

Toric varieties

Let Σ be a fan in a lattice N and let $X=X_{\Sigma}$ be the corresponding toric variety over algebraically closed field \mathbb{K} of characteristic zero. Denote $M=\operatorname{Hom}_{\mathbb{Z}}(N,\mathbb{Z}),\ N_{\mathbb{Q}}=N\otimes_{\mathbb{Z}}\mathbb{Q},\ M_{\mathbb{Q}}=M\otimes_{\mathbb{Z}}\mathbb{Q}.$

The primitive vectors of rays of Σ are called the *primitive vectors of* Σ . Recall that a cone σ in N is called *regular* if the primitive vectors of σ can be supplemented to a basis of N. A fan Σ is called *regular* if every cone $\sigma \in \Sigma$ is regular.

X is smooth $\iff \Sigma$ is regular

A toric variety X is called *degenerate* if X is equivariantly isomorphic to the product of a nontrivial torus T_0 and a toric variety X_0 of smaller dimension. Note that X is homogeneous if and only if X_0 is homogeneous.

X is non-degenerate \iff the primitive vectors of Σ span $N_{\mathbb{Q}}$

Demazure roots

Denote by n_{ρ} the primitive vector of a ray $\rho \in \Sigma(1)$. Let $\langle \cdot, \cdot \rangle : \mathcal{N} \times \mathcal{M} \to \mathbb{Z}$ be the pairing of dual lattices $\langle v, u \rangle = u(v)$. For $\rho \in \Sigma(1)$ consider the set \mathfrak{R}_{ρ} of all vectors $e \in \mathcal{M}$ such that

- ② if $\sigma \in \Sigma$ and $\langle v, e \rangle = 0$ for all $v \in \sigma$, then the cone generated by σ and ρ is in Σ as well.

The elements of the set $\mathfrak{R}=\bigsqcup_{
ho\in\Sigma(1)}\mathfrak{R}_{
ho}$ are called the *Demazure roots* of

the fan Σ .

Elements of $\mathfrak{R}\leftrightarrow \mathbb{G}_a$ -actions on X normalized by the acting torus T

For $e \in \mathfrak{R}$ let H_e be the corresponding \mathbb{G}_a -subgroup of $\operatorname{Aut}(X)$ and R_e be the one-parameter subgroup of T corresponding to the primitive vector of the distinguished ray of e.

Strongly regular fans I

Recall the orbit-cone correspondence

Cones
$$\sigma \in \Sigma \leftrightarrow T$$
-orbits \mathcal{O}_{σ} on X

and

$$\sigma_1 \subseteq \sigma_2 \iff \mathcal{O}_{\sigma_2} \subseteq \overline{\mathcal{O}_{\sigma_1}}, \ \dim \mathcal{O}_{\sigma} = \dim X - \dim \langle \sigma \rangle_{\mathbb{Q}}$$

Proposition 1

For every point $x \in X \setminus X^{H_e}$ the orbit $H_e \cdot x$ meets exactly two T-orbits \mathcal{O}_1 and \mathcal{O}_2 on X with $\dim \mathcal{O}_1 = \dim \mathcal{O}_2 + 1$. The intersection $\mathcal{O}_2 \cap (H_e \cdot x)$ consists of a single point, while $\mathcal{O}_1 \cap (H_e \cdot x)$ is an R_e -orbit.

A pair of T-orbits $(\mathcal{O}_1,\mathcal{O}_2)$ is said to be H_e -connected if $H_e \cdot x \subseteq \mathcal{O}_1 \cup \mathcal{O}_2$ for some $x \in X \setminus X^{H_e}$ (it implies that $\mathcal{O}_2 \subseteq \overline{\mathcal{O}_1}$ and $\dim \mathcal{O}_1 = \dim \mathcal{O}_2 + 1$).

Strongly regular fans II

We say that a cone $\sigma_2 \in \Sigma$ is *connected* with its facet σ_1 by a root $e \in \mathfrak{R}$ if $e \mid_{\sigma_2} \leq 0$ and σ_1 is given by the equation $\langle \cdot, e \rangle = 0$ in σ_2 .

