# Non-diagonalisable Hydrodynamic Type Systems, Integrable by Tsarev's Generalised Hodograph Method

Maxim V. Pavlov

#### Lebedev Physical Institute

The Talk is based on joint works with my friends and colleagues: E.V. Ferapontov, G.A. El, A.M. Kamchatnov, V.B. Taranov, S.P. Tsarev, S.A. Zykov

21 December 2021

Russian-Chinese Conference «Integrable Systems and Geometry»

If the hydrodynamic type system  $u_t = V(\mathbf{u})u_x$  has a commuting flow  $u_y = W(\mathbf{u})u_x$ , where  $V(\mathbf{u})$  and  $W(\mathbf{u})$  are  $N \times N$  matrices (the commutativity conditions  $u_{ty} = u_{yt}$  impose differential constraints on V and W),

If the hydrodynamic type system  $u_t = V(\mathbf{u})u_x$  has a commuting flow  $u_y = W(\mathbf{u})u_x$ , where  $V(\mathbf{u})$  and  $W(\mathbf{u})$  are  $N \times N$  matrices (the commutativity conditions  $u_{ty} = u_{yt}$  impose differential constraints on V and W), then the matrix relation

$$W(\mathbf{u}) = I x + V(\mathbf{u}) t,$$

where I is the  $N \times N$  identity matrix, defines an implicit solution  $u^k(x,t)$ .

If the hydrodynamic type system  $u_t = V(\mathbf{u})u_x$  has a commuting flow  $u_y = W(\mathbf{u})u_x$ , where  $V(\mathbf{u})$  and  $W(\mathbf{u})$  are  $N \times N$  matrices (the commutativity conditions  $u_{ty} = u_{yt}$  impose differential constraints on V and W), then the matrix relation

$$W(\mathbf{u}) = I x + V(\mathbf{u}) t,$$

where I is the  $N \times N$  identity matrix, defines an implicit solution  $u^k(x,t)$ .

If the hydrodynamic type system  $u_t = V(\mathbf{u})u_x$  has a commuting flow  $u_y = W(\mathbf{u})u_x$ , where  $V(\mathbf{u})$  and  $W(\mathbf{u})$  are  $N \times N$  matrices (the commutativity conditions  $u_{ty} = u_{yt}$  impose differential constraints on V and W), then the matrix relation

$$W(\mathbf{u}) = I x + V(\mathbf{u}) t,$$

where I is the  $N \times N$  identity matrix, defines an implicit solution  $u^k(x,t)$ . If the matrix function  $W(\mathbf{u})$  depends on N arbitrary functions of a single variable, the above algebraic formula determines a general solution of the hydrodynamic type system  $u_t = V(\mathbf{u})u_x$ .

If the hydrodynamic type system  $u_t = V(\mathbf{u})u_x$  has a commuting flow  $u_y = W(\mathbf{u})u_x$ , where  $V(\mathbf{u})$  and  $W(\mathbf{u})$  are  $N \times N$  matrices (the commutativity conditions  $u_{ty} = u_{yt}$  impose differential constraints on V and W), then the matrix relation

$$W(\mathbf{u}) = I x + V(\mathbf{u}) t,$$

where I is the  $N \times N$  identity matrix, defines an implicit solution  $u^k(x,t)$ . If the matrix function  $W(\mathbf{u})$  depends on N arbitrary functions of a single variable, the above algebraic formula determines a general solution of the hydrodynamic type system  $u_t = V(\mathbf{u})u_x$ .

Then such systems we call integrable by Tsarev's Generalised Hodograph Method.

#### A Nijenhuis tensor

Recall that, given an affinor  $V_k^i(\mathbf{u})$ , its Haantjes tensor is defined by the formula

$$H^{i}_{jk} = N^{i}_{pr}V^{p}_{j}V^{r}_{k} - N^{p}_{jr}V^{i}_{p}V^{r}_{k} - N^{p}_{rk}V^{i}_{p}V^{r}_{j} + N^{p}_{jk}V^{i}_{r}V^{r}_{p},$$

where (here  $\partial_p \equiv \partial/\partial u^p$ )

$$N_{jk}^{i} = V_{j}^{p} \partial_{p} V_{k}^{i} - V_{k}^{p} \partial_{p} V_{j}^{i} - V_{p}^{i} (\partial_{j} V_{k}^{p} - \partial_{k} V_{j}^{p})$$

is a Nijenhuis tensor.

#### A Nijenhuis tensor

Recall that, given an affinor  $V_k^i(\mathbf{u})$ , its Haantjes tensor is defined by the formula

$$H^{i}_{jk} = N^{i}_{pr}V^{p}_{j}V^{r}_{k} - N^{p}_{jr}V^{i}_{p}V^{r}_{k} - N^{p}_{rk}V^{i}_{p}V^{r}_{j} + N^{p}_{jk}V^{i}_{r}V^{r}_{p},$$

where (here  $\partial_p \equiv \partial/\partial u^p$ )

$$N^{i}_{jk} = V^{p}_{j} \partial_{p} V^{i}_{k} - V^{p}_{k} \partial_{p} V^{i}_{j} - V^{i}_{p} (\partial_{j} V^{p}_{k} - \partial_{k} V^{p}_{j})$$

is a Nijenhuis tensor.

In a generic case all characteristic velocities  $\mu^k$  are pairwise distinct. If all components of a Nijenhuis tensor vanish, then corresponding hydrodynamic type system

$$u_t^i = V_k^i(\mathbf{u})u_x^k$$

can be reduced to the totally decoupled form

$$\tilde{u}_t^i = \mu^i(\tilde{u}^i)\tilde{u}_x^i$$

by an appropriate invertible point transformation  $\tilde{u}^k(\mathbf{u})$ .

### A Haantjes tensor

So a Haantjes tensor is defined by the formula

$$H^{i}_{jk} = N^{i}_{pr}V^{p}_{j}V^{r}_{k} - N^{p}_{jr}V^{i}_{p}V^{r}_{k} - N^{p}_{rk}V^{i}_{p}V^{r}_{j} + N^{p}_{jk}V^{i}_{r}V^{r}_{p},$$

while a Nijenhuis tensor is

$$N_{jk}^{i} = V_{j}^{p} \partial_{p} V_{k}^{i} - V_{k}^{p} \partial_{p} V_{j}^{i} - V_{p}^{i} (\partial_{j} V_{k}^{p} - \partial_{k} V_{j}^{p}).$$

# A Haantjes tensor

So a Haantjes tensor is defined by the formula

$$H^{i}_{jk} = N^{i}_{pr}V^{p}_{j}V^{r}_{k} - N^{p}_{jr}V^{i}_{p}V^{r}_{k} - N^{p}_{rk}V^{i}_{p}V^{r}_{j} + N^{p}_{jk}V^{i}_{r}V^{r}_{p},$$

while a Nijenhuis tensor is

$$N^{i}_{jk} = V^{p}_{j} \partial_{p} V^{i}_{k} - V^{p}_{k} \partial_{p} V^{i}_{j} - V^{i}_{p} (\partial_{j} V^{p}_{k} - \partial_{k} V^{p}_{j}).$$

In a generic case all characteristic velocities  $\mu^k$  are pairwise distinct. If all components of a Haantjes tensor vanish, then corresponding hydrodynamic type system

$$u_t^i = V_k^i(\mathbf{u})u_x^k$$

can be diagonalised, i.e. rewritten in the Riemann invariants

$$r_t^i = \mu^i(\mathbf{r})r_x^i$$

by an appropriate invertible point transformation  $r^k(\mathbf{u})$ .

If all components of a Haantjes tensor

$$H^{i}_{jk} = N^{i}_{pr}V^{p}_{j}V^{r}_{k} - N^{p}_{jr}V^{i}_{p}V^{r}_{k} - N^{p}_{rk}V^{i}_{p}V^{r}_{j} + N^{p}_{jk}V^{i}_{r}V^{r}_{p}$$

vanish,

If all components of a Haantjes tensor

$$H^{i}_{jk} = N^{i}_{pr}V^{p}_{j}V^{r}_{k} - N^{p}_{jr}V^{i}_{p}V^{r}_{k} - N^{p}_{rk}V^{i}_{p}V^{r}_{j} + N^{p}_{jk}V^{i}_{r}V^{r}_{p}$$

vanish, but **not all** characteristic velocities  $\mu^k$  are *pairwise distinct*, then corresponding hydrodynamic type system

$$u_t^i = V_k^i(\mathbf{u})u_x^k$$

**cannot be diagonalised**, i.e. cannot be rewritten in the Riemann invariants

$$r_t^i = \mu^i(\mathbf{r})r_x^i$$
.

