Holomorphic endomorphisms of \mathbb{C}^n and countable subsets

Boris Bilich

Laboratory on algebraic transformation groups HSE University

October 20, 2021

Main results

Let n > 1. We consider holomoprhic endomorphisms of \mathbb{C}^n .

Theorem

Let $\{p_j\}$ be a discrete sequence and $\{w_j\}$ be an arbitrary sequence in \mathbb{C}^n . There exists a holomorphic map $\Phi \colon \mathbb{C}^n \to \mathbb{C}^n$ such that $\Phi(p_j) = w_j$ and $(J\Phi)(z) = 1$ for all $z \in \mathbb{C}^n$.

Theorem

If X and Y are countable dense subsets of \mathbb{C}^n , then there is $F \in \operatorname{Aut}(\mathbb{C}^n)$ so that F(X) = Y and $JF \equiv 1$.

Theorem

Let $N = \{e_1, 2e_1, 3e_1, \dots\}$ be an arithmetic progression. For every permutation w_i of N there is $F \in Aut(\mathbb{C}^n)$ such that $F(je_1) = w_i$.

Theorem

There exists countable $D \subset \mathbb{C}^n$ such that if any $F \in \operatorname{Aut}(\mathbb{C}^n)$ satisfies $D \subset F(D)$ then F = id.

Particularly, D is not conjugate to N.

Compact-open topology

We denote by $\operatorname{End}(\mathbb{C}^n)$ the vector space of holomorphic maps $\mathbb{C}^n \to \mathbb{C}^n$. The *compact-open* topology on $\operatorname{End}(\mathbb{C}^n)$ is given by the basis

$$V(K,U) = \{ f \in \operatorname{End} \mathbb{C}^n \colon f(k) \subset U \},$$

where $K\subset\mathbb{C}^n$ is a compact and $U\subset\mathbb{C}^n$ is open. Alternatively, this topology is given by the series of norms

$$||f||_{K} = \sup_{z \in K} |f(z)|$$

for $f \in \operatorname{End}(\mathbb{C}^n)$ and compact $K \subset \mathbb{C}^n$.

Theorem

 $\operatorname{End}(\mathbb{C}^n)$ is complete in the compact-open topology. That is, the limit of holomorphic maps is always holomorphic.

We denote by $\operatorname{Aut}(\mathbb{C}^n) \subset \operatorname{End}(\mathbb{C}^n)$ the subgroup of holomoprhic automorphisms. It is not closed! The sequence of automorphisms F_n converges to an automorphism if and only F_n and F_n^{-1} converge in $\operatorname{End}(\mathbb{C}^n)$.

Definition

Shear in the direction of e_j is a map $F \in Aut(\mathbb{C}^n)$ given by

$$F(z_1,...,z_n)=(z_1,...,z_i+f,...,z_n),$$

where $f = f(z_1, ... \hat{z_i}, ..., z_n)$ is holomorphic.

Obviuously, shears are holomorphic automorphisms with $J\!F\equiv 1.$

Basic example

Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function and $\Lambda: \mathbb{C}^n \to \mathbb{C}$ be a linear functional. For $u \in \ker \Lambda$ the map

$$\sigma(z) = z + f(\Lambda z)u$$

is a shear.

A lemma

Lemma

Let $\varepsilon > 0$ and $K \subset \mathbb{C}^n$ is a convex compact. Let $a_1, \ldots, a_n \in K$ and p, q are points in the hyperplane Π which does not intersect K.

Then there is a shear τ such that $\tau(p)=q$, $\tau(a_i)=a_i$ for all $1\leq i\leq n$ and

$$|z-\tau(z)|<\varepsilon$$
 for all $z\in K$.

Proof.

- Take linear $\Lambda \colon \mathbb{C}^n \to \mathbb{C}$ so that $\Lambda(p) = \Lambda(q)$ and $\Lambda(p) \not\in \Lambda(K)$;
- There is a unit vector $u \in \ker \Lambda$ such that q = p + cu for $c \in \mathbb{C}$;
- Take a polynomial $g: C \rightarrow C$ with

$$g(\Lambda p) = c$$
, $g(\Lambda a_i) = 0$, and $|g(\Lambda z)| < \varepsilon$ for all $z \in K$.

Define

$$\tau(z) = z + g(\Lambda z)u.$$

It has all the desired properties.

Immersion-interpolation

Theorem

Let $\{p_j\}$ be a discrete sequence and $\{w_j\}$ be an arbitrary sequence in \mathbb{C}^n . There exists a holomorphic map $\Phi\colon \mathbb{C}^n\to \mathbb{C}^n$ such that $\Phi(p_j)=w_j$ and $(J\Phi)(z)=1$ for all $z\in \mathbb{C}^n$.

Proof.

We may assume that $0<|p_1|<|p_2|<\dots$ and $w_j\not\in\{z_1=0\}$. Let $E(z_1,\dots,z_n)=(e^{z_1},z_2e^{-z_1},z_3,\dots z_n)$. We will construct Φ as $\Phi=E\circ F$, where F is a limit of composition of shears.

