Exceptional collections on Grassmannians

Maxim Smirnov
University of Augsburg and MPIM Bonn

December 1, 2021

based on joint work with Alexander Kuznetsov

Exceptional collections

X – smooth projective variety over $\mathbb C$

 $D^b(X)$ – bounded derived category of coherent sheaves on X

1. An object E of $D^b(X)$ is called **exceptional** iff

$$\operatorname{\mathsf{Hom}}(E,E)=\mathbb{C} id_E$$
 and $\operatorname{\mathsf{Ext}}^i(E,E)=0 \ \forall i\neq 0.$

2. A sequence of exceptional objects E_1, \ldots, E_n is called an **exceptional collection** iff

$$\operatorname{Ext}^k(E_i, E_j) = 0 \quad \text{for } i > j \quad \forall k.$$

3. An exceptional collection E_1, \ldots, E_n is said to be **full** iff it generates $D^b(X)$ in some sense. In this case we write

$$D^b(X) = \langle E_1, \ldots, E_n \rangle.$$

More precisely, the smallest full triangulated subcategory containing all E_1, \ldots, E_n should be equivalent to $D^b(X)$.

Fullness is a very important, but somewhat technical aspect of this story and we'll mostly ignore it today.

Examples of exceptional collections

1. Projective spaces \mathbb{P}^n (Beilinson, ≈ 1978)

$$D^b(\mathbb{P}^n) = \langle \emptyset, \emptyset(1), \dots, \emptyset(n) \rangle$$

2. Grassmannians G(k, n) and quadrics Q^n (Kapranov, ≈ 1983) For G(2, 4), which is both a Grassmannian and a quadric, Kapranov's collection becomes

$$D^b(\mathsf{G}(2,4)) = \langle 0, \mathcal{U}^*, S^2\mathcal{U}^*, 0(1), \mathcal{U}^*(1), 0(2) \rangle$$

3. More examples later!

Remark. In these examples checking the exceptionality of the collection can be done relatively easily. For \mathbb{P}^n this is just the standard computation of cohomology of line bundles on \mathbb{P}^n . For G(k,n) one can apply Borel-Weil-Bott theorem. As is usual in this business, the difficult part is to prove fullness!

Simple consequences of having a FEC

Assume that $D^b(X)$ has a full exceptional collection

$$D^b(X) = \langle E_1, \ldots, E_n \rangle.$$

Then we have:

- 1. The Hodge numbers $h^{p,q}(X) = 0$ for $p \neq q$.
- 2. $K_0(X)$ is a free abelian group of rank n and classes $[E_1], \ldots, [E_n]$ form a basis.
- 3. The number of exceptional objects in any full exceptional collection in $D^b(X)$ is the same and is equal to

$$n = \operatorname{rk} K_0(X) = \dim_{\mathbb{C}} H^*(X, \mathbb{C}).$$

Exceptional collections on G/P: general conjecture

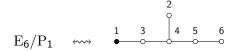
G is a simple simply connected algebraic group \longleftrightarrow Dynkin diagram $P \subset G$ is a maximal parabolic subgroup \longleftrightarrow choice of a vertex

Example:

▶ Symplectic isotropic Grassmannian IG(2, 2n)

$$\mathsf{IG}(2,2n) = \mathrm{C}_n/\mathrm{P}_2 \quad \Longleftrightarrow \quad \overset{1}{\circ} \quad \overset{2}{\circ} \quad \overset{3}{\circ} \quad \overset{n-1}{\circ} \quad \overset{n}{\circ}$$

ightharpoonup Cayley plane ${
m E_6/P_1}$



Folklore Conjecture: For any rational homogeneous space G/P the derived category $D^b(G/P)$ has a full exceptional collection.

Exceptional collections on G/P: methods

The main source of exceptional objects on $\mathrm{G/P}$:

G-equivariant vector bundles

There is a monoidal equivalence of categories

$$VB^{G}(G/P) \rightarrow Rep P$$
 $F \mapsto F_{[P]}$

Particularly nice are **irreducible** G-equivariant vector bundles, i.e. those bundles that correspond to irreducible representations of the Levi subgroup $L \subset P$.

For irreducible G-equivariant vector bundles there are very efficient ways to check exceptionality (Borel-Weil-Bott theorem).

Unfortunately irreducible bundles do not suffice! And one has to work with arbitrary representations of P, which is much more complicated.