If all components of a Haantjes tensor

$$H^{i}_{jk} = N^{i}_{pr}V^{p}_{j}V^{r}_{k} - N^{p}_{jr}V^{i}_{p}V^{r}_{k} - N^{p}_{rk}V^{i}_{p}V^{r}_{j} + N^{p}_{jk}V^{i}_{r}V^{r}_{p}$$

vanish, but **not all** characteristic velocities  $\mu^k$  are *pairwise distinct*, then corresponding hydrodynamic type system

$$u_t^i = V_k^i(\mathbf{u})u_x^k$$

**cannot be diagonalised**, i.e. cannot be rewritten in the Riemann invariants

$$r_t^i = \mu^i(\mathbf{r})r_x^i$$
.

The **Statement**: If a hydrodynamic type system is integrable by Tsarev's Generalised Hodograph Method, then all components of a Haantjes tensor vanish.

If all components of a Haantjes tensor

$$H^{i}_{jk} = N^{i}_{pr}V^{p}_{j}V^{r}_{k} - N^{p}_{jr}V^{i}_{p}V^{r}_{k} - N^{p}_{rk}V^{i}_{p}V^{r}_{j} + N^{p}_{jk}V^{i}_{r}V^{r}_{p}$$

vanish, but **not all** characteristic velocities  $\mu^k$  are *pairwise distinct*, then corresponding hydrodynamic type system

$$u_t^i = V_k^i(\mathbf{u})u_x^k$$

**cannot be diagonalised**, i.e. cannot be rewritten in the Riemann invariants

$$r_t^i = \mu^i(\mathbf{r}) r_x^i$$
.

The **Statement**: If a hydrodynamic type system is integrable by Tsarev's Generalised Hodograph Method, then all components of a Haantjes tensor vanish. Then this hydrodynamic type system can be reduced to a **block-diagonal** structure by an appropriate invertible point transformation  $\tilde{u}^k(\mathbf{u})$ .

According to standard approach in the theory of integrable systems, we say:

According to standard approach in the theory of integrable systems, we say:

the Darboux system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}, \quad i \neq j \neq k$$

is integrable by the Inverse Scattering Transform

According to standard approach in the theory of integrable systems, we say:

the Darboux system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}, \quad i \neq j \neq k$$

is integrable by the Inverse Scattering Transform, because this system has the Lax representation

$$\partial_i H_k = \beta_{ik} H_i, \quad i \neq k.$$

According to standard approach in the theory of integrable systems, we say:

the Darboux system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}, \quad i \neq j \neq k$$

is integrable by the Inverse Scattering Transform, because this system has the Lax representation

$$\partial_i H_k = \beta_{ik} H_i, \quad i \neq k.$$

The Darboux system is a 3D integrable system.

According to standard approach in the theory of integrable systems, we say:

the Darboux system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}, \quad i \neq j \neq k$$

is integrable by the Inverse Scattering Transform, because this system has the  $\mathsf{Lax}$  representation

$$\partial_i H_k = \beta_{ik} H_i, \quad i \neq k.$$

The Darboux system is a 3D integrable system. Indeed, it is easy to see for every three distinct indices:

$$egin{align} \partial_{r^1}eta_{23} &= eta_{21}eta_{13}, & \partial_{r^1}eta_{32} &= eta_{31}eta_{12}, \ \partial_{r^2}eta_{13} &= eta_{12}eta_{23}, & \partial_{r^2}eta_{31} &= eta_{32}eta_{21}, \ \partial_{r^3}eta_{12} &= eta_{13}eta_{32}, & \partial_{r^3}eta_{21} &= eta_{23}eta_{31}. \ \end{pmatrix}$$

Let us introduce the  $N \times N$  matrix  $\mathfrak{E}$  with diagonal entries  $r^1, \ldots, r^N$  (so that  $e^{ii} = r^i$ ) and off-diagonal entries  $e^{ik} = \text{const}, k \neq i$ .

Let us introduce the  $N \times N$  matrix  $\hat{\epsilon}$  with diagonal entries  $r^1, \ldots, r^N$  (so that  $\epsilon^{ii} = r^i$ ) and off-diagonal entries  $\epsilon^{ik} = \text{const}, \ k \neq i$ . Define another matrix  $\hat{\beta} = -\hat{\epsilon}^{-1}$ .

Let us introduce the  $N \times N$  matrix  $\hat{\epsilon}$  with diagonal entries  $r^1, \ldots, r^N$  (so that  $\epsilon^{ii} = r^i$ ) and off-diagonal entries  $\epsilon^{ik} = \text{const}, \ k \neq i$ . Define another matrix  $\hat{\beta} = -\hat{\epsilon}^{-1}$ .

Then one can see that the coefficients  $eta_{ik}$  of this matrix  $\hat{m{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Let us introduce the  $N \times N$  matrix  $\hat{\epsilon}$  with diagonal entries  $r^1, \ldots, r^N$  (so that  $\epsilon^{ii} = r^i$ ) and off-diagonal entries  $\epsilon^{ik} = \text{const}, \ k \neq i$ .

Define another matrix  $\hat{\beta} = -\hat{\epsilon}^{-1}$ . Then one can see that the coefficients  $\beta_{ik}$  of this m

Then one can see that the coefficients  $eta_{ik}$  of this matrix  $\hat{m{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Indeed, differentiation of  $\beta_{km}\epsilon^{mi}=-\delta^i_k$  with respect to any variable  $r^j$  implies

$$0 = \beta_{im} \partial_j \epsilon^{mk} + (\partial_j \beta_{im}) \epsilon^{mk}.$$

Let us introduce the  $N \times N$  matrix  $\hat{\epsilon}$  with diagonal entries  $r^1, \ldots, r^N$  (so that  $\epsilon^{ii} = r^i$ ) and off-diagonal entries  $\epsilon^{ik} = \text{const}, \ k \neq i$ .

Define another matrix  $\hat{\boldsymbol{\beta}} = -\hat{\boldsymbol{\varepsilon}}^{-1}$ .

Then one can see that the coefficients  $eta_{ik}$  of this matrix  $\hat{m{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Indeed, differentiation of  $\beta_{km}\epsilon^{mi}=-\delta^i_k$  with respect to any variable  $r^j$  implies

$$0 = \beta_{im} \partial_j \epsilon^{mk} + (\partial_j \beta_{im}) \epsilon^{mk}.$$

Multiplying by the matrix  $\hat{\beta}$ , one can obtain

$$0 = \beta_{im}(\partial_j \epsilon^{mk}) \beta_{ks} + (\partial_j \beta_{im}) \epsilon^{mk} \beta_{ks}.$$

Let us introduce the  $N \times N$  matrix  $\mathfrak{E}$  with diagonal entries  $r^1, \ldots, r^N$  (so that  $e^{ii} = r^i$ ) and off-diagonal entries  $e^{ik} = \text{const}, \ k \neq i$ .

Define another matrix  $\hat{\boldsymbol{\beta}} = -\hat{\boldsymbol{\varepsilon}}^{-1}$ .

Then one can see that the coefficients  $eta_{ik}$  of this matrix  $\hat{m{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Indeed, differentiation of  $\beta_{km}\epsilon^{mi}=-\delta^i_k$  with respect to any variable  $r^j$  implies

$$0 = \beta_{im} \partial_j \epsilon^{mk} + (\partial_j \beta_{im}) \epsilon^{mk}.$$

Multiplying by the matrix  $\hat{\beta}$ , one can obtain

$$0 = \beta_{im}(\partial_j \epsilon^{mk}) \beta_{ks} + (\partial_j \beta_{im}) \epsilon^{mk} \beta_{ks}.$$

Taking into account  $\beta_{km}\epsilon^{mi}=-\delta^i_k$ , finally we have

$$\partial_j \beta_{is} = \beta_{im} (\partial_j \epsilon^{mk}) \beta_{ks} \equiv \beta_{ij} \beta_{js}.$$

Vice Versa: Assume that the coefficients  $m{\beta}_{ik}$  of the  $N \times N$  matrix  $\hat{m{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Vice Versa: Assume that the coefficients  $\beta_{ik}$  of the  $N \times N$  matrix  $\pmb{\hat{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Define another matrix  $\boldsymbol{\hat{\epsilon}} = -\boldsymbol{\hat{\beta}}^{-1}$ .

Vice Versa: Assume that the coefficients  $eta_{ik}$  of the N imes N matrix  $\hat{m{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Define another matrix  $oldsymbol{arepsilon} = -oldsymbol{eta}^{-1}$  .

Multiplying both sides of the above nonlinear system  $\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}$  by  $\epsilon^{pj}$  from the left, and by  $\epsilon^{kq}$  from the right, we obtain

$$\epsilon^{pj}(\partial_i \beta_{jk}) \epsilon^{kq} = (\epsilon^{pj} \beta_{ji}) (\beta_{ik} \epsilon^{kq}) = \delta^p_i \delta^q_i.$$

Vice Versa: Assume that the coefficients  $eta_{ik}$  of the  $N \times N$  matrix  $\hat{m{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Define another matrix  $oldsymbol{arepsilon} = -oldsymbol{eta}^{-1}$  .

