Let us consider the case of slowly varying
(adiabatic) Hamiltonian H (). We will assume
that the energy levels E,(t) are distinct and vary
continuously with ¢ , corresponding eigenvectors
will be denoted by ¢, (t). We assume that these
eigenvectors constitute an orthonormal
system.Then it is easy to prove that in the first
approximation the evolution operator U (1)
transforms eigenvector into eigenvector:

dov, (t)
dt

To verify this fact we check that the RHS satisfies
the equation of motion if we neglect ¢, ().

U(t)u(0) = e W, (2),

- En(t)



More accurate consideration

Consider a smooth family of Hamiltonians H (g)
with eigenvectors ¢,(g) and eigenvalues FE,(g)
smoothly depending on g. The family

H(t) = A(g(t))

is an adiabatic family if ¢(¢) can be neglected.
(For example, we can fix a function g(¢) and
consider a family of functions ¢,(t) = g(at) with
a — 0.) Then

0(1)6,(9(0)) = 6, (9(1)), 22 — g, (g(0)

because ¢,(g(t)) can be neglected.



U (t)-evolution operator of density matrix K.

U (1)K () = L[H(), K]
Introduce operators 1,,,(t) by the formula

U (t)x = (2, Pn(t)) O (t). These operators are
eigenvectors of the operator H(t). In adiabatic
approximation U (t) transforms eigenvector into

eigenvector:

dBrn (¢)
dt

U(t)tmn(0) = eiwm"(t)wmn(t)a = En(t)—Eu(1)
(this equation is true up to terms that can be
neglected for slowly varying Hamiltonian). Notice
that (,,,, does not depend on t.



It follows that K(t) = U(t)K where

K =" kpntmn is given by the formula
K(t)=> k‘mn(t)@bmn(t) where

Epn(t) = € iﬂmn@)k

Brn(t) = Jo (B E,(7))dr

If H(T) H(O) we can assume that

&n(T) = ¢,(0). Then we see that diagonal entries
of K do not change, but non-diagonal entries are
multiplied by a phase factor.



If H(t) is an unknown adiabatic deformation of
Hamiltonian H the non-diagonal entries of K (T)
are unpredictable.

If we consider linear combination (superposition)
ot + ardy of eigenvectors of H = ﬁ(O) then
evolving it with respect to the Hamiltonian H we
get phase factors : ay(t) = e Frlay. If we evolve
this linear combination with respect to unknown
adiabatic deformation H(t) the absolute value
|k (t)| remains constant ,but the phase factors
are unpredictable.

Decoherence.



We model interaction with environment by
random adiabatic perturbation of Hamiltonian H.
We assume that random time-dependent
Hamiltonian depends on some parameters A € A
with some probability distribution on A . If we
start with density matrix (with matrix entries
kmm in H -representation) then the density
matrix K)(7T) is equal to > Crun( A T) kWi,
i.e. the matrix entries acquire phase factor
Cinn (A, T). Now we should take the mixture
K(T) of states K,(T') (this means that we should
take the average of phase factors). It is obvious
that non-diagonal entries of K(T') are smaller by
absolute value than corresponding entries of K.



Imposing some mild conditions on the probability
distribution on A one can prove that the
non-diagonal entries of K (T') tend to zero when
the adiabatic parameter o tends to zero. In other
words the matrix K (T) tends to a diagonal
matrix K having the same diagonal entries as K.
The matrix K can be considered as a mixture of
pure states, corresponding to the vectors ¢, with
probabilities k,,,.



Let us include the Hamiltonian H in a family of
Hamiltonians H(g), where g € A. We assume
that H(0) = H. Let us consider a time dependent
Hamiltonian H(g(t)) where g(0) = 0, g(1) = 0.
We can construct an adiabatic Hamiltonian by
the formula

H,(t) = H(g(at)) where ae — 0.

It is clear that H,(0) = H,(T) = H where
T=aot



Denote by E,(g) the eigenvalues of H(g). Then
the eigenvalues of H,(t) are equal to E,(g(at))
The evolution of matrix entries of the density
matrix with respect to the Hamiltonian H,(t) is
governed by phase factors e ") where for
t="T

Brn = Jy dr(En(g(ar)) = Eu(g(a7))) =

L[ dr(En(g(r)) — En(g(r)))

Introducing probability distribution on the set A
we obtain random adiabatic Hamiltonian.

The average phase factor vanishes for m # n.



Geometric approach to quantum theory

We start with a bounded closed convex set

Co C L (set of states ) and a subgroup V of the
automorphism group of Cj

Here L is a Banach space and automorphisms of
Cy are invertible linear operators in £ mapping C
onto itself.