Using Lemma, we construct F_k by induction such that

$$F_k(p_i) = F_{k-1}(p_i) \text{ for } 1 \le p_i \le k-1;$$

$$F_k(p_k) = v_k$$
 such that $F(v_k) = w_k$ and $v_k \notin F_{k-1}(\bar{B}_{|p_k|})$;

$$|F_k(z) - F_{k-1}(z)| < 2^{-k} \text{ for } z \in \bar{B}_{|p_k|}.$$

Due to 3, F_k converges to $F \in \operatorname{End}(\mathbb{C}^n)$ with $JF \equiv 1$ and $\Phi = E \circ F$ has all desired properties.

Continuous infinitie transitivity lemma

Lemma

Suppose $E, K, D \subset \mathbb{C}^n$, E is finite, K is compact, and D is dense. If $a \in \mathbb{C}^n \setminus E$ and $\varepsilon > 0$, then there is a shear σ so that

- $\sigma(a) \in D$, and
- $|\sigma(z) z| + |\sigma^{-1}(z) z| < \epsilon \text{ for } z \in K.$

Proof.

Assume that a=0. Take a unit vector u such that $\langle p,u\rangle\neq 0$ for $p\in E$. Take sequences of unit vectors $u_i\in\mathbb{C}^n$ and $w_i\in D$ such that $w_i\to 0$, $u_i\to u$, and $\langle u_i,w_i\rangle=0$. Consider

$$g_i(\lambda) = \prod_{p \in E} \left(1 - \frac{\lambda}{\langle p, u_i \rangle}\right).$$

The shear $\sigma_i(z) = z + g_i(\langle z, u_i \rangle) w_i$ works for big enough i.

Dense transitivity

Theorem

If X and Y are countable dense subsets of \mathbb{C}^n , then there is $F \in \operatorname{Aut}(\mathbb{C}^n)$ so that F(X) = Y and $JF \equiv 1$.

Proof.

- Enumerate $X = \{x_i\}$ and $Y = \{y_i\}$. By induction, we have $F_j \in \operatorname{Aut}(\mathbb{C}^n)$, which maps p_1, \ldots, p_{2j} to q_1, \ldots, q_{2j} . We are going to construct F_{j+1} .
- Let p_{2j+1} be the first x_i in $X \setminus \{p_i\}$. Find a shear σ which leaves q_1, \ldots, q_{2j} and maps $F_j(p_{2j+1})$ to Y. (The shear should be close enough to idenity.)
- Let q_{2j+2} be the first y_i not in $\{q_1,...,q_{2j+1}\}$. Construct a shear τ which leaves $q_1,...,q_{2j+1}$ and maps q_{2j+2} to $\sigma(F_j(X))$.

Define F_{j+1} as $\tau^{-1} \circ \sigma \circ F_j$. Then F is a limit of F_j .

Permutations of an arithmetic progression

Lemma

If $\{\alpha_1\}$ and $\{\beta_1\}$ are discrete sequences in \mathbb{C} , then there are three sheers in \mathbb{C}^n whose composition τ satisfies

$$\tau(\alpha_i e_1) = \beta_i e_1.$$

Proof.

Enough to prove for \mathbb{C}^2 . Find $f, g: \mathbb{C} \to \mathbb{C}$ with $f(\alpha_i) = \beta_i - \alpha_i$ and $g(\beta_i) = -\alpha_i$. The three shears are

$$\sigma_1(z) = z + z_1 e_2, \ \sigma_2(z) = z + f(z_2)e_1, \ \sigma_3(z) = z + g(z_1)e_2.$$

The composition is $\tau = \sigma_3 \circ \sigma_2 \circ \sigma_1$.

Theorem (Corollary)

Let $N = \{e_1, 2e_1, 3e_1, \dots\}$ be an arithmetic progression. For every permutation w_j of N there is $F \in Aut(\mathbb{C}^n)$ such that $F(je_1) = w_j$.

Tame sets

Let $N = \{e_1, 2e_1, 3e_1, \dots\}$ be an arithmetic progression.

Definition

A set $E \subset \mathbb{C}^n$ is called *tame* if E = F(N) for some $F \in \operatorname{Aut}(\mathbb{C}^n)$. It is called *very tame* if F can be chosen so that $JF \equiv 1$.

Let $\mathbb{C}^n = \mathbb{C}^k \oplus \mathbb{C}^m$ and π' be a projection on \mathbb{C}^k .

Theorem

Suppose $E \subset \mathbb{C}^n$ is infinite, $\pi'(E)$ is discrete and π' has finite fibers on E. Then E is very tame.

Corollary

- Every discrete infinite set $E \subset \mathbb{C}^{n-1}$ is very tame in \mathbb{C}^n .
- The union of a finite set and a (very) tame set is (very) tame.
- Every discrete infinite series $E \subset \mathbb{C}^n$ is the union of two very tame subsets.