Multiplying both sides of the above nonlinear system  $\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}$  by  $\epsilon^{pj}$  from the left, and by  $\epsilon^{kq}$  from the right, we obtain

$$\epsilon^{pj}(\partial_i \beta_{jk}) \epsilon^{kq} = (\epsilon^{pj} \beta_{ji}) (\beta_{ik} \epsilon^{kq}) = \delta^p_i \delta^q_i.$$

Again, taking into account  $\beta_{km}\epsilon^{mi}=-\delta_k^i$ , the l.h.s. of the above expression becomes

$$\epsilon^{pj}(\partial_i\beta_{jk})\epsilon^{kq} = \epsilon^{pj}[\partial_i(\beta_{jk}\epsilon^{kq}) - \beta_{jk}\partial_i\epsilon^{kq}] = [\partial_i(\epsilon^{pj}\beta_{jk}) - (\partial_i\epsilon^{pj})\beta_{jk}]\epsilon^{kq} = \partial_i\epsilon^{pq}$$

Vice Versa: Assume that the coefficients  $eta_{ik}$  of the  $N \times N$  matrix  $\hat{m{\beta}}$  satisfy the nonlinear system

$$\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}.$$

Define another matrix  $\hat{oldsymbol{arepsilon}} = -\hat{oldsymbol{eta}}^{-1}$  .

Multiplying both sides of the above nonlinear system  $\partial_i \beta_{jk} = \beta_{ji} \beta_{ik}$  by  $\epsilon^{pj}$  from the left, and by  $\epsilon^{kq}$  from the right, we obtain

$$\epsilon^{pj}(\partial_i \beta_{jk}) \epsilon^{kq} = (\epsilon^{pj} \beta_{ji}) (\beta_{ik} \epsilon^{kq}) = \delta^p_i \delta^q_i.$$

Again, taking into account  $\beta_{km}\epsilon^{mi}=-\delta^i_k$ , the l.h.s. of the above expression becomes

$$\epsilon^{pj}(\partial_i\beta_{jk})\epsilon^{kq} = \epsilon^{pj}[\partial_i(\beta_{jk}\epsilon^{kq}) - \beta_{jk}\partial_i\epsilon^{kq}] = [\partial_i(\epsilon^{pj}\beta_{jk}) - (\partial_i\epsilon^{pj})\beta_{jk}]\epsilon^{kq} = \partial_i\epsilon^{pq}$$

This means: the general solution of the system  $\partial_i e^{pq} = \delta_i^p \delta_i^q$  is determined by the  $N \times N$  matrix  $\hat{e}$  with diagonal entries  $r^1, \ldots, r^N$  (so that  $e^{ii} = r^i$ ) and off-diagonal entries  $e^{ik} = \text{const}, \ k \neq i$ .

# Alternative Approach. Exceptional Lax Representations

However, we can follow to an alternative strategy.

#### Alternative Approach. Exceptional Lax Representations

However, we can follow to an alternative strategy.

One can select any pair of particular solutions  $\bar{H}_i$  and  $\tilde{H}_i$  of the first linear system

$$\partial_i H_k = \beta_{ik} H_i, \quad i \neq k.$$

Here we remind that independent variables are  $r^k$ . So,  $\partial_k \equiv \partial/\partial r^k$ .

### Alternative Approach. Exceptional Lax Representations

However, we can follow to an alternative strategy.

One can select any pair of particular solutions  $\bar{H}_i$  and  $\tilde{H}_i$  of the first linear system

$$\partial_i H_k = \beta_{ik} H_i, \quad i \neq k.$$

Here we remind that independent variables are  $r^k$ . So,  $\partial_k \equiv \partial/\partial r^k$ . Now we introduce an N component hydrodynamic type system

$$r_t^i = \mu^i(\mathbf{r}) r_x^i,$$

whose characteristic velocities

$$\mu^{i}(\mathbf{r}) = \frac{\tilde{H}_{i}}{\bar{H}_{i}}.$$

This hydrodynamic type system is integrable by Tsarev's Generalised Hodograph Method. In this construction: Riemann invariants  $r^k$  are functions of two independent variables x and t only.

# Integrability of Diagonalisable Hydrodynamic Type Systems

Any diagonalisable hydrodynamic type system

$$r_t^i = \mu^i(\mathbf{r})r_x^i, \quad i = 1, 2, ..., N$$

is integrable by Tsarev's Generalised Hodograph Method

$$x + \mu^{i}(\mathbf{r})t = \zeta^{i}(\mathbf{r}),$$

if and only if the integrability condition (here  $\partial_k \equiv \partial/\partial r^k$ )

$$\partial_j \frac{\partial_k \mu^i}{\mu^k - \mu^i} = \partial_k \frac{\partial_j \mu^i}{\mu^j - \mu^i}, \quad i \neq j \neq k$$

is fulfilled. Here we remind that diagonal metric coefficients  $g_{kk}(\mathbf{r}) = \bar{H}_k^2$  are determined by

$$\partial_k \ln \bar{H}_i = \frac{\partial_k \mu^i}{\mu^k - \mu^i}, \quad i \neq k,$$

while  $\zeta^i(\mathbf{r})$  satisfy to the linear system

$$\partial_k \zeta^i = rac{\partial_k \mu^i}{\mu^k - \mu^i} (\zeta^k - \zeta^i), \quad i 
eq k.$$

# Commuting Flows

Integrable N component hydrodynamic type system

$$r_t^i = \mu^i(\mathbf{r}) r_x^i$$

has infinitely many commuting flows ( $\tau$  is the so called group parameter in the Lie group analysis, or an auxiliary time variable)

$$r_{\tau}^{i} = \zeta^{i}(\mathbf{r})r_{x}^{i}.$$

This means, that the Riemann invariants  $r^i$  no longer depend on **two** independent variables x and t only. Now, the Riemann invariants  $r^i$  depend on three independent variables x, t,  $\tau$  simultaneously.

# Commuting Flows

Integrable N component hydrodynamic type system

$$r_t^i = \mu^i(\mathbf{r}) r_x^i$$

has infinitely many commuting flows (au is the so called group parameter in the Lie group analysis, or an auxiliary time variable)

$$r_{\tau}^{i} = \zeta^{i}(\mathbf{r})r_{x}^{i}.$$

This means, that the Riemann invariants  $r^i$  no longer depend on **two** independent variables x and t only. Now, the Riemann invariants  $r^i$ depend on three independent variables  $x, t, \tau$  simultaneously. This means, that the Riemann invariants  $r^i(x, t, \tau)$  solve two N component hydrodynamic type systems

$$r_t^i = \mu^i(\mathbf{r})r_x^i, \quad r_\tau^i = \zeta^i(\mathbf{r})r_x^i,$$

where the time variable  $\tau$  is hidden in the first hydrodynamic type system, while the time variable t is hidden in the second hydrodynamic type system. Then both hydrodynamic type systems must commute with each

# Commuting Flows

The compatibility conditions  $(r_t^i)_ au=(r_ au^i)_t$  lead to the Tsarev conditions

$$\frac{\partial_k \mu^i}{\mu^k - \mu^i} = \frac{\partial_k \zeta^i}{\zeta^k - \zeta^i}, \quad i \neq k.$$

Taking into account the definition of the Lame coefficients

$$\partial_k \ln \bar{H}_i = rac{\partial_k \mu^i}{\mu^k - \mu^i}, \quad i 
eq k,$$

the Tsarev conditions show that both commuting hydrodynamic type systems

$$r_t^i = \mu^i(\mathbf{r})r_x^i, \quad r_{\tau}^i = \zeta^i(\mathbf{r})r_x^i$$

have the same diagonal metric  $g_{kk}(\mathbf{r}) = \bar{H}_k^2$ .



