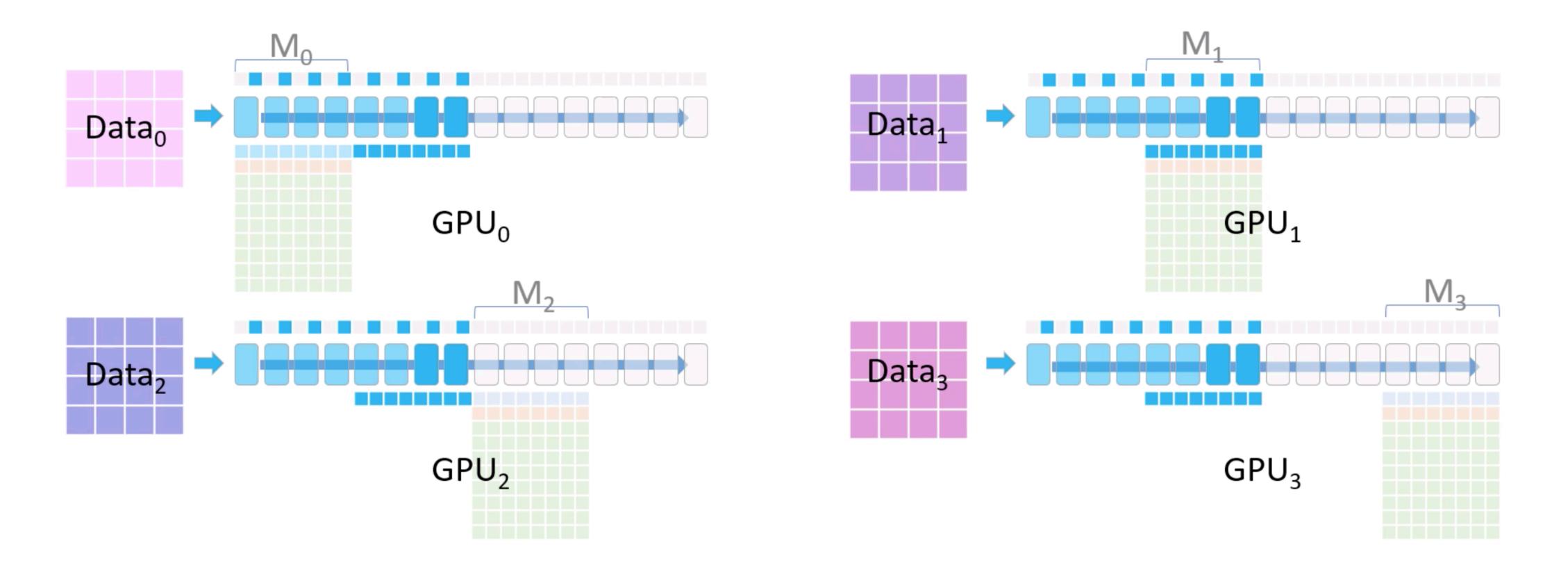
Only part of each layer's activations are retained

Source: microsoft



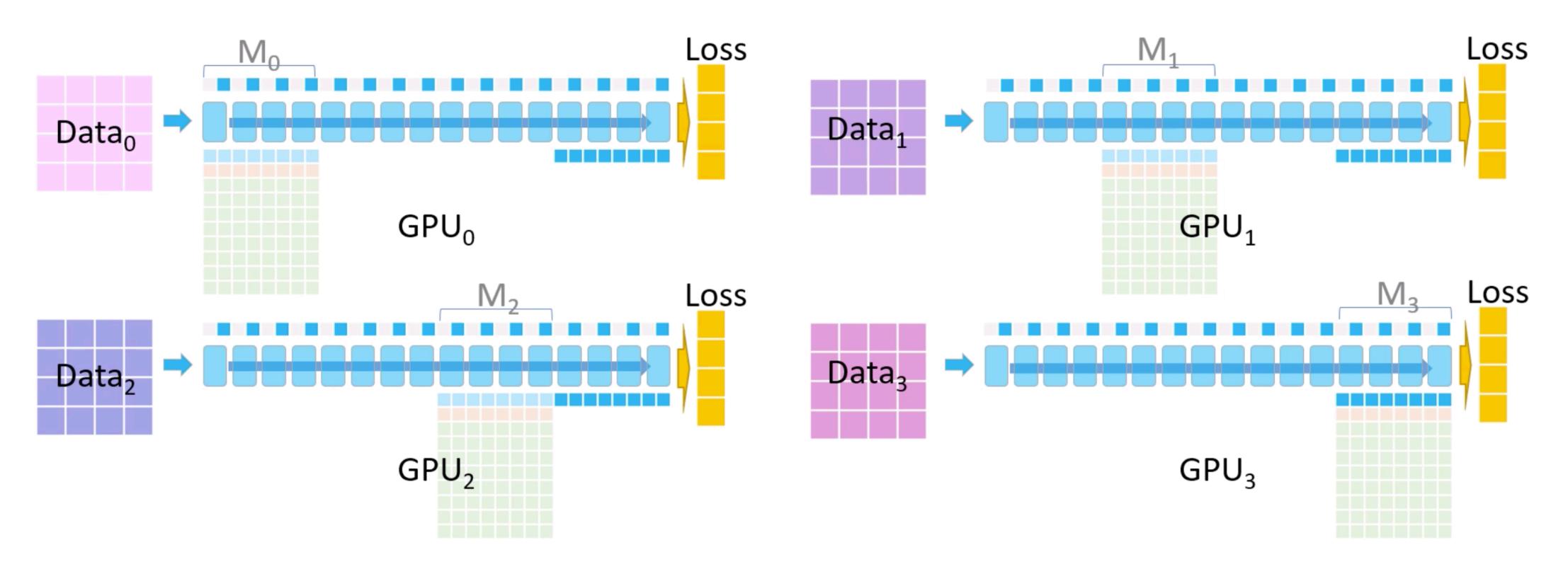
Once M_0 is complete, $GPU_{1,2,3}$ can delete the parameters for M_0