Exceptional collections on G/P: results I

The are many known results on $D^b(G/P)$ available in the literature, but the picture is still very far from being complete.

Classical Dynkin types:

- ▶ Type A: $A_n/P_k = G(k, n+1)$ [Kapranov, ≈ 1983]
- **►** Type *B*:
 - $ightharpoonup \mathrm{B}_n/\mathrm{P}_1=\mathbb{P}^{2n-1}$ [Beilinson, pprox 1978]
 - ► $B_n/P_2 = OG(2, 2n + 1)$ [Kuznetsov, 2005]
- **►** Type *C*:
 - $ightharpoonup \mathrm{C}_n/\mathrm{P}_1=\mathit{Q}_{2n-1}$ [Kapranov, ≈ 1983]
 - $Arr C_n/P_2 = IG(2,2n)$ [Kuznetsov, 2005]
 - $ightharpoonup \mathrm{C}_n/\mathrm{P}_n = \mathrm{IG}(n,2n)$ [Fonarev, 2019]
- ► Types *D*:
 - $ightharpoonup \mathrm{D}_n/\mathrm{P}_1 = \mathit{Q}_{2n-2} \quad [\mathsf{Kapranov}, \approx 1983]$
 - ▶ $D_n/P_2 = OG(2, 2n)$ [Kuznetsov–S., 2020]

Exceptional collections on G/P: results II

Classical Dynkin types (cont.):

Remark 1. Before I have only listed series of examples, but there are also some isolated cases that played an important role in the development of the subject:

- ► IG(3,6) [Samokhin, 2001]
- ► IG(2,6) [Samokhin, 2006]
- ightharpoonup IG(4, 8) and IG(5, 10) [Samokhin–Polishchuk, 2009]
- ► IG(3,8) [Guseva, 2018]
- ► IG(3, 10) [Novikov, 2020]
- ...(apologies!)

Remark 2. Major progress in this field is [Kuznetsov–Polishchuk, 2011], where they propose candidates for full exceptional collections in all classical types. Fullness of these collections is unknown in general.

Exceptional collections on G/P: results III

Exceptional Dynkin types:

- ▶ Types E_6, E_7, E_8 : E_6/P_1 [Faenzi–Manivel, 2012]
- ► Type F₄:
 - ightharpoonup F₄/P₁ [S., 2021]
 - ightharpoonup F₄/P₄ [Belmans–Kuznetsov–S., 2020]
- ► Type G₂:
 - ightharpoonup G_2/P_1 [Kuznetsov and Razin, 2006 and 19??]
 - $G_2/P_2 = Q_5$ [Kapranov, ≈ 1983]

Interesting directions. One can ask the same questions for G/P in positive charachteristic, or over non-closed fields, or even over $Spec(\mathbb{Z})$. There are results in all these directions, but I won't be able to give a survey on them here.

Dubrovin's conjecture

X – smooth projective Fano variety over \mathbb{C} .

Conjecture (Dubrovin, ICM 1998).

- 1. $D^b(X)$ has a full exceptional collection if and only if the big quantum cohomology BQH(X) is generically semisimple.
- 2. Further conjectures relating the Gram matrix of the exceptional collection to the Stokes matrix of some differential equation given by BQH(X)...

Remark. This conjecture can be motivated/explained by sufficiently optimistic formulations of the HMS.

Quantum cohomology I

X – smooth projective Fano variety over \mathbb{C} .

Additional assumptions: Pic $X = \mathbb{Z}$ and $H^{odd}(X, \mathbb{C}) = 0$.

Then, $H^*(X,\mathbb{C})$ is a finite dimensional commutative algebra.

Genus zero Gromov-Witten invariants \leadsto deformation of the classical cup-product \lor \leadsto **quantum product** \star

Definition. Fix a graded basis $\Delta_0, \ldots, \Delta_s$ in $H^*(X, \mathbb{C})$ and dual linear coordinates t_0, \ldots, t_s . It is customary to choose $\Delta_0 = 1$.

For cohomology classes we use the Chow grading, i.e. we divide the topological degree by two.

For variables t_i we set $\deg(t_i) = 1 - \deg(\Delta_i)$.

Let q be a formal variable of degree deg(q) = index(X).