## El's Nonlocal Kinetic Equation

El's integro-differential kinetic equation for dense soliton gas (2003)

$$f_t + (sf)_x = 0$$
,

$$s(\eta) = S(\eta) + \int_0^\infty G(\mu, \eta) f(\mu) [s(\mu) - s(\eta)] d\mu,$$

where  $f(\eta)=f(\eta,x,t)$  is a distribution function and  $s(\eta)=s(\eta,x,t)$  is the associated transport velocity. Here the variable  $\eta$  is the spectral parameter in the Lax pair; the function  $S(\eta)$  (free soliton velocity) and the kernel  $G(\mu,\eta)$  (phase shift due to pairwise soliton collisions) are independent of x and t. The kernel  $G(\mu,\eta)$  is assumed to be symmetric:  $G(\mu,\eta)=G(\eta,\mu)$ . This system describes the evolution of a dense soliton gas and represents a broad generalisation of Zakharov's kinetic equation for rarefied soliton gas. In this case

$$S(\eta) = 4\eta^2, \qquad G(\mu, \eta) = \frac{1}{\eta \mu} \log \left| \frac{\eta - \mu}{\eta + \mu} \right|,$$

the above system was derived by G. El as thermodynamic limit of the KdV

Under a delta-functional ansatz (an **iso-spectral** case, 2010, G.A. El, A.M. Kamchatnov, MVP, S.A. Zykov),

$$f(\eta, x, t) = \sum_{i=1}^{N} u^{i}(x, t) \delta(\eta - \eta^{i}),$$

Under a delta-functional ansatz (an **iso-spectral** case, 2010, G.A. El, A.M. Kamchatnov, MVP, S.A. Zykov),

$$f(\eta, x, t) = \sum_{i=1}^{N} u^{i}(x, t) \delta(\eta - \eta^{i}),$$

system

$$f_t + (sf)_x = 0$$
,

$$s(\eta) = S(\eta) + \int_0^\infty G(\mu, \eta) f(\mu) [s(\mu) - s(\eta)] d\mu,$$

Under a delta-functional ansatz (an **iso-spectral** case, 2010, G.A. El, A.M. Kamchatnov, MVP, S.A. Zykov),

$$f(\eta, x, t) = \sum_{i=1}^{N} u^{i}(x, t) \delta(\eta - \eta^{i}),$$

system

$$f_t + (sf)_x = 0,$$

$$s(\eta) = S(\eta) + \int_0^\infty G(\mu, \eta) f(\mu) [s(\mu) - s(\eta)] d\mu,$$

reduces to a  $N \times N$  quasilinear system for  $u^i(x, t)$ ,

$$u_t^i = (u^i v^i)_x,$$

Under a delta-functional ansatz (an **iso-spectral** case, 2010, G.A. El, A.M. Kamchatnov, MVP, S.A. Zykov),

$$f(\eta, x, t) = \sum_{i=1}^{N} u^{i}(x, t) \delta(\eta - \eta^{i}),$$

system

$$f_t + (sf)_x = 0,$$

$$s(\eta) = S(\eta) + \int_0^\infty G(\mu, \eta) f(\mu) [s(\mu) - s(\eta)] d\mu,$$

reduces to a  $N \times N$  quasilinear system for  $u^i(x, t)$ ,

$$u_t^i = (u^i v^i)_x,$$

where  $\mathbf{v}^i = -s(\eta^i, \mathbf{x}, t)$  can be recovered from the linear system (here  $\xi^i = -S(\eta^i)$ )

$$v^i = \xi^i + \sum_{m \neq i} \epsilon^{mi} u^m (v^m - v^i), \qquad \epsilon^{ki} = G(\eta^k, \eta^i), \ k \neq i.$$

#### **Parametrisation**

Now we introduce the new field variables  $r^i$  by the formula

$$r^{i} = -rac{1}{u^{i}}\left(1 + \sum_{m 
eq i} \epsilon^{mi} u^{m}
ight).$$

#### **Parametrisation**

Now we introduce the new field variables  $r^i$  by the formula

$$r^{i} = -rac{1}{u^{i}}\left(1 + \sum_{m 
eq i} \epsilon^{mi} u^{m}
ight).$$

In these dependent variables  $r^i$ , the quasilinear system

$$u_t^i = (u^i v^i)_x,$$

reduces to a diagonal form

$$r_t^i = v^i r_x^i$$

where velocities  $v^i$  can be expressed in terms of Riemann invariants as follows.

Let us introduce the  $N \times N$  matrix  $\hat{\epsilon}$  with diagonal entries  $r^1, \ldots, r^N$  (so that  $\epsilon^{ii} = r^i$ ) and off-diagonal entries  $\epsilon^{ik} = G(\eta^i, \eta^k), k \neq i$ .

Let us introduce the  $N\times N$  matrix  $\hat{\pmb{\epsilon}}$  with diagonal entries  $r^1,\ldots,r^N$  (so that  $\epsilon^{ii}=r^i$ ) and off-diagonal entries  $\epsilon^{ik}=G(\eta^i,\eta^k),\ k\neq i$ . Define another symmetric matrix  $\hat{\pmb{\beta}}=-\hat{\pmb{\epsilon}}^{-1}$ . Denote  $\beta_{ik}$  the matrix elements of the matrix  $\hat{\pmb{\beta}}$  (indices i and k are allowed to coincide). Then we obtain the following formulae for  $u^i,v^i$ :

$$u^{i} = \sum_{m=1}^{N} \beta_{mi}, \ v^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \xi^{m} \beta_{mi}.$$

Let us introduce the  $N\times N$  matrix  $\hat{\pmb{\epsilon}}$  with diagonal entries  $r^1,\ldots,r^N$  (so that  $\epsilon^{ii}=r^i$ ) and off-diagonal entries  $\epsilon^{ik}=G(\eta^i,\eta^k),\ k\neq i$ . Define another symmetric matrix  $\hat{\pmb{\beta}}=-\hat{\pmb{\epsilon}}^{-1}$ . Denote  $\beta_{ik}$  the matrix elements of the matrix  $\hat{\pmb{\beta}}$  (indices i and k are allowed to coincide). Then we obtain the following formulae for  $u^i,v^i$ :

$$u^{i} = \sum_{m=1}^{N} \beta_{mi}, \ v^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \xi^{m} \beta_{mi}.$$

Then the general solution of the diagonal system

$$r_t^i = v^i r_x^i$$

is determined by

Let us introduce the  $N\times N$  matrix  $\hat{\pmb{\varepsilon}}$  with diagonal entries  $r^1,\ldots,r^N$  (so that  $\varepsilon^{ii}=r^i$ ) and off-diagonal entries  $\varepsilon^{ik}=G(\eta^i,\eta^k),\ k\neq i$ . Define another symmetric matrix  $\hat{\pmb{\beta}}=-\hat{\pmb{\varepsilon}}^{-1}$ . Denote  $\beta_{ik}$  the matrix elements of the matrix  $\hat{\pmb{\beta}}$  (indices i and k are allowed to coincide). Then we obtain the following formulae for  $u^i,v^i$ :

$$u^{i} = \sum_{m=1}^{N} \beta_{mi}, \ v^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \xi^{m} \beta_{mi}.$$

Then the general solution of the diagonal system

$$r_t^i = v^i r_x^i$$

is determined by

$$x + \xi_i t = P_i(r^i) - r^i P'_i(r^i) - \sum_{m \neq i} \epsilon^{mi} P'_m(r^m), \quad i = 1, 2, ..., N,$$

where  $P_i(r^i)$ , i = 1, ..., N, are arbitrary functions

# Linearly Degenerate Diagonalisable Hydrodynamic Type Systems

We call a diagonal system

$$r_t^i = v^i r_x^i, \quad i = 1, 2, ..., N$$

linearly degenerate if (for every index i. Here: no summation!)

$$\partial_i v^i = 0, \quad i = 1, 2, ..., N.$$

# Linearly Degenerate Diagonalisable Hydrodynamic Type Systems

We call a diagonal system

$$r_t^i = v^i r_x^i, \quad i = 1, 2, ..., N$$

linearly degenerate if (for every index i. Here: no summation!)

$$\partial_i v^i = 0, \quad i = 1, 2, ..., N.$$

If a linearly degenerate hydrodynamic type system is semi-Hamiltonian, then such a system is the so called **Darboux integrable**. Their classification was made by E.V. Ferapontov (1991).

Under the re-parametrization

$$P_k''(\xi) = -\frac{\phi_k(\xi)}{f(\xi)}$$

the generalized hodograph solution

$$x + \xi_i t = P_i(r^i) - r^i P_i'(r^i) - \sum_{m \neq i} \epsilon^{mi} P_m'(r^m), \quad i = 1, 2, ..., N,$$

becomes

$$x + \xi_i t = \int_{-r}^{r^i} \frac{\xi \phi_i(\xi)}{f(\xi)} d\xi + \sum_{m \neq i} \epsilon^{mi} \int_{-r}^{r^m} \frac{\phi_m(\xi)}{f(\xi)} d\xi.$$

Now we consider the particular choice of  $f(\xi)$  defined as  $f(\xi) = \sqrt{R_K(\xi)}$ , where

$$R_K(\xi) = \prod_{m=1}^K (\xi - E_m),$$

and  $E_1 < E_2 < \cdots < E_K$  are real constants (K = 2N+1 and K = 2N+2 for odd and even number of branch points of this hyperelliptic curve of a genus N); and  $\phi_k(\xi)$  being arbitrary polynomials in  $\xi$  of degrees less than N.

