Relative Khovanov Homology

Oleg Viro

June 11, 2009

Introduction

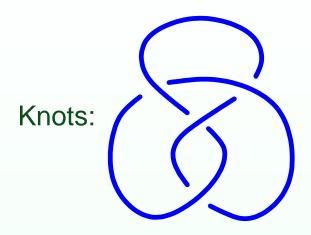
- What knot theory is about
- Types of invariants
- Link homologies

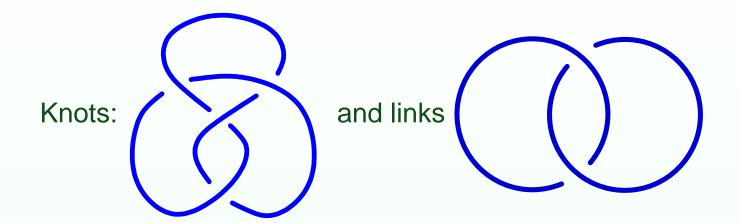
Khovanov homology

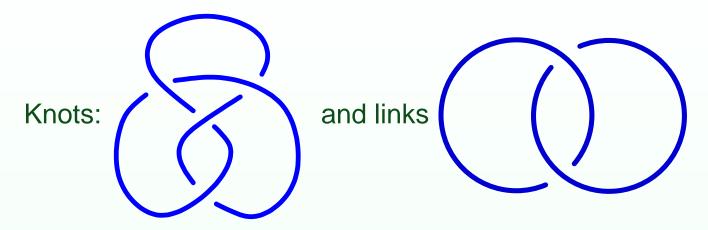
Khovanov homology of tangles

Khovanov homology of tangles

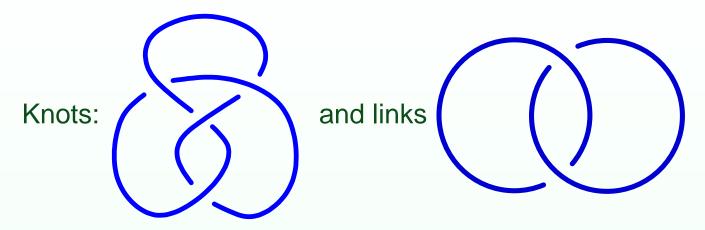
Introduction







Link diagrams considered up to moves.



Link diagrams considered up to moves.

What happens to a link diagram, when the link moves?

Link diagram moves, too.

Link diagram moves, too.

Reidemeister moves:

Link diagram moves, too.

Reidemeister moves:

(R1):

Link diagram moves, too.

Reidemeister moves:

(R1):

Link diagram moves, too.

Reidemeister moves:

Link diagram moves, too.

Reidemeister moves:

(R1):

(R2):

Link diagram moves, too.

Reidemeister moves:

Link diagram moves, too.

Reidemeister moves:

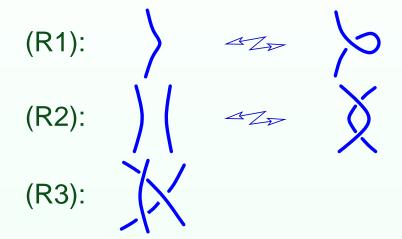
Link diagram moves, too.

Reidemeister moves:

(R3):

Link diagram moves, too.

Reidemeister moves:



Link diagram moves, too.

Reidemeister moves:

Link diagram moves, too.

Reidemeister moves:

To speak about links, one needs terms invariant under the moves.

Geometric and algebraic invariants.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

For example, unknotting number,

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

For example, unknotting number, minimal number of crossings,

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

For example, unknotting number, minimal number of crossings, genus,

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

For example, unknotting number, minimal number of crossings, genus, slice genus.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

For example: $K \subset S^3$

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

For example: $K \subset S^3 \mapsto S^3 \setminus K$

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

For example: $K \subset S^3 \mapsto S^3 \setminus K \mapsto \text{covering space } X \text{ of } S^3 \setminus K$

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

For example: $K \subset S^3 \mapsto S^3 \smallsetminus K \mapsto \text{covering space } X \text{ of } S^3 \smallsetminus K \mapsto H_1(X)$

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

For example: $K \subset S^3 \mapsto S^3 \setminus K \mapsto \text{covering space } X \text{ of } S^3 \setminus K \mapsto H_1(X) \mapsto \text{numerical invariant of } H_1(X)$.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

Diagrammatic invariants. Originate from methods of calculation for algebraic invariants. Example: linking number.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

Diagrammatic invariants. Originate from methods of calculation for algebraic invariants. Example: linking number.