Quantum cohomology II: definition continued

The genus zero **Gromov–Witten potential** of X is a formal power series $F \in \mathbb{C}[[t_0, \ldots, t_s]]$ defined by the formula

$$F(t_0,\ldots,t_s)=\sum_{(i_0,\ldots,i_s)}\langle\Delta_0^{\otimes i_0},\ldots,\Delta_s^{\otimes i_s}\rangle\frac{t_0^{i_0}\ldots t_s^{i_s}}{i_0!\ldots i_s!},$$

where

$$\langle \Delta_0^{\otimes i_0}, \dots, \Delta_s^{\otimes i_s} \rangle = \sum_{d=0}^{\infty} \langle \Delta_0^{\otimes i_0}, \dots, \Delta_s^{\otimes i_s} \rangle_d q^d,$$

and $\langle \Delta_0^{\otimes i_0}, \dots, \Delta_s^{\otimes i_s} \rangle_d$ are rational numbers called Gromov–Witten invariants of X of degree d.

Since X is assumed to be Fano, we can put q=1 in the above formulas. But I will write it to keep track of the grading.

With respect to the grading defined above F is homogeneous of degree $3 - \dim X$.

Quantum cohomology III: definition continued

The big quantum cohomology ring BQH(X) is

$$\mathsf{BQH}(X) \coloneqq H^*(X,\mathbb{C}) \otimes_{\mathbb{C}} \mathbb{C}[[t_0,\ldots,t_s]]$$

with a ring structure defined by

$$\Delta_a \star \Delta_b = \sum_c \frac{\partial^3 F}{\partial t_a \partial t_b \partial t_c} \Delta^c,$$

where $\Delta^0, \ldots, \Delta^s$ is the basis dual to $\Delta_0, \ldots, \Delta_s$ with respect to the Poincaré pairing.

The **small quantum cohomology** ring QH(X) is the quotient of BQH(X) with respect to the ideal (t_0, \ldots, t_s) . Equivalently, the small quantum cohomology QH(X) = $H^*(X, \mathbb{C})$ as a vector spaces and the product is defined by

$$\Delta_a \circ \Delta_b = \sum_c \langle \Delta_a, \Delta_b, \Delta_c \rangle \Delta^c.$$

Again, we are setting q = 1 everywhere.

Example

Projective spaces \mathbb{P}^n . The presentation for the classical cohomology of \mathbb{P}^n is

$$H^*(\mathbb{P}^n,\mathbb{C})=\mathbb{C}[h]/h^{n+1}.$$

Since the relation is in degree n+1 and deg(q)=n+1, up to a scalar there is a unique possibility to obtain a presentation for the small quantum cohomology

$$QH(\mathbb{P}^n) = \mathbb{C}[h]/h^{n+1} - q,$$

where we as usual set q = 1.

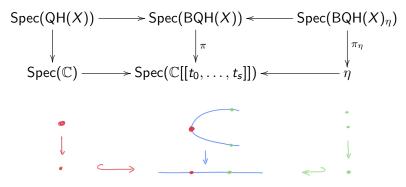
Semisimplicity. The classical cohomology algebra $H^*(\mathbb{P}^n,\mathbb{C})$ is nilpotent, but the small quantum cohomology $QH(\mathbb{P}^n)$ is semisimple, i.e. it decomposes into the direct product

$$QH(\mathbb{P}^n) = \mathbb{C}[h]/h^{n+1} - 1 = \mathbb{C} \times \mathbb{C} \times \cdots \times \mathbb{C},$$

or, in other words, $QH(\mathbb{P}^n)$ has no nilpotent elements.

Generic semisimplicity

We think of BQH(X) as a formal family of finite dimensional commutative algebras (or 0-dimensional schemes), whose special fiber is the small quantum cohomology:



Definition. We say that BQH(X) is generically semisimple, if the generic fiber $BQH(X)_n$ is a semisimple algebra.

Remark. If QH(X) is semisimple, then BQH(X) is generically semisimple, but the converse is false.

Back to Dubrovin's conjecture

Recall the original statement:

$$D^b(X)$$
 has a f.e.c. \iff BQH(X) is generically semisimple

Where do we want to go?

- 1. We have little understanding about BQH(X), as it is usually very hard to compute in practice.
- 2. We understand QH(X) much better. There are lots of examples in the literature.
- 3. **Question:** Can we use the structure of QH(X) to make some finer conjectures about $D^b(X)$?
- 4. **Answer:** Lefschetz collections seem to work very well for this purpose!