Proof.

Only the last assertion needs a proof. Take $E_1 = \{z' + z'' \in E, |z'| \ge |z''|\}$ and $E_2 = \{z' + z'' \in E, |z'| < |z''|\}$.

More about tame sets

Theorem

Suppose that $E \subset \mathbb{C}^n$ is an infinite discrete sequence and all coordinates z_i of every $z = (z_1, \ldots, z_n) \in E$ satisfy $|z_i| \geq 1$. Then E is very tame.

Proof.

Let $P(z)=z_1z_2\ldots z_n$ and $\{\lambda_1,\lambda_2,\lambda_3,\ldots\}$ be a set P(E). Put

$$E_t = \{z \in E : P(z) = \lambda_t\} \ (t = 1, 2, 3, ...).$$

Observe that $\{\lambda_t\}$ is discrete in \mathbb{C} , and each E_t is finite.

Choose a holomorphic $f: \mathbb{C} \to \mathbb{C}$ with $f(\lambda_t) = t$. Define $w = \Phi(z)$ by

$$w_1 = z_1 e^{f(P(z))}, \ w_2 = z_2 e^{-f(P(z))}, \ w_i = z_i.$$

Then $\Phi(E)$ satisfies the hypothesis of the projection theorem.

(Un)avoidable subsets

Proposition

If $E \subset \mathbb{C}^n$ is tame then there is a biholomorphic map $F : \mathbb{C}^n \to \mathbb{C}^n$ so that $F(\mathbb{C}^n)$ does not intersect E. If E is very tame we can choose F with $JF \equiv 1$.

Proof.

Basic fact: there exists a biholomorphic $G: \mathbb{C}^n \to \mathbb{C}^n$ with $JG \equiv 1$ and $G(\mathbb{C}^n) \neq \mathbb{C}^n$. Since $\Omega = G(\mathbb{C}^n)$ is homeomorphic to \mathbb{C}^n , $\mathbb{C}^n \setminus \Omega$ is unbounded and we can find a very tame $E_0 \subset \mathbb{C}^n$.

Theorem

There is a discrete set $D \subset \mathbb{C}^n$ which is unavoidable by nondegenerate holomorphic maps from \mathbb{C}^n into \mathbb{C}^n .

Tame subsets of Stein manifolds

Definition (J. Winkelmann (2017))

Let X be a complex manifold. An infinite discrete subset D is called *weakly tame* if for every exhaustion function $\rho: X \to \mathbb{R}^+$ and every map $\zeta: D \to \mathbb{R}^+$ there exists an automorphism ϕ of X such that $\rho(\phi(x)) \ge \zeta(x)$ for all $x \in D$.

Definition (R. Andrist and R. Ugolini (2018))

Let X be a complex manifold. An infinite discrete subset D is called *strongly tame* if for every injective map $f:D\to D$ there exists an automorphism ϕ of X such that $\phi(x)=f(x)$ for all $x\in D$.

Strongly tame implies weakly tame. For $X \cong \mathbb{C}^n$ and $X \cong SL_n(\mathbb{C})$ both notions coincide. For \mathbb{C}^n it is the same as defined by Rosay and Rudin.

Results of J.Winkelmann

- **I** Any two tame discrete subsets in $SL_n(\mathbb{C})$ are equivalent.
- **2** Certain discrete subgroups may be verified to be tame discrete subsets. In particular, $SL_2(\mathbb{Z}[i])$ is a tame discrete subset, and also every discrete subgroup of a one-dimensional Lie subgroup of $SL_n(\mathbb{C})$ and every discrete subgroup fo a maximal torus.
- **I** Every discrete subset of $SL_n(\mathbb{C})$ is the union of n tame discrete subsets.
- Every semisimple complex Lie group admits a non-tame discrete subset.
- **E** Every injective self-map of a tame discrete subset of $SL_n(\mathbb{C})$ extends to a biholomorphic self map of $SL_n(\mathbb{C})$.
- 5 For every semisimple complex Lie group S there exists a "threshold sequence", i.e., there exists a sequence of numbers $R_k > 0$ and an exhaustion function τ such that every sequence g_k with $\tau(g_k) > R_k$ defines a tame discrete subset.

Counterexamples by J. Winkelmann

- On $\mathbb{C}^n \setminus \{(0,\ldots,0)\}$ $(n \ge 2)$ there do exist discrete subsets which may not be realized as a finite union of tame discrete subsets.
- on $\Delta \times \mathbb{C}$ there are (weakly) tame discrete sets which are not strongly tame. There are permutations of tame discrete sets which do not extend to biholomorphic self-maps of the ambient manifold.
- $f On\ \Delta imes \Bbb C$ there exist inequivalent tame discrete subsets.
- On $\mathbb{C}^n \setminus \{(0,\ldots,0)\}$ there is no "threshold sequence".