The Conway polynomial $\nabla(L)$ defined by two axioms: normalization $\nabla(\bigcirc)=1$, skein relation $\nabla(\diagdown)-\nabla(\swarrow)+z\nabla()\swarrow)=0$.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

Diagrammatic invariants. Originate from methods of calculation for algebraic invariants. Example: linking number.

The Conway polynomial $\nabla(L)$ defined by two axioms: normalization $\nabla(\bigcirc)=1$, skein relation $\nabla(\swarrow)-\nabla(\swarrow)+z\nabla()\swarrow)=0$. the Jones polynomial V(L) defined by two axioms: normalization $V(\bigcirc)=1$, skein relation $t^{-1}V(\swarrow)-tV(\swarrow)+(t^{-1/2}-t^{1/2})V()\swarrow)$.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

Diagrammatic invariants. Originate from methods of calculation for algebraic invariants. Example: linking number. Quantum invariants.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

Diagrammatic invariants. Originate from methods of calculation for algebraic invariants. Example: linking number. Quantum invariants. Position in the space of knots: Vassiliev-Goussarov finite type invariants.

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

Diagrammatic invariants. Originate from methods of calculation for algebraic invariants. Example: linking number. Quantum invariants. Position in the space of knots: Vassiliev-Goussarov finite type invariants.

Link homology: upgrade of quantum invariant. Homology of a link diagram.

Types of invariants

Geometric and algebraic invariants.

Geometric invariants: easy to define, interesting to discuss, difficult to evaluate.

Classical algebraic invariants:

geometric construction followed by algebraic topology and algebra.

Diagrammatic invariants. Originate from methods of calculation for algebraic invariants. Example: linking number. Quantum invariants. Position in the space of knots: Vassiliev-Goussarov finite type invariants.

Link homology: upgrade of quantum invariant.

Homology of a link diagram. Bi- or tri-graded.

The Euler characteristic is a quantum polynomial invariant.

Advantage: functoriality.

Advantage: functoriality. Categorification.

Advantage: functoriality. Categorification.

Khovanov homology - categorification of the Jones polynomial.

Advantage: functoriality. Categorification.

- Khovanov homology categorification of the Jones polynomial.
- Knot Floer homology (Ozváth-Szábo) -categorification of the Alexander polynomial.

Advantage: functoriality. Categorification.

- Khovanov homology categorification of the Jones polynomial.
- Knot Floer homology (Ozváth-Szábo) -categorification of the Alexander polynomial.
- Khovanov-Rozansky homology categorifications of HOMFLY-PT.

Introduction

Khovanov homology

- Kauffman bracket
- Kauffman state sum
- Example
- Categorifying Kauffman state sum. Chains

Differential

Khovanov homology of tangles

Khovanov homology of tangles

Khovanov homology

$$\langle \operatorname{Link \ diagram} \rangle \in \mathbb{Z}[A,A^{-1}]$$

$$\langle \operatorname{Link \ diagram} \rangle \in \mathbb{Z}[A,A^{-1}]$$

(a Laurent polynomial in A with integer coefficients).

$$\langle \operatorname{Link \ diagram} \rangle \in \mathbb{Z}[A,A^{-1}]$$

$$\langle \text{unknot} \rangle =$$

$$\langle \operatorname{Link \ diagram} \rangle \in \mathbb{Z}[A,A^{-1}]$$

$$\langle \mathsf{unknot} \rangle = \langle \bigcirc \rangle =$$

$$\langle \operatorname{Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\langle \mathsf{unknot} \rangle = \qquad \qquad \langle \bigcirc \rangle = -\,A^2 - A^{-2}$$

$$\langle \operatorname{Link \ diagram} \rangle \in \mathbb{Z}[A,A^{-1}]$$

$$\langle {\rm unknot} \rangle = \qquad \qquad \langle \bigcirc \rangle = -\,A^2 - A^{-2}$$