Source: microsoft



The forward pass continues across all GPUs on M₁

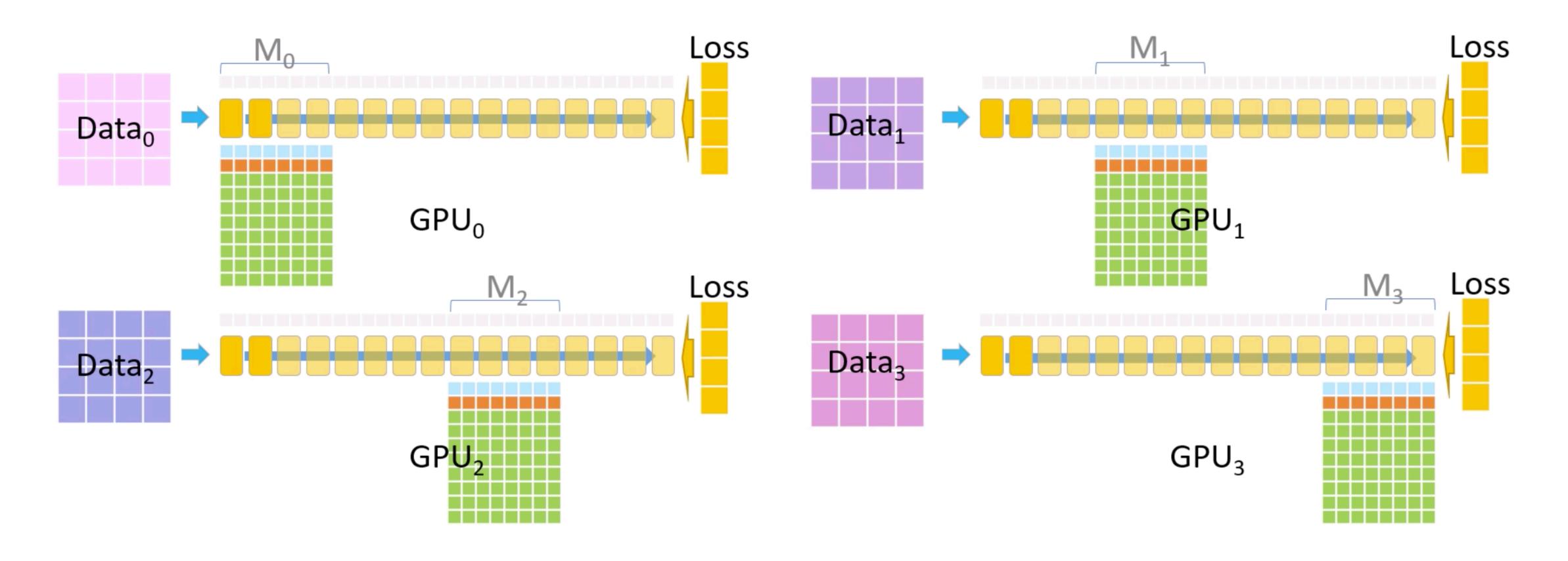
Source: microsoft



The forward pass is complete.