Now we consider the particular choice of  $f(\xi)$  defined as  $f(\xi) = \sqrt{R_K(\xi)}$ , where

$$R_K(\xi) = \prod_{m=1}^K (\xi - E_m),$$

and  $E_1 < E_2 < \cdots < E_K$  are real constants (K = 2N+1 and K = 2N+2 for odd and even number of branch points of this hyperelliptic curve of a genus N); and  $\phi_k(\xi)$  being arbitrary polynomials in  $\xi$  of degrees less than N.

Then the generalized hodograph solution

$$x + \xi_i t = \int_{-r_i}^{r_i} \frac{\xi \phi_i(\xi)}{f(\xi)} d\xi + \sum_{m \neq i} \epsilon^{mi} \int_{-r_i}^{r_m} \frac{\phi_m(\xi)}{f(\xi)} d\xi,$$

describes quasiperiodic solutions of the form

$$x + \xi_i t = \int_{-\infty}^{r'} \frac{\xi \phi_i(\xi) d\xi}{\sqrt{R_K(\xi)}} + \sum_{m \neq i} \epsilon^{mi} \int_{-\infty}^{r^m} \frac{\phi_m(\xi) d\xi}{\sqrt{R_K(\xi)}}, \quad i = 1, 2, ..., N.$$

Under a delta-functional ansatz (a **non-isospectral** case, 2012, G.A. El, V.B. Taranov, MVP),

$$f(\eta, x, t) = \sum_{i=1}^{N} u^{i}(x, t) \delta(\eta - \eta^{i}(x, t)),$$

Under a delta-functional ansatz (a **non-isospectral** case, 2012, G.A. El, V.B. Taranov, MVP),

$$f(\eta,x,t) = \sum_{i=1}^{N} u^{i}(x,t) \delta(\eta - \eta^{i}(x,t)),$$

system

$$f_t + (sf)_x = 0,$$

$$s(\eta) = S(\eta) + \int_0^\infty G(\mu, \eta) f(\mu) [s(\mu) - s(\eta)] d\mu$$

Under a delta-functional ansatz (a **non-isospectral** case, 2012, G.A. El, V.B. Taranov, MVP),

$$f(\eta,x,t) = \sum_{i=1}^{N} u^{i}(x,t) \delta(\eta - \eta^{i}(x,t)),$$

system

$$f_t + (sf)_x = 0$$
,

$$s(\eta) = S(\eta) + \int_0^\infty G(\mu, \eta) f(\mu) [s(\mu) - s(\eta)] d\mu,$$

reduces to a  $2N \times 2N$  quasilinear system for  $u^i(x,t)$  and  $\eta^i(x,t)$ ,

$$u_t^i = (u^i v^i)_x, \qquad \eta_t^i = v^i \eta_x^i,$$

Under a delta-functional ansatz (a **non-isospectral** case, 2012, G.A. El, V.B. Taranov, MVP),

$$f(\eta,x,t) = \sum_{i=1}^{N} u^{i}(x,t) \delta(\eta - \eta^{i}(x,t)),$$

system

$$f_t + (sf)_x = 0,$$

$$s(\eta) = S(\eta) + \int_0^\infty G(\mu, \eta) f(\mu) [s(\mu) - s(\eta)] d\mu,$$

reduces to a  $2N \times 2N$  quasilinear system for  $u^i(x,t)$  and  $\eta^i(x,t)$ ,

$$u_t^i = (u^i v^i)_x, \qquad \eta_t^i = v^i \eta_x^i,$$

where  $\mathbf{v}^i = -s(\eta^i, \mathbf{x}, t)$  can be recovered from the linear system (here  $\xi^i = -S(\eta^i)$ )

$$v^i = \xi^i + \sum_{m \neq i} \epsilon^{mi} u^m (v^m - v^i), \qquad \epsilon^{ki} = G(\eta^k, \eta^i), \ k \neq i.$$

Introducing new field variables

$$r^i = -rac{1}{u^i}\left(1+\sum_{m
eq i}\epsilon^{mi}u^m
ight)$$
 ,

this  $2N \times 2N$  quasilinear system

$$u_t^i = (u^i v^i)_x, \qquad \eta_t^i = v^i \eta_x^i,$$

Introducing new field variables

$$r^{i}=-rac{1}{u^{i}}\left(1+\sum_{m
eq i}\epsilon^{mi}u^{m}
ight),$$

this  $2N \times 2N$  quasilinear system

$$u_t^i = (u^i v^i)_x, \qquad \eta_t^i = v^i \eta_x^i,$$

can be rewritten in a block-diagonal form

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i,$$

where

$$u^{i} = \sum_{m=1}^{N} \beta_{mi}, \ v^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \xi^{m} \beta_{mi}, \ p^{i} = \frac{1}{u^{i}} \left( \sum_{m \neq i} \epsilon_{,\eta^{i}}^{mi} (v^{m} - v^{i}) u^{m} + (\xi^{i})^{i} \right)$$

Now we study integrability aspects of quasilinear systems

$$u_t^i = V_k^i(\mathbf{u})u_x^k,$$

whose matrix V consists of N Jordan blocks of size  $2 \times 2$ :

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \eta_t^i = v^i \eta_x^i,$$

 $i=1,\ldots,N$ , where the coefficients  $v^i(r,\eta)$  and  $p^i(r,\eta)$  are functions of the N dependent variables  $r=(r^1,\ldots,r^N)$  and N dependent variables  $\eta=(\eta^1,\ldots,\eta^N)$ .

Now we study integrability aspects of quasilinear systems

$$u_t^i = V_k^i(\mathbf{u})u_x^k,$$

whose matrix V consists of N Jordan blocks of size  $2 \times 2$ :

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \eta_t^i = v^i \eta_x^i,$$

 $i=1,\ldots,N$ , where the coefficients  $v^i(r,\eta)$  and  $p^i(r,\eta)$  are functions of the N dependent variables  $r=(r^1,\ldots,r^N)$  and N dependent variables  $\eta=(\eta^1,\ldots,\eta^N)$ .

Their commuting flows  $u_y^i = W_k^i(\mathbf{u})u_x^k$  are in the same form (2021, E.V. Ferapontov, MVP)

$$r_y^i = w^i r_x^i + q^i \eta_x^i, \eta_y^i = w^i \eta_x^i.$$

Then unknown expressions  $w^i(\mathbf{r}, \boldsymbol{\eta}), q^i(\mathbf{r}, \boldsymbol{\eta})$  can be found from the compatibility conditions  $(r^i_y)_t = (r^i_t)_y, (\eta^i_y)_t = (\eta^i_t)_y, i = 1, 2, ..., N$ 

For the given block-diagonal hydrodynamic type system

$$\begin{aligned} r_t^i &= v^i r_x^i + p^i \eta_x^i, \\ \eta_t^i &= v^i \eta_x^i, \end{aligned}$$

we introduce necessary definitions

$$a_i = rac{v_{r^i}^i}{p^i}, \ \ b_i = rac{v_{\eta^i}^i - p_{r^i}^i}{p^i};$$

$$a_{ij} = rac{v_{rj}^i}{v^j - v^i}, \quad b_{ij} = rac{v_{\eta^j}^i - a_{ij}p^j}{v^j - v^i}, \quad c_{ij} = rac{p_{rj}^i + a_{ij}p^i}{v^j - v^i}, \quad d_{ij} = rac{p_{\eta^j}^i + b_{ij}p^i - c_{ij}p^j}{v^j - v^i}.$$

Then the compatibility conditions

$$(r_y^i)_t = (r_t^i)_y$$
,  $(\eta_y^i)_t = (\eta_t^i)_y$ ,  $i = 1, 2, ..., N$ 

of both commuting flows

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \qquad r_y^i = w^i r_x^i + q^i \eta_x^i, \eta_t^i = v^i \eta_x^i, \qquad \eta_y^i = w^i \eta_x^i.$$

Then the compatibility conditions

$$(r_y^i)_t = (r_t^i)_y, \quad (\eta_y^i)_t = (\eta_t^i)_y, \quad i = 1, 2, ..., N$$

of both commuting flows

$$\begin{aligned} r_t^i &= v^i r_x^i + p^i \eta_x^i, & r_y^i &= w^i r_x^i + q^i \eta_x^i, \\ \eta_t^i &= v^i \eta_x^i, & \eta_y^i &= w^i \eta_x^i. \end{aligned}$$

lead to the set of linear equations

$$egin{aligned} w_{r^i}^i &= a_i q^i, & w_{\eta^i}^i &= b_i q^i + q_{r^i}^i, \ & w_{r^j}^i &= a_{ij} (w^j - w^i), & w_{\eta^j}^i &= b_{ij} (w^j - w^i) + a_{ij} q^j, \ & q_{r^j}^i &= c_{ij} (w^j - w^i) - a_{ij} q^i, & q_{\eta^j}^i &= d_{ij} (w^j - w^i) + c_{ij} q^j - b_{ij} q^i. \end{aligned}$$