Lefschetz exceptional collections

This is a special type of exceptional collections introduced by Alexander Kuznetsov (around 2006) in his work on homological projective duality.

Let X be a smooth projective variety endowed with an (ample) line bundle $\mathcal{O}(1)$.

▶ A **Lefschetz collection** with respect to O(1) is an exceptional collection, which has a block structure

$$\underbrace{E_1, E_2, \ldots, E_{\sigma_0}}_{::}; \underbrace{E_1(1), E_2(1), \ldots, E_{\sigma_1}(1)}_{:::}; \ldots; \underbrace{E_1(m), E_2(m), \ldots, E_{\sigma_m}(m)}_{::::}$$

where $\sigma = (\sigma_0 \ge \sigma_1 \ge \cdots \ge \sigma_m \ge 0)$ is a non-increasing sequence of non-negative integers called the **support** partition of the collection.

▶ If $\sigma_0 = \sigma_1 = \cdots = \sigma_m$, then the corresponding Lefschetz collection is called **rectangular**.

Examples of Lefschetz collections

1. Beilinson's collection

$$D^b(\mathbb{P}^n) = \langle 0; O(1); \ldots; O(n) \rangle$$

is Lefschetz with the starting block (0) and support partition $1, \ldots, 1$.

2. Kapranov's collection

$$D^b(\mathsf{G}(2,4)) = \langle 0, \mathcal{U}^*, S^2\mathcal{U}^*; \, 0(1), \mathcal{U}^*(1); \, 0(2) \rangle$$

is Lefschetz with the starting block $(\mathfrak{O}, \mathcal{U}^*, S^2\mathcal{U}^*)$ and support partition 3, 2, 1.

3. For G(2,4) one can make the starting block smaller by taking $(\mathfrak{O},\mathcal{U}^*)$ with the support partition 2,2,1,1

$$D^b(\mathsf{G}(2,4)) = \langle \mathcal{O}, \mathcal{U}^*; \, \mathcal{O}(1), \mathcal{U}^*(1); \, \mathcal{O}(2); \, \mathcal{O}(3) \rangle$$

Lefschetz collections with the smallest possible starting block are called **minimal**.

Residual category of a Lefschetz collection

Let X and $\mathcal{O}(1)$ be as before, and consider a Lefschetz exceptional collection

$$E_1, E_2, \ldots, E_{\sigma_0}; E_1(1), E_2(1), \ldots, E_{\sigma_1}(1); \ldots; E_1(m), E_2(m), \ldots, E_{\sigma_m}(m)$$

We can take its rectangular part

$$E_1, E_2, \ldots, E_{\sigma_m}; \ldots; E_1(m), E_2(m), \ldots, E_{\sigma_m}(m).$$

and define the **residual category** of this Lefschetz collection to be the subcategory of $D^b(X)$ left orthogonal to the rectangular part:

$$\mathcal{R} = \left\langle E_1, E_2, \dots, E_{\sigma_m}; \dots; E_1(m), E_2(m), \dots, E_{\sigma_m}(m) \right\rangle^{\perp}.$$

Thus, we have a semiorthogonal decomposition

$$D^b(X) = \Big\langle \mathcal{R} ; E_1, E_2, \ldots, E_{\sigma_m}; \ldots; E_1(m), E_2(m), \ldots, E_{\sigma_m}(m) \Big\rangle.$$

The residual category is zero if and only if (E_{\bullet}, σ) is full and rectangular.

Residual category for G(2,4)

Consdier the minimal Lefschetz collection on G(2,4)

$$D^b(\mathsf{G}(2,4)) = \langle 0, \mathbf{U}^*; 0(1), \mathbf{U}^*(1); 0(2); 0(3) \rangle.$$

Objects not belonging to the rectangular part are highlighted in red. Projecting them into the residual category $\mathcal R$ we obtain the exceptional collection

$$D^b(\mathsf{G}(2,4)) = \langle \textbf{A}, \textbf{B}; 0; 0(1); 0(2); 0(3) \rangle \quad \text{and} \quad \mathfrak{R} = \langle \textbf{A}, \textbf{B} \rangle.$$

General feature: Projecting the objects not belonging to the rectangular part into \mathcal{R} gives rise to an exceptional collection in \mathcal{R} . Technical name for this is *mutation of exceptional collections*.