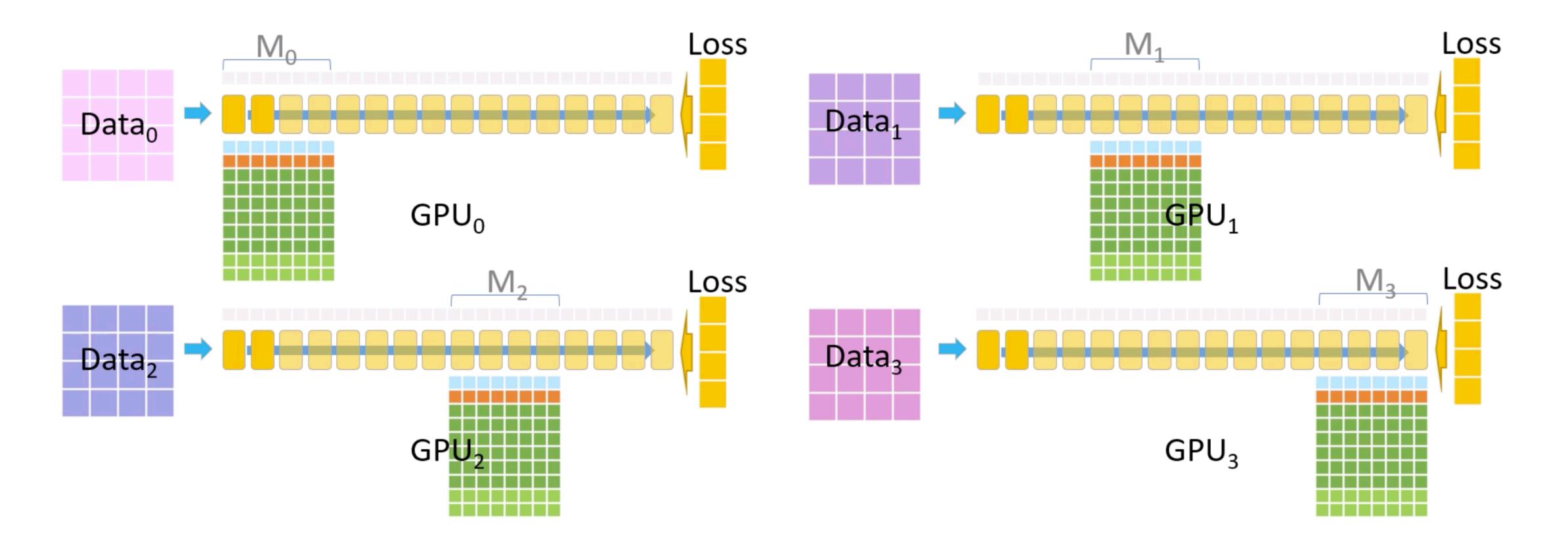
The loss is computed on each GPU for its respective dataset

Source: microsoft



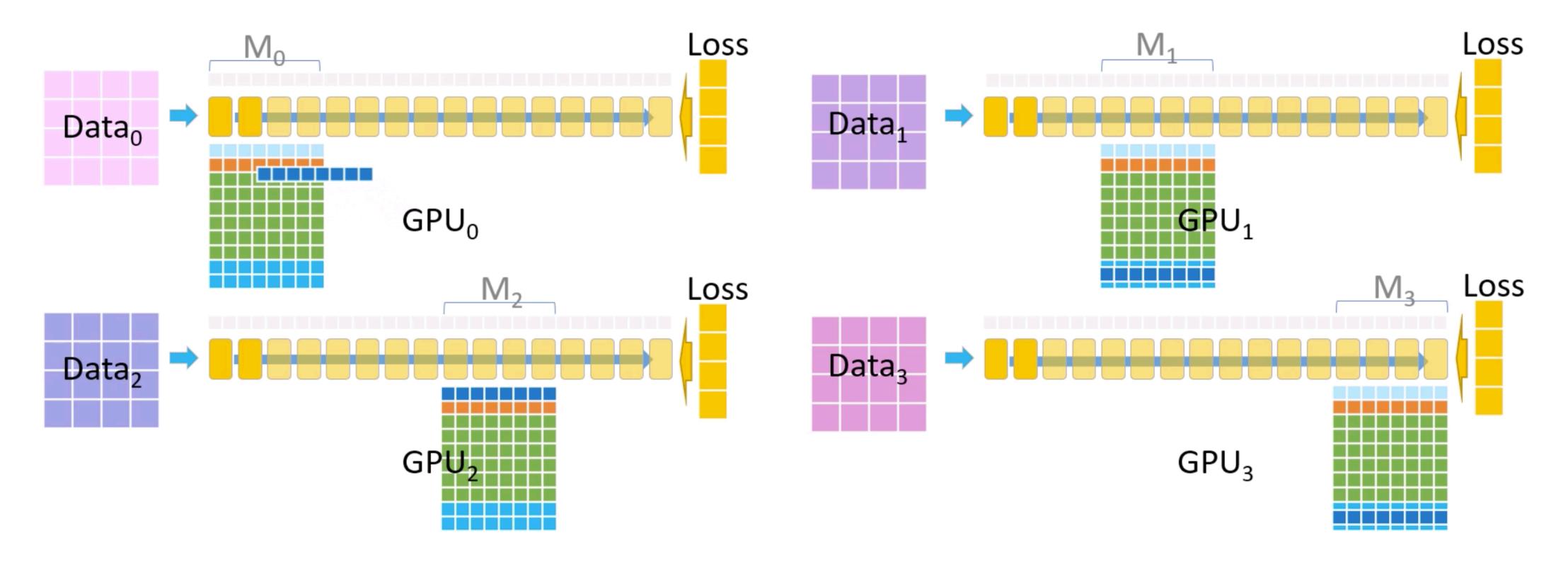
The Optimization step begins in parallel on each GPU

Source: microsoft



The optimizer runs

Source: microsoft



The fp16 weights become the model parameters for the next iteration Training iteration complete!

Conclusions

- Distributed algorithms are highly important in large scale DL
- Key problems are network-related (latency and bandwidth)
- Efficient algorithms allow scaling to hundreds and thousands of GPUs
- The field is growing rapidly!