## Integrability Conditions I

The list of integrability conditions for every pair of distinct indices is

$$\begin{aligned} a_{i,r^j} &= 0, \qquad a_{ij,r^i} = a_{ij}a_{ji} + a_ic_{ij}; \\ a_{i,\eta^j} &= 0, \qquad b_{ij,r^i} = b_{ij}a_{ji} + a_{ij}c_{ji} + a_id_{ij}; \\ b_{i,r^j} &= 2a_{ij}a_{ji} + 2a_ic_{ij}, \\ a_{ij,\eta^i} &= a_{ij}b_{ji} - c_{ij}a_{ji} + b_ic_{ij} + c_{ij,r^i}; \\ b_{i,\eta^j} &= 2a_{ij}c_{ji} + 2b_{ij}a_{ji} + 2a_id_{ij}, \\ b_{ij,\eta^i} &= b_{ij}b_{ji} + a_{ij}d_{ji} - d_{ij}a_{ji} - c_{ij}c_{ji} + b_id_{ij} + d_{ij,r^i}; \\ a_{ij,r^j} &= b_ja_{ij} - a_jb_{ij} - a_{ij}^2, \qquad a_{ij,\eta^j} &= b_{ij,r^j}; \\ c_{ij,r^j} &= b_jc_{ij} - a_jd_{ij} - 2a_{ij}c_{ij}, \qquad c_{ij,\eta^j} &= d_{ij,r^j}. \end{aligned}$$

## Integrability Conditions II

The list of integrability conditions for every triad of distinct indices is

$$a_{ij,r^k} = a_{ij}a_{jk} + a_{ik}a_{kj} - a_{ij}a_{ik}.$$

$$a_{ij,\eta^k} = a_{ij}b_{jk} + a_{ik}c_{kj} + b_{ik}a_{kj} - a_{ij}b_{ik},$$

$$b_{ij,r^k} = b_{ij}a_{jk} + a_{ik}b_{kj} + a_{ij}c_{jk} - a_{ik}b_{ij}.$$

$$b_{ij,\eta^k} = a_{ij}d_{jk} + a_{ik}d_{kj} + b_{ij}b_{jk} + b_{ik}b_{kj} - b_{ij}b_{ik}.$$

$$c_{ij,r^k} = c_{ij}a_{jk} + c_{ik}a_{kj} - c_{ij}a_{ik} - c_{ik}a_{ij}.$$

$$c_{ij,\eta^k} = c_{ij}b_{jk} + c_{ik}c_{kj} + d_{ik}a_{kj} - a_{ij}d_{ik} - c_{ij}b_{ik},$$

$$d_{ij,r^k} = d_{ij}a_{jk} + c_{ik}c_{kj} + d_{ik}b_{kj} - a_{ik}d_{ij} - c_{ik}b_{ij}.$$

$$d_{ii,\eta^k} = c_{ij}d_{jk} + c_{ik}d_{kj} + d_{ij}b_{jk} + d_{ik}b_{kj} - b_{ij}d_{ik} - b_{ik}d_{ij}.$$

# Commuting Flows

The block-diagonal system

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i,$$

where

$$u^{i} = \sum_{m=1}^{N} \beta_{mi}, \ v^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \xi^{m} \beta_{mi}, \ p^{i} = \frac{1}{u^{i}} \left( \sum_{m \neq i} \epsilon_{,\eta^{i}}^{mi} (v^{m} - v^{i}) u^{m} + (\xi^{i})' \right)$$

possesses infinitely many commuting block-diagonal flows

$$r_y^i = w^i r_x^i + q^i \eta_x^i, \quad \eta_y^i = w^i \eta_x^i,$$

where

$$w^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \varphi^{m} \beta_{mi}, \qquad q^{i} = \frac{1}{u^{i}} \left( \sum_{m \neq i} \epsilon_{,\eta^{i}}^{mi} (w^{m} - w^{i}) u^{m} - r^{i} \mu^{i} + \varphi_{,\eta^{i}}^{i} \right).$$

Here  $\mu^i(\eta^i)$  are N arbitrary functions of one variable and the functions  $\varphi^i(\eta^1,\ldots,\eta^N)$  satisfy the relations  $\partial_{\eta^k}\varphi^i=\varepsilon^{ki}\mu^k,\ k\neq i$ . The general commuting flow depends on 2N arbitrary functions of one variable: N

functions (1) (11) plus overs M functions coming from (1) December 2021 27 / 30

#### Conservation Laws

Conservation laws  $h_t=g_{x}$  provide an alternative way to derive integrability conditions for the block-diagonal system

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i.$$

Their existence leads to a system of second-order linear PDEs

$$h_{r^i r^i} = b_i h_{r^i} - a_i h_{\eta^i}, \quad h_{r^i \eta^j} = a_{ji} h_{\eta^j} + c_{ji} h_{r^j} + b_{ij} h_{r^i},$$

$$h_{r^i r^j} = a_{ij} h_{r^i} + a_{ji} h_{r^j}, \quad h_{\eta^i \eta^j} = d_{ij} h_{r^i} + d_{ji} h_{r^j} + b_{ij} h_{\eta^j} + b_{ji} h_{\eta^j},$$

where  $g_{r^i} = v^i h_{r^i}$ ,  $g_{\eta^i} = p^i h_{r^i} + v^i h_{\eta^i}$ .

The general conservation law has the form  $(\sigma^i(\eta^i))$  are arbitrary functions)

$$\left(\sum_{m=1}^N u^m \psi^m(\eta) + \sum_{m=1}^N \sigma^m(\eta^m)\right)_t = \left(\sum_{m=1}^N u^m v^m \psi^m(\eta) + \sum_{m=1}^N \tau^m(\eta^m)\right)_x,$$

where  $(\tau^i)' = (\sigma^i)'\xi^i$  and  $\psi^i_{,\eta^k} = (\sigma^j)'\epsilon^{ik}$ ,  $k \neq i$ . This general conservation law depends on 2N arbitrary functions of one variable: N functions  $\sigma^i(\eta^i)$ , plus extra N functions coming from  $\psi^i$ :

We remind: If the hydrodynamic type system  $u_t = V(u)u_x$  has a commuting flow  $u_y = W(u)u_x$ , where V(u) and W(u) are  $N \times N$  matrices (the commutativity conditions  $u_{ty} = u_{yt}$  impose differential constraints on V and W),

We remind: If the hydrodynamic type system  $u_t = V(u)u_x$  has a commuting flow  $u_y = W(u)u_x$ , where V(u) and W(u) are  $N \times N$  matrices (the commutativity conditions  $u_{ty} = u_{yt}$  impose differential constraints on V and W), then the matrix relation

$$W(u) = I x + V(u) t,$$

where I is the  $N \times N$  identity matrix, defines an implicit solution u(x, t). Note that, due to the commutativity conditions, only N out of the above  $N^2$  relations will be functionally independent.

We remind: If the hydrodynamic type system  $u_t = V(u)u_x$  has a commuting flow  $u_y = W(u)u_x$ , where V(u) and W(u) are  $N \times N$  matrices (the commutativity conditions  $u_{ty} = u_{yt}$  impose differential constraints on V and W), then the matrix relation

$$W(u) = I x + V(u) t,$$

where I is the  $N \times N$  identity matrix, defines an implicit solution u(x,t). Note that, due to the commutativity conditions, only N out of the above  $N^2$  relations will be functionally independent. For commuting block-diagonal systems

$$\begin{split} r_t^i &= v^i r_x^i + p^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i, \\ r_y^i &= w^i r_x^i + q^i \eta_x^i, \quad \eta_y^i = w^i \eta_x^i, \end{split}$$

the hodograph formula becomes

$$w^{i}(r, \eta) = x + v^{i}(r, \eta) t, \qquad q^{i}(r, \eta) = p^{i}(r, \eta) t,$$

which is a system of 2N implicit relations for the 2N dependent variables,

Denote  $\beta_{ik}$  the matrix elements of  $\hat{\beta}$  (indices i and k are allowed to coincide). Then we obtain the following formulae for  $u^i$ ,  $v^i$  and  $p^i$ :

$$u^{i} = \sum_{m=1}^{N} \beta_{mi}, \ v^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \xi^{m} \beta_{mi}, \ p^{i} = \frac{1}{u^{i}} \left( \sum_{m \neq i} \epsilon_{,\eta^{i}}^{mi} (v^{m} - v^{i}) u^{m} + (\xi^{i})' \right)$$