$$\langle {\rm Hopf \ link} \rangle =$$

 $\langle unknot \rangle =$

$$\langle {\rm Link\ diagram} \rangle \in \mathbb{Z}[A,A^{-1}]$$

$$\langle \bigcirc \rangle = -\,A^2 - A^{-2}$$

$$\langle \mathsf{Hopf} \ \mathsf{link} \rangle = \langle \bigcirc \rangle =$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\langle {\rm unknot} \rangle = \qquad \qquad \langle \bigcirc \rangle = -A^2 - A^{-2}$$

$$\langle {\rm Hopf \ link} \rangle = \qquad \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6}$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{ll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \ \rangle = \end{array}$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\langle \text{unknot} \rangle = \qquad \langle \bigcirc \rangle = -A^2 - A^{-2}$$

$$\langle \text{Hopf link} \rangle = \qquad \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6}$$

$$\langle \text{empty link} \rangle = \qquad \langle \ \rangle = 1$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\langle \text{unknot} \rangle = \qquad \langle \bigcirc \rangle = -A^2 - A^{-2}$$

$$\langle \text{Hopf link} \rangle = \qquad \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6}$$

$$\langle \text{empty link} \rangle = \qquad \langle \rangle = 1$$

$$\langle \text{trefoil} \rangle =$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{ll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \rangle = 1 \\ \langle \text{trefoil} \rangle = & \langle \bigcirc \rangle = \end{array}$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\langle \text{unknot} \rangle = \qquad \langle \bigcirc \rangle = -A^2 - A^{-2}$$

$$\langle \text{Hopf link} \rangle = \qquad \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6}$$

$$\langle \text{empty link} \rangle = \qquad \langle \rangle = 1$$

$$\langle \text{trefoil} \rangle = \qquad \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9}$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\langle \text{unknot} \rangle = \qquad \langle \bigcirc \rangle = -A^2 - A^{-2}$$

$$\langle \text{Hopf link} \rangle = \qquad \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6}$$

$$\langle \text{empty link} \rangle = \qquad \langle \rangle = 1$$

$$\langle \text{trefoil} \rangle = \qquad \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9}$$

$$\langle \text{figure-eight knot} \rangle =$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\langle \text{unknot} \rangle = \qquad \langle \bigcirc \rangle = -A^2 - A^{-2}$$

$$\langle \text{Hopf link} \rangle = \qquad \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6}$$

$$\langle \text{empty link} \rangle = \qquad \langle \rangle = 1$$

$$\langle \text{trefoil} \rangle = \qquad \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9}$$

$$\langle \text{figure-eight knot} \rangle = \qquad \langle \bigcirc \rangle =$$

$$\langle \text{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{ll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \rangle = 1 \\ \langle \text{trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle \text{figure-eight knot} \rangle = & \langle \bigcirc \rangle = -A^{10} - A^{-10} \end{array}$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{lll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \rangle = 1 \\ \langle \text{trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle \text{figure-eight knot} \rangle = & \langle \bigcirc \rangle = -A^{10} - A^{-10} \end{array}$$

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{lll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \rangle = 1 \\ \langle \text{trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle \text{figure-eight knot} \rangle = & \langle \bigcirc \rangle = -A^{10} - A^{-10} \end{array}$$

1.
$$\langle \bigcirc \rangle = -A^2 - A^{-2}$$
,

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{lll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \rangle = 1 \\ \langle \text{trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle \text{figure-eight knot} \rangle = & \langle \bigcirc \rangle = -A^{10} - A^{-10} \end{array}$$

1.
$$\langle \bigcirc \rangle = -A^2 - A^{-2}$$
,

2.
$$\langle D \coprod \bigcirc \rangle = (-A^2 - A^{-2})\langle D \rangle$$
,

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{lll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \rangle = 1 \\ \langle \text{trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle \text{figure-eight knot} \rangle = & \langle \bigcirc \rangle = -A^{10} - A^{-10} \end{array}$$

1.
$$\langle \bigcirc \rangle = -A^2 - A^{-2}$$
,

2.
$$\langle D \coprod \bigcirc \rangle = (-A^2 - A^{-2}) \langle D \rangle$$
,

3.
$$\langle \times \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \times \rangle$$
 (Kauffman Skein Relation).