Interesting phenomenon for G(2,4): Since A,B form an exceptional pair, we necessarily have $\operatorname{Ext}^{\bullet}(B,A)=0$. Surprisingly we also have

$$\operatorname{Ext}^{\bullet}(A,B)=0.$$

Thus, A and B are completely orthogonal!

Residual category for IG(2,6)

The simplest interesting example of X for which QH(X) is not semisimple is the symplectic isotropic Grassmannians IG(2,6).

A minimal Lefschetz collection for IG(2,6) has been constructed by Alexander Kuznetsov (\approx 2005).

$$D^{b}(\mathsf{IG}(2,6)) = \langle \mathcal{O}, \mathcal{U}^{*}, S^{2}\mathcal{U}^{*}, \mathcal{O}(1), \mathcal{U}^{*}(1), S^{2}\mathcal{U}^{*}(1), \\ \mathcal{O}(2), \mathcal{U}^{*}(2), \mathcal{O}(3), \mathcal{U}^{*}(3), \mathcal{O}(4), \mathcal{U}^{*}(4) \rangle.$$

Mutating the red objects into the residual category we get

$$\mathcal{R} = \langle A, B \rangle$$
 and $\operatorname{Ext}^i(A, B) = \begin{cases} \mathbb{C} & \text{for } i = 0, \\ 0 & \text{otherwise.} \end{cases}$

This implies that we have $\mathcal{R} \simeq D^b(A_2)$.

This matches perfectly with the structure of QH(IG(2,6))!

Small quantum cohomology of IG(2,6)

Theorem (Buch–Kresch–Tamvakis, 2009). The small quantum cohomology of IG(2,6) has the following presentation

$$\mathsf{QH}(\mathsf{IG}(2,6)) = \mathbb{C}[\sigma_1, \sigma_2, \sigma_3, \sigma_4]/(\Delta_3, \Delta_4, \Sigma_4, \Sigma_6),$$

where

$$\Delta_{3} = \begin{vmatrix} \sigma_{1} & \sigma_{2} & \sigma_{3} \\ 1 & \sigma_{1} & \sigma_{2} \\ 0 & 1 & \sigma_{1} \end{vmatrix}, \quad \Delta_{4} = \begin{vmatrix} \sigma_{1} & \sigma_{2} & \sigma_{3} & \sigma_{4} \\ 1 & \sigma_{1} & \sigma_{2} & \sigma_{3} \\ 0 & 1 & \sigma_{1} & \sigma_{2} \\ 0 & 0 & 1 & \sigma_{1} \end{vmatrix},$$

$$\Sigma_{4} = \sigma_{2}^{2} - 2\sigma_{3}\sigma_{1} + 2\sigma_{4}, \quad \Sigma_{6} = \sigma_{3}^{2} - 2\sigma_{4}\sigma_{2} + q\sigma_{1}.$$

Here $\sigma_i = c_i(Q) \in H^*(IG(2,6))$ are the so called special Schubert classes, and Q is the tautological quotient bundle.

The value of q does not play much role here as long as $q \neq 0$. So we fix q = 1, as usual.

Fat points of the small quantum cohomology of IG(2,6)

- ▶ QH(IG(2,6)) is not semisimple (i.e. has nilpotent elements)
- ► How can we see that?
 - View QH(IG(2,6)) = $\mathbb{C}[\sigma_1, \sigma_2, \sigma_3, \sigma_4]/(\Delta_3, \Delta_4, \Sigma_4, \Sigma_6)$ as the algebra of functions on a finite set of (fat) points $Z \subset \mathbb{C}^4$ with coordinates $\sigma_1, \ldots, \sigma_4$.
 - ► The origin $P = (0,0,0,0) \in \mathbb{C}^4$ is a solution of the system defining QH(IG(2,6)), i.e. $P \in Z$.
 - One computes easily the tangent space to Z at P

$$T_PZ = \{\sigma_3 = \sigma_4 = \sigma_1 = 0\} \subset \mathbb{C}^4.$$

- Thus, we see that dim $T_PZ = 1$, whereas dim Z = 0. Therefore, P is not a smooth point of Z, i.e. there are nilpotents!
- ▶ One can show that QH(IG(2,6)) decomposes into the product

$$\mathsf{QH}(\mathsf{IG}(2,6)) \simeq \mathbb{C} \times \cdots \times \mathbb{C} \times \mathbb{C}[\varepsilon]/\varepsilon^2,$$

Some notation

Let us define the **quantum spectrum** of X as

$$QS_X := Spec(QH(X)).$$

This finite scheme has μ_m -action, where m is the **index** of X.