A pair
$$(\mathcal{O}_{\sigma_1}, \mathcal{O}_{\sigma_2})$$
 is H_e -connected \iff

$$\iff \sigma_2$$
 is connected with σ_1 by the root e

A fan Σ is called *strongly regular* if every nonzero cone $\sigma \in \Sigma$ is connected with some of its facets by a root.

Let $S(X) \subseteq \operatorname{Aut}(X)$ be the subgroup generated by root subgroups $H_e, e \in \mathfrak{R}$. A toric variety X is said to be S-homogeneous if S(X) acts on X transitively.

Proposition 2

A non-degenerate toric variety X_{Σ} is S-homogeneous if and only if Σ is strongly regular.

Proof of Proposition 2 l

Denote by G(X) the subgroup of Aut(X) generated by S(X) and T.

Lemma 1

The group G(X) acts on X transitively if and only if Σ is strongly regular.

WLOG we may assume that X is non-degenerate. If Σ is strongly regular, then we can send every point $x \in X$ to an orbit of higher dimension with H_e . After we reach the open orbit, we use T.

Conversely, assume that Σ is not strongly regular. Let $\sigma \in \Sigma$ be a nonzero cone which is not connected with any facet by a root. Since $H_e \cdot \mathcal{O}_\sigma \subset \overline{\mathcal{O}_\sigma}$ and $T \cdot \overline{\mathcal{O}_\sigma} = \overline{\mathcal{O}_\sigma}$, we obtain that $\overline{\mathcal{O}_\sigma}$ is G(X)-invariant. Lemma 1 is proved.

Proof of Proposition 2 II

It remains to show that the group S(X) acts on X transitively if X is non-degenerate and Σ is strongly regular. Each ray $\rho \in \Sigma(1)$ is connected with its facet $\{0\}$ by some root e_{ρ} (and ρ is the distinguished ray of e_{ρ}). So, the intersection of the open T-orbit and an $H_{e_{\rho}}$ -orbit is an $R_{e_{\rho}}$ -orbit. Recall that $R_{e_{\rho}}$ is the one-parameter subgroup given by the vector $n_{\rho} \in N$.

Since X is non-degenerate, the collection $\{n_{\rho}, \ \rho \in \Sigma(1)\}$ has full rank in N. It implies that there is an S(X)-orbit which contains the open T-orbit. Thus, this S(X)-orbit is T-invariant and by Lemma 1 it coincides with X. Proposition 2 is proved.

Corollary 1

Every strongly regular fan is regular.

Examples

- If X_{Σ} is a non-degenerate smooth affine toric variety, then Σ consists of a regular cone σ and all its faces. Therefore, $X_{\Sigma} = \mathbb{A}^n$. It easy to see that \mathbb{A}^n is S-homogeneous. So, a regular cone together with all of its faces is a strongly regular fan.
- If X_Σ is a complete toric variety, then X_Σ is homogeneous if and only if X_Σ is S-homogeneous. The only complete homogeneous toric varieties are the products of projective spaces. Therefore, every complete strongly regular fan is the product of fans of projective spaces.

Admissible collections

Let P be an abelian group and let $\mathcal{A}=(a_1,\ldots,a_r)$ be a collection of elements (possibly with repetitions) of P. The collection \mathcal{A} is called admissible if \mathcal{A} generates P and for any $a_i \in \mathcal{A}$ the element a_i is contained in the semigroup generated by $\mathcal{A}\setminus\{a_i\}$. A pair (P,\mathcal{A}) is said to be equivalent to a pair (P',\mathcal{A}') if there is an isomorphism of abelian groups $\gamma:P\to P'$ such that $\gamma(\mathcal{A})=\gamma(\mathcal{A}')$ (element-wise).

An S-homogeneous toric variety X_{Σ} is said to be maximal if it does not admit a proper open toric embedding $X_{\Sigma} \hookrightarrow X_{\Sigma'}$ into an S-homogeneous toric variety $X_{\Sigma'}$ with $\operatorname{codim}_{X_{\Sigma'}}(X_{\Sigma'} \setminus X_{\Sigma}) \geq 2$. This corresponds to a maximal strongly regular fan Σ i.e., Σ cannot be realized as a proper subfan of a strongly regular fan Σ' with $\Sigma'(1) = \Sigma(1)$.