#### Tsarev's Generalised Hodograph Method

Denote  $\beta_{ik}$  the matrix elements of  $\hat{\beta}$  (indices i and k are allowed to coincide). Then we obtain the following formulae for  $u^i$ ,  $v^i$  and  $p^i$ :

$$u^{i} = \sum_{m=1}^{N} \beta_{mi}, \ v^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \xi^{m} \beta_{mi}, \ p^{i} = \frac{1}{u^{i}} \left( \sum_{m \neq i} \epsilon_{,\eta^{i}}^{mi} (v^{m} - v^{i}) u^{m} + (\xi^{i})' \right)$$

Then the general solution of the block-diagonal system

$$\begin{aligned} r_t^i &= v^i r_x^i + p^i \eta_x^i, \\ \eta_t^i &= v^i \eta_x^i, \end{aligned}$$

is determined by

#### Tsarev's Generalised Hodograph Method

Denote  $\beta_{ik}$  the matrix elements of  $\hat{\beta}$  (indices i and k are allowed to coincide). Then we obtain the following formulae for  $u^i$ ,  $v^i$  and  $p^i$ :

$$u^{i} = \sum_{m=1}^{N} \beta_{mi}, \ v^{i} = \frac{1}{u^{i}} \sum_{m=1}^{N} \xi^{m} \beta_{mi}, \ p^{i} = \frac{1}{u^{i}} \left( \sum_{m \neq i} \epsilon_{,\eta^{i}}^{mi} (v^{m} - v^{i}) u^{m} + (\xi^{i})^{i} \right).$$

Then the general solution of the block-diagonal system

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \eta_t^i = v^i \eta_x^i,$$

is determined by

$$r^i = \frac{\varphi'_{,\eta^i} - (\xi^i)'t}{\mu^i}, \qquad \varphi^i(\eta^1, \ldots, \eta^N) = x + \xi^i(\eta^i)t;$$

where  $\mu^{i}(\eta^{i})$  are arbitrary functions of their arguments and the functions  $\varphi^i(\eta^1,\ldots,\eta^N)$  satisfy the relations  $\varphi^i_{,\eta^k}=\epsilon^{ki}(\eta^i,\eta^k)\,\mu^k(\eta^k)$ ,  $i\neq k$ . The last N above equations define  $\eta^i(x,t)$  as implicit functions of x and t; then the first N equations define  $r^i(x,t)$  explicitly.

#### Block-Diagonal Hydrodynamic Type Systems

Now we come back to integrability aspects of quasilinear systems

$$u_t^i = V_k^i(\mathbf{u})u_x^k,$$

whose matrix V consists of N Jordan blocks of size  $2 \times 2$ :

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \eta_t^i = v^i \eta_x^i,$$

 $i=1,\ldots,N$ , where the coefficients  $v^i(r,\eta)$  and  $p^i(r,\eta)$  are functions of the N dependent variables  $r=(r^1,\ldots,r^N)$  and N dependent variables  $\eta=(\eta^1,\ldots,\eta^N)$ .

#### Block-Diagonal Hydrodynamic Type Systems

Now we come back to integrability aspects of quasilinear systems

$$u_t^i = V_k^i(\mathbf{u})u_x^k$$
,

whose matrix V consists of N Jordan blocks of size  $2 \times 2$ :

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \eta_t^i = v^i \eta_x^i,$$

 $i=1,\ldots,N$ , where the coefficients  $v^i(r,\eta)$  and  $p^i(r,\eta)$  are functions of the N dependent variables  $r=(r^1,\ldots,r^N)$  and N dependent variables  $\eta=(\eta^1,\ldots,\eta^N)$ .

We introduced necessary definitions

$$a_i=rac{{oldsymbol v}_{r^i}^i}{{oldsymbol p}^i},\;\;b_i=rac{{oldsymbol v}_{\eta^i}^i-{oldsymbol p}_{r^i}^i}{{oldsymbol p}^i};$$

$$a_{ij} = \frac{v_{r^{j}}^{i}}{v^{j} - v^{i}}, \quad b_{ij} = \frac{v_{\eta^{j}}^{i} - a_{ij}p^{j}}{v^{j} - v^{i}}, \quad c_{ij} = \frac{p_{r^{j}}^{i} + a_{ij}p^{i}}{v^{j} - v^{i}}, \quad d_{ij} = \frac{p_{\eta^{j}}^{i} + b_{ij}p^{i} - c_{ij}p^{j}}{v^{j} - v^{i}}.$$

We introduced necessary definitions

$$a_{i} = \frac{v_{r^{i}}^{i}}{p^{i}}, \quad b_{i} = \frac{v_{\eta^{i}}^{i} - p_{r^{i}}^{i}}{p^{i}};$$

$$a_{ij} = \frac{v_{r^{i}}^{i}}{v_{r^{i}}^{i}}, \quad b_{ij} = \frac{v_{\eta^{i}}^{i} - a_{ij}p^{j}}{v_{r^{i}}^{i}}, \quad c_{ij} = \frac{p_{r^{j}}^{i} + a_{ij}p^{i}}{v_{r^{i}}^{i}}, \quad d_{ij} = \frac{p_{\eta^{i}}^{i} + b_{ij}p^{i} - c_{ij}p^{j}}{v_{r^{i}}^{i}}$$

for block-diagonalisable integrable hydrodynamic type systems

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i.$$

We introduced necessary definitions

$$a_i = rac{v_{r^i}^i}{p^i}, \quad b_i = rac{v_{\eta^i}^i - p_{r^i}^i}{p^i};$$

$$a_{ij} = rac{v_{ri}^i}{v^j - v^i}, \quad b_{ij} = rac{v_{\eta^j}^i - a_{ij}p^j}{v^j - v^i}, \quad c_{ij} = rac{p_{r^j}^i + a_{ij}p^i}{v^j - v^i}, \quad d_{ij} = rac{p_{\eta^j}^i + b_{ij}p^i - c_{ij}p^j}{v^j - v^i}$$

for block-diagonalisable integrable hydrodynamic type systems

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i.$$

This class of hydrodynamic systems is invariant under changes of variables of the form

$$r^i \to f^i(r^i, \eta^i), \qquad \eta^i \to g^i(\eta^i).$$



We introduced necessary definitions

$$a_i=rac{v_{r^i}^i}{p^i}, \quad b_i=rac{v_{\eta^i}^i-p_{r^i}^i}{p^i};$$

$$a_{ij} = \frac{v_{rj}^{i}}{v^{j} - v^{i}}, \quad b_{ij} = \frac{v_{\eta^{j}}^{i} - a_{ij}p^{j}}{v^{j} - v^{i}}, \quad c_{ij} = \frac{p_{r^{j}}^{i} + a_{ij}p^{i}}{v^{j} - v^{i}}, \quad d_{ij} = \frac{p_{\eta^{j}}^{i} + b_{ij}p^{i} - c_{ij}p^{j}}{v^{j} - v^{i}}$$

for block-diagonalisable integrable hydrodynamic type systems

$$r_t^i = v^i r_x^i + p^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i.$$

This class of hydrodynamic systems is invariant under changes of variables of the form

$$r^i \to f^i(r^i, \eta^i), \qquad \eta^i \to g^i(\eta^i).$$

Now we can split this class of integrable systems to two distinguish families: genuinely nonlinear and linearly-degenerate.

We introduced necessary definitions

$$a_{i} = \frac{v_{r^{i}}^{i}}{p^{i}}, \quad b_{i} = \frac{v_{\eta^{i}}^{i} - p_{r^{i}}^{i}}{p^{i}};$$

$$a_{ij} = \frac{v_{r^{j}}^{i}}{v^{j} - v^{i}}, \quad b_{ij} = \frac{v_{\eta^{j}}^{i} - a_{ij}p^{j}}{v^{j} - v^{i}}, \quad c_{ij} = \frac{p_{r^{j}}^{i} + a_{ij}p^{i}}{v^{j} - v^{i}}, \quad d_{ij} = \frac{p_{\eta^{j}}^{i} + b_{ij}p^{i} - c_{ij}p^{j}}{v^{j} - v^{i}}.$$

$$a_{ij} = rac{v_{rj}^i}{v^j - v^i}, \quad b_{ij} = rac{v_{\eta^j}^i - a_{ij}p^j}{v^j - v^i}, \quad c_{ij} = rac{p_{r^j}^i + a_{ij}p^i}{v^j - v^i}, \quad d_{ij} = rac{p_{\eta^j}^i + b_{ij}p^i - c_{ij}p^j}{v^j - v^i}$$

We introduced necessary definitions

$$a_i=rac{v_{r^i}^i}{p^i}, \quad b_i=rac{v_{\eta^i}^i-p_{r^i}^i}{p^i};$$

$$a_{ij} = \frac{v_{r^j}^i}{v^j - v^i}, \quad b_{ij} = \frac{v_{\eta^j}^i - a_{ij}p^j}{v^j - v^i}, \quad c_{ij} = \frac{p_{r^j}^i + a_{ij}p^i}{v^j - v^i}, \quad d_{ij} = \frac{p_{\eta^j}^i + b_{ij}p^i - c_{ij}p^j}{v^j - v^i}.$$

Here we remind that two first integrability conditions are

$$a_{i,r^j} = 0, \qquad a_{i,\eta^j} = 0.$$

Taking into account that the class of block-diagonalisable hydrodynamic systems is invariant under changes of variables of the form

$$r^i \to f^i(r^i, \eta^i), \qquad \eta^i \to g^i(\eta^i),$$

we can choose  $a_i = 1$  or  $a_i = 0$  for genuinely nonlinear and linearly-degenerate systems respectively.