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{lll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \rangle = 1 \\ \langle \text{trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle \text{figure-eight knot} \rangle = & \langle \bigcirc \rangle = -A^{10} - A^{-10} \end{array}$$

Kauffman bracket is defined by the following properties:

1.
$$\langle \bigcirc \rangle = -A^2 - A^{-2}$$
,

2.
$$\langle D \coprod \bigcirc \rangle = (-A^2 - A^{-2})\langle D \rangle$$
,

3.
$$\langle \times \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \times \rangle$$
 (Kauffman Skein Relation).

Uniqueness is obvious.

$$\langle \operatorname{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\begin{array}{lll} \langle \text{unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle \text{Hopf link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle \text{empty link} \rangle = & \langle \rangle = 1 \\ \langle \text{trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle \text{figure-eight knot} \rangle = & \langle \bigcirc \rangle = -A^{10} - A^{-10} \end{array}$$

Kauffman bracket is defined by the following properties:

1.
$$\langle \bigcirc \rangle = -A^2 - A^{-2}$$
,

2.
$$\langle D \coprod \bigcirc \rangle = (-A^2 - A^{-2})\langle D \rangle$$
,

3.
$$\langle \times \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \times \rangle$$
 (Kauffman Skein Relation).

Uniqueness is obvious.

Invariant under R2 and R3, under R1 multiplies by $-A^{\pm 3}$.

A *state* of diagram is a distribution of *markers* over all crossings.

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

and its states:

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

and its states:

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

and its states:

Totally 2^c states, where c is the number of crossings.

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

and its states:

Totally 2^c states, where c is the number of crossings.

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

and its states:

Totally 2^c states, where c is the number of crossings.

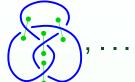
Three numbers associated to a state s:

1. the number a(s) of *positive* markers \nearrow ,

A state of diagram is a distribution of markers over all crossings.

Knot diagram:

and its states:



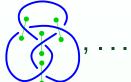
Totally 2^c states, where c is the number of crossings.

- 1. the number a(s) of positive markers \nearrow ,
- 2. the number b(s) of *negative* markers \searrow ,

A state of diagram is a distribution of markers over all crossings.

Knot diagram:

and its states:



Totally 2^c states, where c is the number of crossings.

- 1. the number a(s) of positive markers \nearrow ,
- 2. the number b(s) of *negative* markers \leftarrow ,
- 3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

A state of diagram is a distribution of markers over all crossings.

Knot diagram:

and its states:

Totally 2^c states, where c is the number of crossings.

- 1. the number a(s) of positive markers \nearrow ,
- 2. the number b(s) of *negative* markers \searrow ,
- 3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

$$s = \bigcirc \longrightarrow$$

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

and its states:

Totally 2^c states, where c is the number of crossings.

- 1. the number a(s) of positive markers \nearrow ,
- 2. the number b(s) of *negative* markers \longrightarrow ,
- 3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

$$s = \bigcap_{s \to \infty} \mapsto D_s = \bigcap_{s \to \infty} D_s$$

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram:

and its states:

Totally 2^c states, where c is the number of crossings.

- 1. the number a(s) of positive markers \nearrow ,
- 2. the number b(s) of *negative* markers \longrightarrow ,
- 3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

$$s = \bigcirc D_s = \bigcirc |s| = 2$$

A *state* of diagram is a distribution of *markers* over all crossings.

Knot diagram: and its states:

Totally 2^c states, where c is the number of crossings.

- 1. the number a(s) of positive markers \nearrow ,
- 2. the number b(s) of *negative* markers \longrightarrow ,
- 3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

$$s = \bigcap_{s \to \infty} |s| = 2$$

State Sum:
$$\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2 - A^{-2})^{|s|}$$

Hopf link,

Hopf link,
$$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\rangle =$$

$$\left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle + \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle + \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle + \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle =$$

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$.

Denote the generators of the summands by 1_C and x_C .

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$.

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$. Denote the generators of the summands by 1_C and x_C .

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$. Denote the generators of the summands by 1_C and x_C . Make tensor product $V_s=\otimes_C V_C$ of all |s| copies of $\mathbb{Z}\oplus \mathbb{Z}$. V_s corresponds to $(-A^2-A^{-2})^{|s|}$.

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$.

Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

 V_s corresponds to $(-A^2-A^{-2})^{|s|}$.

Generators of V_s are distributions of 1 or x over components of D_s .

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$.

Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

 V_s corresponds to $(-A^2-A^{-2})^{|s|}$.

Generators of V_s are distributions of 1 or x over components of D_s .

Sum up the graded groups V_s over all states s.

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$.

Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

 V_s corresponds to $(-A^2-A^{-2})^{|s|}$.

Generators of V_s are distributions of 1 or x over components of D_s .

Sum up the graded groups V_s over all states s.

$$\mathcal{C}=\sum_s V_s$$
 corresponds to the whole state sum $\langle D\rangle=\sum_{s \text{ state of }D} A^{a(s)-b(s)}(-A^2-A^{-2})^{|s|}$.

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$.

Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

$$V_s$$
 corresponds to $(-A^2-A^{-2})^{|s|}$.

Generators of V_s are distributions of 1 or x over components of D_s . Sum up the graded groups V_s over all states s.

$$\mathcal{C} = \sum_s V_s$$
 corresponds to the whole state sum $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2-A^{-2})^{|s|}$.

Generators of $\mathcal C$ are states s (i.e., distributions of markers over crossings) enhanced by a distribution of 1's and x's over all components of D_s .

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 V_C corresponds to $-A^2-A^{-2}$.

Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

$$V_s$$
 corresponds to $(-A^2-A^{-2})^{|s|}$.

Generators of V_s are distributions of 1 or x over components of D_s . Sum up the graded groups V_s over all states s.

$$\mathcal{C} = \sum_s V_s$$
 corresponds to the whole state sum $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2-A^{-2})^{|s|}$.

Generators of $\mathcal C$ are states s (i.e., distributions of markers over crossings) enhanced by a distribution of 1's and x's over all components of D_s .

The homological grading on \mathcal{C} is defined by the construction above.

Put on each component C of D_s a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1 Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

Generators of V_s are distributions of 1 or x over components of D_s .

Sum up the graded groups V_s over all states s.

 $\mathcal{C} = \sum_s V_s$ corresponds to the whole state sum $\langle D \rangle = \sum_s \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2-A^{-2})^{|s|}$.

Generators of $\mathcal C$ are states s (i.e., distributions of markers over crossings) enhanced by a distribution of 1's and x's over all components of D_s .

The homological grading on $\mathcal C$ is defined by the construction above. The A-grading: on V_C multiply the original grading by -2, then multiply over all components C of D_s and shift by a(s)-b(s).

Put on each component C of D_s

a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1

Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

Generators of V_s are distributions of 1 or x over components of D_s .

Sum up the graded groups V_s over all states s.

$$\mathcal{C}=\sum_s V_s$$
 corresponds to the whole state sum $\langle D\rangle=\sum_{s \text{ state of }D} A^{a(s)-b(s)}(-A^2-A^{-2})^{|s|}$.

Generators of $\mathcal C$ are states s (i.e., distributions of markers over crossings) enhanced by a distribution of 1's and x's over all components of D_s .

The homological grading on \mathcal{C} is defined by the construction above.

The A-grading: on V_C multiply the original grading by -2, then multiply over all components C of D_s and shift by a(s)-b(s).

This corresponds to $A^{a(s)-b(s)}(-A^2-A^{-2})^{|s|}$.

Put on each component C of D_s

a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1

Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

Generators of V_s are distributions of 1 or x over components of D_s .

Sum up the graded groups V_s over all states s.

$$\mathcal{C} = \sum_s V_s$$
 corresponds to the whole state sum $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2-A^{-2})^{|s|}$.

Generators of $\mathcal C$ are states s (i.e., distributions of markers over crossings) enhanced by a distribution of 1's and x's over all components of D_s .

The homological grading on \mathcal{C} is defined by the construction above.

The A-grading: on V_C multiply the original grading by -2, then multiply over all components C of D_s and shift by a(s)-b(s).

Denote by $\mathcal{C}_{p,q}$ the subgroup of \mathcal{C} with homological grading p and second grading q.

Put on each component C of D_s

a graded group $V_C\cong \mathbb{Z}\oplus \mathbb{Z}$ with the summands of grades 1 and -1

Denote the generators of the summands by 1_C and x_C .