Theorem 1

There is a one-to-one correspondence between maximal S-homogeneous toric varieties and equivalence classes of pairs (P, A), where P is an abelian group and A is an admissible collection of elements of P.

Linear Gale duality I

By a vector configuration in a vector space V we mean a finite collection $v_1,\ldots,v_r\in V$ (possibly with repetitions) that spans V. A vector configuration $\mathcal{V}=(v_1,\ldots,v_r)$ in a rational vector space V and a vector configuration $\mathcal{W}=(w_1,\ldots,w_r)$ in a rational vector space W are G ale dual to each other (or W is the G ale transform of V) if for any tuple $(a_1,\ldots,a_r)\in \mathbb{Q}^r$ one has

$$a_1w_1+\cdots+a_rw_r=0\iff I(v_i)=a_i \text{ for } i=1,\ldots,r \text{ with some } I\in V^*.$$

Linear Gale duality II

Given a vector configuration $\mathcal{V}=(v_1,\ldots,v_r)$ in a space V one can produce its Gale dual as follows. Consider a surjective linear map $\alpha:\mathbb{Q}^r\to V$ given on the standard basis e_1,\ldots,e_r of \mathbb{Q}^r by $\alpha(e_i)=v_i,\ i=1,\ldots,r.$ Consider two dual short exact sequences

$$0 \longrightarrow \operatorname{Ker}(\alpha) \longrightarrow \mathbb{Q}^r \stackrel{\alpha}{\longrightarrow} V \longrightarrow 0$$

$$0 \leftarrow (\operatorname{Ker}(\alpha))^* \leftarrow^{\beta} (\mathbb{Q}^r)^* \leftarrow V^* \leftarrow 0$$

Let e_1^*, \ldots, e_n^* be the dual basis in $(\mathbb{Q}^r)^*$. Setting $W = (\operatorname{Ker}(\alpha))^*$ and $w_i = \beta(e_i^*)$ for $i = 1, \ldots, r$ we obtain the Gale dual configuration $\mathcal{W} = (w_1, \ldots, w_r)$.

Lattice Gale transform

A vector configuration \mathcal{N} in a lattice N is a finite collection of vectors $n_1, \ldots, n_r \in N$ that spans the vector space $N_{\mathbb{Q}}$. Consider the lattice \mathbb{Z}^r with the standard basis e_1, \ldots, e_r and the exact sequence

$$0 \longrightarrow L \longrightarrow \mathbb{Z}^r \stackrel{\alpha}{\longrightarrow} N$$

defined by $\alpha(e_i)=n_i,\ i=1,\ldots,r.$ We identify the dual lattice $\mathrm{Hom}_{\mathbb{Z}}(\mathbb{Z}^r,\mathbb{Z})$ with \mathbb{Z}^r using the dual basis e_1^*,\ldots,e_r^* . Let $M=\mathrm{Hom}_{\mathbb{Z}}(N,\mathbb{Z})$. The homomorphism $M\to\mathbb{Z}^r$ dual to α gives rise to the short exact sequence

$$0 \longleftarrow P \longleftarrow^{\beta} \mathbb{Z}^r \longleftarrow M \longleftarrow 0$$

Let $a_i = \beta(e_i^*)$ for $i = 1, \ldots, r$. We call the collection $\mathcal{A} = (a_1, \ldots, a_r)$ the lattice Gale transform of the configuration \mathcal{N} . Conversely, given elements a_1, \ldots, a_r that generate a group P, we can reconstruct lattices M and $N = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$, the dual homomorphism $\mathbb{Z}^r \to N$, and the vectors n_1, \ldots, n_r .