The **anticanonical class** $-K_X \in H^*(X)$ defines a map

$$\kappa \colon \mathsf{QS}_X \to \mathbb{A}^1$$
,

which is $\mu_{\textit{m}}$ -equivariant with respect to the standard action on \mathbb{A}^1 .

Finally we define

$$\mathsf{QS}_X^{\times} \coloneqq \kappa^{-1}(\mathbb{A}^1 \setminus \{0\}) \quad \mathsf{and} \quad \mathsf{QS}_X^{\circ} \coloneqq \mathsf{QS}_X \setminus \mathsf{QS}_X^{\times}.$$

Remark. In terms of LG models, the scheme QS_X corresponds to the critical locus of the LG potential and the map κ corresponds to the restriction of the LG potential to its critical locus.

Conjecture

Conjecture (Kuznetsov-S.). Let X be a Fano variety of index m and assume that the big quantum cohomology BQH(X) is generically semisimple.

- 1. There is an exceptional collection E_1, \ldots, E_k in $D^b(X)$, where k is the length of QS_X^{\times} divided by m, which extends to a rectangular Lefschetz collection in $D^b(X)$.
- 2. The residual category $\mathcal R$ of this collection has a completely orthogonal decomposition

$$\mathcal{R} = \bigoplus_{\xi \in \mathsf{QS}_X^{\circ}} \mathcal{R}_{\xi}$$

with components indexed by closed points $\xi \in QS_X^\circ$; moreover, the component \mathcal{R}_ξ of \mathcal{R} is generated by an exceptional collection of length equal to the length of the localization $(QS_X^\circ)_\xi$ at ξ .

Remarks

Semisimple QH(X): in this case QS $_X^\circ$ is reduced and the residual category $\mathcal R$ should be generated by a completely orthogonal exceptional collection, whose objects are indexed by the closed points $\xi \in \mathsf{QS}_X^\circ$. This happens for $\mathsf{G}(k,n)$.

Structure of components \mathcal{R}_{ξ} : In general one expects \mathcal{R}_{ξ} to be equivalent to the Fukaya-Seidel category of the corresponding critical point of the central fiber of an appropriate LG model.

Coadjoint varieties: Special class of homogeneous spaces $\mathrm{G/P}$. There is exactly one varietiy for each Dynkin type. For types BCD we have

type
$$B_n$$
: Q_{2n-1} , type C_n : $IG(2,2n)$, type D_n : $OG(2,2n)$.

For coadjoint varieties QS_X° has one point and we expect

$$\mathcal{R} = \mathcal{R}_{\mathcal{E}} = D^b(\operatorname{\mathsf{Rep}} Q),$$

where the quiver Q obtained by taking the **subdiagram of short roots** of the Dynkin diagram of G (for C_n this gives A_{n-1}).

Known examples

- 1. Cases with semisimple QH(X):
 - 1.1 G(k, n) either if k, n are coprime or k = p and n = pm. In general we expect this to be true for the minimal Lefschetz collections constructed by Fonarev for any G(k, n).
 - 1.2 Quadrics follows from Kapranov's work.
 - 1.3 OG(2, 2n + 1) follows from Kuznetsov's work.
 - 1.4 Some sporadic examples:
 - $ightharpoonup G_2/P_2$ by Kuznetsov
 - ► IG(3,8) by Guseva
 - ► IG(3,10) by Novikov ► Caley plane E_6/P_1 is a combination of Faenzi–Manivel and
 - Belmans–Kuznetsov–S.

 ► IG(4,8) and IG(5,10) should follow from

Polishchuk-Samokhin and Fonarev, but it is not written down.

- ightharpoonup F_4/P_1 by S.
- 2. Cases with non-semisimple QH(X):
 - 2.1 IG(2,2n) by Kuznetsov
 - 2.2 OG(2, 2n) by Kuznetsov–S.
 - 2.3 F₄/P₄ by Belmans–Kuznetsov–S.

All these cases are examples of coadjoint varieties.

Thank you!