Make tensor product $V_s = \otimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

Generators of V_s are distributions of 1 or x over components of D_s .

Sum up the graded groups V_s over all states s.

$$\mathcal{C} = \sum_s V_s$$
 corresponds to the whole state sum $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2-A^{-2})^{|s|}$.

Generators of $\mathcal C$ are states s (i.e., distributions of markers over crossings) enhanced by a distribution of 1's and x's over all components of D_s .

The homological grading on \mathcal{C} is defined by the construction above.

The A-grading: on V_C multiply the original grading by -2, then multiply over all components C of D_s and shift by a(s)-b(s).

Denote by $\mathcal{C}_{p,q}$ the subgroup of \mathcal{C} with homological grading p and second grading q. $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} \mathcal{C}_{p,q}$

$$\partial:\mathcal{C}_{p,q} o\mathcal{C}_{p-1,q}$$
 .

 $\partial: \mathcal{C}_{p,q} \to \mathcal{C}_{p-1,q}$. Any differential $\partial: C_{p,q} \to C_{p-1,q}$ gives homology $H_{p,q}(D)$ with $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} H_{p,q}(D)$.

 $\partial: \mathcal{C}_{p,q} o \mathcal{C}_{p-1,q}$. Any differential $\partial: C_{p,q} o C_{p-1,q}$ gives homology $H_{p,q}(D)$ with $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} H_{p,q}(D)$. Invariance of $H_{p,q}(D)$ under Reidemeister moves wanted!

 $\partial:\mathcal{C}_{p,q} o\mathcal{C}_{p-1,q}$. Any differential $\partial:C_{p,q} o C_{p-1,q}$ gives homology $H_{p,q}(D)$ with $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} H_{p,q}(D)$. Invariance of $H_{p,q}(D)$ under Reidemeister moves wanted! $\partial(S) = \sum \pm T$ with T, which differ from S by a single marker.

 $\partial: \mathcal{C}_{p,q} \to \mathcal{C}_{p-1,q}$. Any differential $\partial: C_{p,q} \to C_{p-1,q}$ gives homology $H_{p,q}(D)$ with $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} H_{p,q}(D)$.

Invariance of $H_{p,q}(D)$ under Reidemeister moves wanted!

 $\partial(S) = \sum \pm T$ with T, which differ from S by a single marker.

 $V=\mathbb{Z}\oplus\mathbb{Z}$ is a Frobenius algebra with unity 1, relation $x^2=0$ and comultiplication $\Delta:V\to V\otimes V: \ \Delta(1)=(1\otimes x)+(x\otimes 1)$, $\Delta(x)=x\otimes x$.

Introduction

Khovanov homology

Khovanov homology of tangles

Khovanov homology of tangles

Khovanov homology of tangles

Introduction

Khovanov homology

Khovanov homology of tangles

Khovanov homology of tangles

- Tangles
- Orientations replace generators
- Arcs with oriented end points

Khovanov homology of tangles

= Links with boundary.

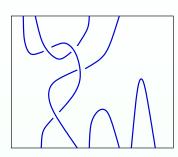
- = Links with boundary.
- = A fragment of a link diagram.

- = Links with boundary.
- = A fragment of a link diagram.

A generalization of braid.

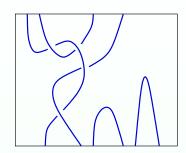
- = Links with boundary.
- = A fragment of a link diagram.

A generalization of braid.



- = Links with boundary.
- = A fragment of a link diagram.

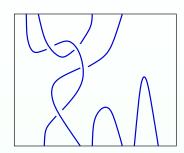
A generalization of braid.



The Jones polynomial and Kauffman bracket were generalized to tangles by Turaev and Reshetikhin.

- = Links with boundary.
- = A fragment of a link diagram.

A generalization of braid.

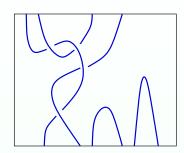


The Jones polynomial and Kauffman bracket were generalized to tangles by Turaev and Reshetikhin.

$$(k,l)$$
 -tangle \mapsto a homomorphism $(V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes k} \to (V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes l}.$

- = Links with boundary.
- = A fragment of a link diagram.

A generalization of braid.