Example

Let $\mathcal{N}=(n_1,n_2)$ in $\mathcal{N}=\mathbb{Z}^2$ with $n_1=(1,0),\ n_2=(1,2).$ Then $\alpha:\mathbb{Z}^2\to\mathcal{N}$ is given by matrix

$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

and its dual $M o \mathbb{Z}^2$ is given by matrix

$$\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$$

Therefore, $P = \mathbb{Z}/2\mathbb{Z}$ and $\mathcal{A} = (a_1, a_2)$, where $a_1 = a_2 = \overline{1}$. At the same time, the linear Gale transform would be (0,0) in the space $\{0\}$.

Proof of Theorem 1 I

A vector configuration $\mathcal{N}=(n_1,\ldots,n_r)$ in a lattice N is called *suitable* if for any $i=1,\ldots,r$ there is a vector $e_i\in M$ such that $\langle n_i,e_i\rangle=-1$ and $\langle n_j,e_i\rangle\geq 0$ for all $j\neq i$.

Lemma 2

A vector configuration $\mathcal{N}=(n_1,\ldots,n_r)$ in a lattice N is suitable if and only if its lattice Gale transform \mathcal{A} in P is an admissible collection.

An element $a_i \in \mathcal{A}$ is contained in the semigroup generated by $\mathcal{A} \setminus \{a_i\}$ if and only if $a_i = \sum_{j \neq i} \alpha_j a_j$ for some non-negative integers α_j . The latter condition is equivalent to existence of an element $e_i \in M$ such that

$$\langle n_i, e_i \rangle = -1, \ \langle n_j, e_i \rangle = \alpha_j.$$

Proof of Theorem 1 II

A collection of rays ρ_1, \ldots, ρ_r in the space $N_{\mathbb{Q}}$ is called *suitable* if the set of primitive vectors of these rays is a suitable vector configuration in N.

Lemma 3

The collection of rays $\Sigma(1)$ of a strongly regular non-degenerate fan Σ is suitable.

By definition, every ray ρ_i is connected with its facet $\{0\}$ by a root e_i .

Proof of Theorem 1 III

Proposition 3

For every suitable collection of rays ρ_1,\ldots,ρ_r in $N_{\mathbb Q}$ there is a unique maximal strongly regular fan Σ with $\Sigma(1)=\{\rho_1,\ldots,\rho_r\}$. Moreover, every strongly regular fan $\hat{\Sigma}$ with $\hat{\Sigma}(1)=\Sigma(1)$ is a subfan of Σ .

Let Ω be the set of strictly convex polyhedral cones σ in $N_{\mathbb{Q}}$ with $\sigma(1)\subseteq\{\rho_1,\ldots,\rho_r\}$. With every $\sigma\in\Omega$ we associate a subset $I\subseteq\{1,\ldots,r\}$ such that $\sigma(1)=\{\rho_i,i\in I\}$. Let $\mathcal{A}=(a_1,\ldots,a_r)$ be the lattice Gale transform of the vector configuration $\mathcal{N}=\{n_1,\ldots,n_r\}$. Denote by $\Gamma(\sigma)$ the semigroup in P generated by $a_j,j\not\in I$. In particular, $\Gamma(\{0\})=A$, where A is the semigroup generated by \mathcal{A} .

Let

$$\Sigma = \Sigma(P, A) = \{ \sigma \in \Omega \mid \Gamma(\sigma) = A \}.$$

Note that the group P can be interpreted as the divisor class group Cl(X). Indeed, for a toric variety we have the exact sequence

$$0 \leftarrow Cl(X) \leftarrow Z^r \leftarrow M \leftarrow 0$$

and the inclusion $M \hookrightarrow \mathbb{Z}^r$ is also dual to the map α . Moreover, the admissible collection \mathcal{A} is the set of classes of T-invariant prime divisors $[D_1], \ldots, [D_r]$ on X, corresponding to rays ρ_1, \ldots, ρ_r of Σ .

Recall the example with $n_1=(1,0),\ n_2=(1,2)$ and $P=\mathbb{Z}/2\mathbb{Z},\ a_1=a_2=\bar{1}.$ Then

$$\Sigma(P,\mathcal{A}) = \{\operatorname{Cone}((1,0)), \operatorname{Cone}((1,2)), \{0\}\},$$

so $X = Y_{\sigma}^{\text{reg}}$, where $\sigma = \text{Cone}((1,0),(1,2))$ (Y_{σ} is the surface $z^2 = xy$).