#### Linearly-Degenerate Hydrodynamic Type Systems

This means: if we choose  $a_i = 0$ , then

$$v_{r^i}^i = 0$$

from the first integrability conditions

$$a_i = \frac{v_{r^i}^i}{p^i}.$$

Such class of hydrodynamic type systems is the so-called Darboux integrable.

#### Linearly-Degenerate Hydrodynamic Type Systems

This means: if we choose  $a_i = 0$ , then

$$v_{r^i}^i = 0$$

from the first integrability conditions

$$a_i = \frac{v_{r^i}^i}{p^i}.$$

Such class of hydrodynamic type systems is the so-called Darboux integrable.

We believe that these hydrodynamic type systems possess global solutions.

If we choose  $a_i=1$ , we call these block-diagonal hydrodynamic type systems as genuinely nonlinear. In this case, the first integrability condition

$$a_i = \frac{v_{r^i}^i}{p^i}$$

implies the relationship

$$p^i = v^i_{r^i}$$
.

If we choose  $a_i=1$ , we call these block-diagonal hydrodynamic type systems as genuinely nonlinear. In this case, the first integrability condition

$$a_i = \frac{v_{r^i}^i}{p^i}$$

implies the relationship

$$p^i = v^i_{r^i}$$
.

Then all computations will be significantly simplified.

If we choose  $a_i = 1$ , we call these block-diagonal hydrodynamic type systems as genuinely nonlinear. In this case, the first integrability condition

$$a_i = \frac{v_{r^i}^i}{p^i}$$

implies the relationship

$$p^i = v^i_{r^i}.$$

If we choose  $a_i = 1$ , we call these block-diagonal hydrodynamic type systems as genuinely nonlinear. In this case, the first integrability condition

$$a_i = \frac{v_{r^i}^i}{p^i}$$

implies the relationship

$$p^i=v^i_{r^i}.$$

Then all computations will be significantly simplified. In this case we obtain  $q^i=w^i_{r^i}$ , and the linear system describing commuting flows take the form

$$w_{\eta^i}^i = w_{r^i r^i}^i + b_i w_{r^i}^i, \quad w_{r^j}^i = a_{ij} (w^j - w^i), \quad w_{\eta^j}^i = a_{ij} w_{r^j}^j + b_{ij} (w^j - w^i).$$

If we choose  $a_i=1$ , we call these block-diagonal hydrodynamic type systems as genuinely nonlinear. In this case we obtain  $q^i=w^i_{r^i}$ , and the linear system describing commuting flows takes the form (Modified KP hierarchy)

$$w_{\eta^i}^i = w_{r^i r^i}^i + b_i w_{r^i}^i, \quad w_{r^j}^i = a_{ij} (w^j - w^i), \quad w_{\eta^j}^i = a_{ij} w_{r^j}^j + b_{ij} (w^j - w^i).$$

If we choose  $a_i=1$ , we call these block-diagonal hydrodynamic type systems as genuinely nonlinear. In this case we obtain  $q^i=w^i_{r^i}$ , and the linear system describing commuting flows takes the form (Modified KP hierarchy)

$$w_{\eta^i}^i = w_{r^i r^i}^i + b_i w_{r^i}^i, \quad w_{r^j}^i = a_{ij} (w^j - w^i), \quad w_{\eta^j}^i = a_{ij} w_{r^j}^j + b_{ij} (w^j - w^i).$$

Also, all conservation law densities  $h(\mathbf{r}, \pmb{\eta})$  satisfy adjoint linear system

$$h_{r^i r^i} = b_i h_{r^i} - h_{\eta^i}, \quad h_{r^i r^j} = a_{ij} h_{r^i} + a_{ji} h_{r^j}.$$

The compatibility conditions of both above linear systems can be written in the form

$$\begin{split} \partial_{r^k} a_{ij} &= a_{ik} a_{kj} + a_{ij} a_{jk} - a_{ij} a_{ik}, \\ \partial_{\eta^i} a_{ij} &= \partial_{r^i} (\partial_{r^i} a_{ij} - 2 a_{ij} a_{ji} + b_i a_{ij}) - a_{ij} \partial_{r^i} b_i, \quad \partial_{\eta^j} a_{ij} &= \partial_{r^j} b_{ij}, \quad \partial_{\eta^k} a_{ij} &= \partial_{r^j} b_{ik}, \\ \partial_{r^j} b_i &= 2 \partial_{r^i} a_{ij}, \quad \partial_{\eta^j} b_i &= 2 \partial_{r^i} b_{ij}, \end{split}$$

where  $b_{ij} = b_j a_{ij} - a_{ij}^2 - \partial_{r^j} a_{ij}$ . This provides a compact formulation of integrability conditions.

Thus, we come to observation: any particular solution  $v^i({\bf r}, {\pmb \eta})$  of the Modified KP hierarchy

$$w^i_{\eta^i} = w^i_{r^i r^i} + b_i w^i_{r^i}, \quad w^i_{r^j} = a_{ij} (w^j - w^i), \quad w^i_{\eta^j} = a_{ij} w^j_{r^j} + b_{ij} (w^j - w^i)$$

Thus, we come to observation: any particular solution  $v^i({\bf r},\eta)$  of the Modified KP hierarchy

$$w_{\eta^i}^i = w_{r^i r^i}^i + b_i w_{r^i}^i, \quad w_{r^j}^i = a_{ij} (w^j - w^i), \quad w_{\eta^j}^i = a_{ij} w_{r^j}^j + b_{ij} (w^j - w^i)$$

determines the block-diagonal hydrodynamic type system (we remind that  $p^i = v^i_{-i}$ )

$$r_t^i = v^i r_x^i + v_{r^i}^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i.$$

Thus, we come to observation: any particular solution  $\mathbf{v}^i(\mathbf{r}, \pmb{\eta})$  of the Modified KP hierarchy

$$w^i_{\eta^i} = w^i_{r^i r^i} + b_i w^i_{r^i}, \ \ w^i_{r^j} = a_{ij} (w^j - w^i), \ \ w^i_{\eta^j} = a_{ij} w^j_{r^j} + b_{ij} (w^j - w^i)$$

determines the block-diagonal hydrodynamic type system (we remind that  $p^i = v_{ri}^i$ )

$$r_t^i = v^i r_x^i + v_{r^i}^i \eta_x^i, \quad \eta_t^i = v^i \eta_x^i.$$

Any other particular solution  $w^i(\mathbf{r}, \boldsymbol{\eta})$  of the Modified KP hierarchy determines corresponding particular solution (by virtue of Tsarev's Generalised Hodograph Method)

$$w^i(r,\eta) = x + v^i(r,\eta) t, \qquad w^i_{r^i} = t v^i_{r^i},$$

together with the commuting block-diagonal hydrodynamic type system (we remind that  $q^i=w^i_{r^i}$ )

$$r_y^i = w^i r_x^i + w_{r^i}^i \eta_x^i, \quad \eta_y^i = w^i \eta_x^i.$$

#### Some References



Kinetic equation for a soliton gas and its hydrodynamic reductions, Journal of Nonlinear Science **21**, No. 2 (2008) 151-191. https://arxiv.org/abs/0802.1261

M.V. Pavlov, V.B. Taranov, G.A. El,

Generalized hydrodynamic reductions of the kinetic equation for a soliton gas, Theor. and Math. Phys. **171**, No. 2, (2012) 675-682. https://arxiv.org/abs/1105.4859

🔋 E.V. Ferapontov, M.V. Pavlov,

Kinetic equation for soliton gas: integrable reductions.

https://arxiv.org/abs/2109.11962

B.A. Dubrovin, M.V. Pavlov, S.A. Zykov,

Linearly Degenerate Hamiltonian PDEs and a New Class of Solutions to the WDVV Associativity Equations, Functional Analysis and Its Applications **45**, No. 4 (2011) 278-290.