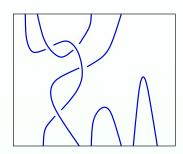
The Jones polynomial and Kauffman bracket were generalized to tangles by Turaev and Reshetikhin.

$$(k,l)$$
 -tangle \mapsto a homomorphism $(V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes k} \to (V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes l}.$

The Khovanov homology were generalized by Khovanov to tangles.

- = Links with boundary.
- = A fragment of a link diagram.

A generalization of braid.



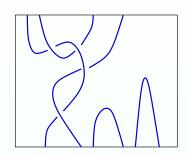
The Jones polynomial and Kauffman bracket were generalized to tangles by Turaev and Reshetikhin.

$$(k,l)$$
 -tangle \mapsto a homomorphism $(V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes k} \to (V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes l}.$

The Khovanov homology were generalized by Khovanov to tangles. As the Khovanov homology of all links obtained from the tangle by adding disjoint arcs.

- = Links with boundary.
- = A fragment of a link diagram.

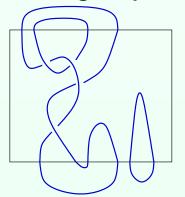
A generalization of braid.

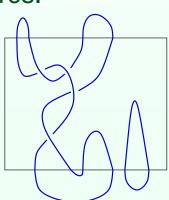


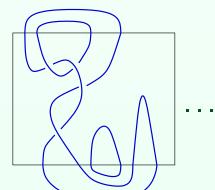
The Jones polynomial and Kauffman bracket were generalized to tangles by Turaev and Reshetikhin.

$$(k,l)$$
 -tangle \mapsto a homomorphism $(V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes k} \to (V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes l}.$

The Khovanov homology were generalized by Khovanov to tangles. As the Khovanov homology of all links obtained from the tangle by adding disjoint arcs.

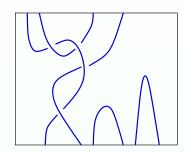






- = Links with boundary.
- = A fragment of a link diagram.

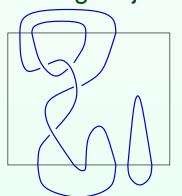
A generalization of braid.

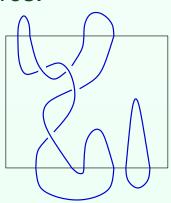


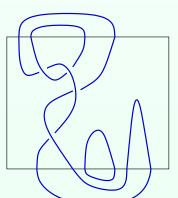
The Jones polynomial and Kauffman bracket were generalized to tangles by Turaev and Reshetikhin.

$$(k,l)$$
 -tangle \mapsto a homomorphism $(V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes k} \to (V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes l}.$

The Khovanov homology were generalized by Khovanov to tangles. As the Khovanov homology of all links obtained from the tangle by adding disjoint arcs.







No relation to ReshetikhinTuraev functor.

A key idea is to interpret the generators of V as orientations.

A key idea is to interpret the generators of V as orientations. Then a generator of the Khovanov chain complex $\mathcal C$ for a link diagram D turns into a distribution of markers at crossings of D plus an orientation of the corresponding smoothing D_s of D.

A key idea is to interpret the generators of V as orientations. Then a generator of the Khovanov chain complex $\mathcal C$ for a link diagram D turns into a distribution of markers at crossings of D plus an orientation of the corresponding smoothing D_s of D. Counting of the contribution of a generator to the state sum (= A-grading) is localized.

A key idea is to interpret the generators of V as orientations.

Then a generator of the Khovanov chain complex $\mathcal C$ for a link diagram

D turns into a distribution of markers at crossings of D plus an orientation of the corresponding smoothing D_s of D.

Counting of the contribution of a generator to the state sum (= A-grading) is localized.

	\		V				
A	-A	$-A^{-1}$	A^{-1}				
X	X	×	×	X	兴	**	X
A	A	A^{-1}	A^{-1}	A	$-A^{-3}$	A	-A
X		X	×.	X	×		**
A^{-1}	A^{-1}	A	A	A^{-1}	$-A^{-1}$	A^{-1}	$-A^3$

A key idea is to interpret the generators of V as orientations.

Then a generator of the Khovanov chain complex $\mathcal C$ for a link diagram

D turns into a distribution of markers at crossings of D plus an orientation of the corresponding smoothing D_s of D.