Homogeneous toric varieties I

Theorem 2

Let X be a non-degenerate homogeneous toric variety. Then there exists an open toric embedding $X \hookrightarrow X'$ into a maximal S-homogeneous toric variety X' with $\operatorname{codim}_{X'}(X' \setminus X) \geq 2$.

The variety X', of course, is the toric variety corresponding to the fan $\Sigma(P,\mathcal{A})$, where the admissible collection \mathcal{A} is obtained from the set of rays $\Sigma(1)$ of the fan Σ , corresponding to the variety X.

Homogeneous toric varieties II

From the explicit description of maximal strongly regular fans it can be shown that every maximal non-degenerate *S*-homogeneous toric variety is quasiprojective.

Corollary 2

Every homogeneous toric variety is quasiprojective.

Conjecture 1

Every non-degenerate homogeneous toric variety is S-homogeneous.

Non-maximal S-homogeneous toric varieties I

Let P be an abelian group, $A = (a_1, \ldots, a_r)$ an admissible collection of elements of P, and A the semigroup in P generated by A.

A *link* is a pair (a, \mathcal{A}') , where \mathcal{A}' is a subcollection of \mathcal{A} , $a \in \mathcal{A} \setminus \mathcal{A}'$, and there exists an expression $a = \sum_j \alpha_j a_j$, where a_j runs through \mathcal{A}' and $\alpha_j \in \mathbb{Z}_{>0}$.

We say that a subcollection $\mathcal{B} \subseteq \mathcal{A}$ is *generating*, if the elements of \mathcal{B} generate the semigroup A. Let \mathbb{G} be a set of generating collections in \mathcal{A} . A link (a, \mathcal{A}') is called a \mathbb{G} -link if for any $\mathcal{B} \in \mathbb{G}$ the condition $\mathcal{A}' \cup \{a\} \subseteq \mathcal{B}$ implies $\mathcal{B} \setminus \{a\} \in \mathbb{G}$.

A set $\mathbb G$ of generating collections in $\mathcal A$ is called *connected* if the following conditions hold

- ② $\mathcal{B} \in \mathbb{G}$ and $\mathcal{B} \subseteq \mathcal{B}' \subseteq \mathcal{A}$ implies $\mathcal{B}' \in \mathbb{G}$;
- **③** if \mathcal{B} ∈ \mathbb{G} and \mathcal{B} ≠ \mathcal{A} then there is a \mathbb{G} -link (a, \mathcal{A}') with $\mathcal{A}' \subseteq \mathcal{B}$ and $a \notin \mathcal{B}$.

Non-maximal S-homogeneous toric varieties II

Let $\{\rho_1,\ldots,\rho_r\}$ be a suitable collection of rays in $N_{\mathbb{Q}}$ and $\mathcal{N}=\{n_1,\ldots,n_r\}$ the corresponding suitable vector configuration in N. Consider the lattice Gale transform (P,\mathcal{A}) of (N,\mathcal{N}) .

Proposition 4

Strongly regular fans Σ with $\Sigma(1) = \{\rho_1, \dots, \rho_r\}$ are in bijection with connected sets \mathbb{G} of generating collections in A.

We can associate a cone $\sigma(\mathcal{B})=\operatorname{Cone}(\rho_j\mid a_j\not\in\mathcal{B})$ with any subcollection $\mathcal{B}\subseteq\mathcal{A}$. As we know, the maximal strongly regular fan $\Sigma(P,\mathcal{A})$ is the set of cones associated with every generating collection in \mathcal{A} . Let $\Sigma^\mathbb{G}$ be the set of cones $\sigma(\mathcal{B}), \mathcal{B}\in\mathbb{G}$. The conditions from the definition of a connected set of generating collections are equivalent to the fact that $\Sigma^\mathbb{G}$ is a strongly regular fan.