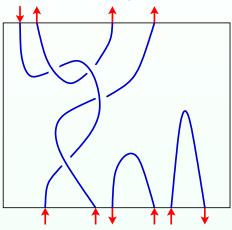
Counting of the contribution of a generator to the state sum (= A-grading) is localized.

	Y		V				
A	-A	$-A^{-1}$	A^{-1}				
		X		X	X		X
A	A	A^{-1}	A^{-1}	\overline{A}	$-A^{-3}$	A	-A
X	X	X	× ×	X	×		
A^{-1}	A^{-1}	A	A	A^{-1}	$-A^{-1}$	A^{-1}	$-A^3$

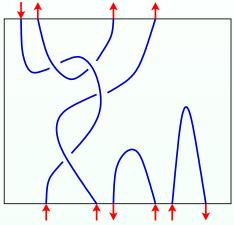
The Kauffman state sum turns into R-matrix state sum.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

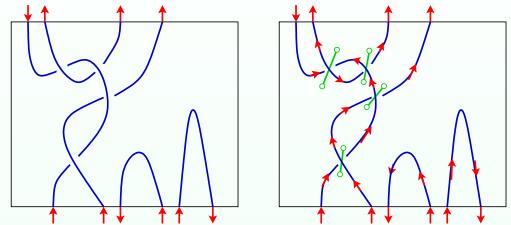


A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.



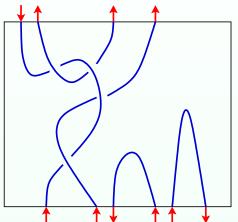
It can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

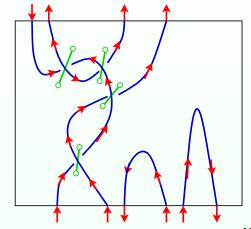
A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.



It can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

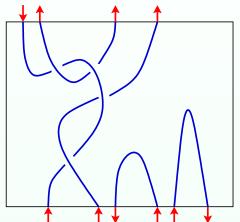


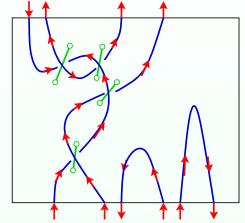


It can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

The homology grading of a state is the degree of Gauss map of D_s evaluated as the average of local degrees at $\pm 1 \in S^1$

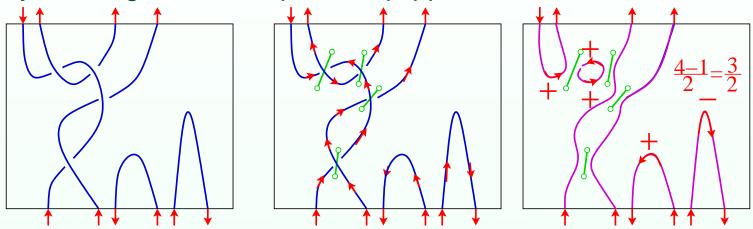
A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.





It can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing. The homology grading of a state is the degree of Gauss map of D_s evaluated as the average of local degrees at $\pm 1 \in S^1$ +3/2 in the picture above.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

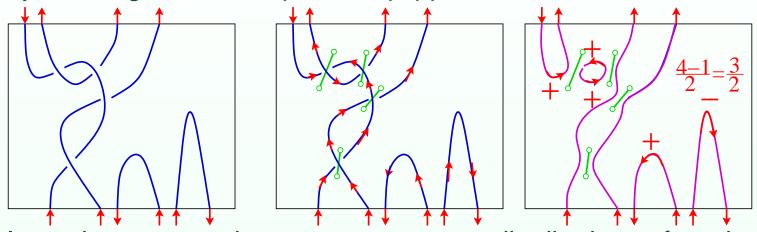


It can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

The homology grading of a state is the degree of Gauss map of D_s evaluated as the average of local degrees at $\pm 1 \in S^1$

+3/2 in the picture above.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.



It can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

The homology grading of a state is the degree of Gauss map of D_s evaluated as the average of local degrees at $\pm 1 \in S^1$

+3/2 in the picture above.

Differential: change of positive marker to a negative and change of adjacent orientation preserving A-grading, decreasing the homology grading by 1 and preserving the orientations of end points.