The evolution operator o(t) € V transforms the
state in the moment 0 into the state in the
moment ¢



Equation of motion

do

T = H{1)o(1)

This formula can be considered as a definition of
H(t) ("Hamiltonian”), but usually we want to
find the evolution operator knowing the
"Hamiltonian”. If H does not depend on time
then o(t) = exp(Ht).

Observable - a pair (A, a) where A € Lie(V) and
a is an A-invariant linear functional on £

A € Lie(V) if A generates a one-parameter
subgroup of V denoted by o4(t) = exp(At)



In textbook QM C, consists of density matrices,
Y is unitary group.

Observables are pairs (A, a) where A is
self-adjoint operator, a(K) = tr(AK).

In algebraic approach Cy consists of positive
linear functionals w on unital associative algebra
with involution denoted by A (positive means
that w(A*A) > 0).

Observable is a pair (A4, a) where A is a
self-adjoint elements of A and a(w) = w(A).



Decoherence in geometric approach

Let us fix a time independent ”Hamiltonian” H.
Evolution operator o(t) = e'#

We assume that H is diagonalizable (there exists
a basis of L consisting of eigenvectors of H). Let
us denote by (¢;) such a basis:

Hyj = €1,

The eigenvalues €; are purely imaginary.



Let us assume that H(g) is a family of
”Hamiltonians” such that H(0) = H and there
exists a basis (1;(g)) depending smoothly on g in
such a way that v,;(0) = ¢; and

Hii(g) = €j(9)v;(9)

We say 1; is a robust zero mode of H if €;(g) = 0.



Let us model the interaction with environment by
random ”Hamiltonian” H(g(t)). Then neglecting
g(t) (in the adiabatic approximation) we obtain

o(t)y; = e’y (g(t)),

where % = €;(g(t)).

If ; is a robust zero mode of H then

o(t); =¥;(g(t)). If g(T') = g(0) we have

o(T); = vy.

All other modes acquire phase factors. If we have
an unknown adiabatic perturbation it is

impossible to predict these phase factors.



Imposing some conditions on the random
Hamiltonian H(t) we can prove that in average
the random phase factors e?(!) vanish unless ¢; is
a robust zero mode of H.

In textbook quantum mechanics robust zero
modes of H are diagonal entries of density matrix
in H -representation.

Decoherence



Let us denote by P’ a linear operator leaving
intact robust zero modes of H and sending to
zero all other eigenvectors of H. If x € Cy one can
prove that P’z € Cy. One can represent P’z as a
mixture of extreme points u; of P'(Cy) (of pure
robust zero modes): P'x = > p;u;. The
coefficients p; should be interpreted as
probabilities.

If all zero modes of H are robust P’ = P where

1 T
P = Jim /0 o (t)dt

T—o00



Take observable (A, a) where A €V, ais a
functional obeying a(Ax) = 0.

x is a robust zero mode of A if Ax = 0 and for
every A’ that is close to A there exists 2’ that is
close to & and obeys A’z’ = 0.

Assume that all zero modes of A are robust.
Consider the set C4 of all states that are zero
modes of A:

Ca= (KerA)NC = Im(Py) where

Py =limp_ o % fOT dtedt.

Represent P4(x) as a mixture of pure zero modes
of A ( of extreme points of C4):

PA(iL’) = Zplul

In non-degenerate case p; is the probability of
a(u;) in the state x.



L-functionals

Weyl algebra with generators ' obeying

akal — alak = iho®!

K-density matrix in representation of Weyl
algebra

Li(a) = tre? K = trV, K

Vo, = el — giau where ay are real is a unitary
operator

VoV = e’igo“’ﬂvaw where a8 = a0"' 5.

L -space of all linear functionals on Weyl algebra
Lk € L specifies a positive functional (state). It
is normalized: Lg(0) = 1.



Every element A of an algebra with involution
specifies two operators on linear functionals: one
(denoted by the same symbol) transforms the
functional w(x) into the functional

(Aw)(z) = w(Az), another (denoted by A)
transforms it into the functional

(Aw)(z) = w(zA®).

Denote by C the cone of positive (not necessary
normalized) linear functionals.

The operator AA transforms C into C.

If A= ¢! then A = e, Hence the evolution
operator defined as solution of equation

do/dt = (H + H)o

also acts in C.



It is easy to calculate that

(VaL)(a) = e 3 L(a + B),

(VpL)(a) = e-4a3L(a - B)

An element of Weyl algebra H = [ dBh(8)Vj is
self-adjoint if h(—8) = h(B)*. Taking H = —% ;
we obtain the equation of motion

W% = (H — H)o , hence



L
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/ dBh(B)e 4P L{at )~ / dBh(—B)e 427 L(a—p)
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Finally,

dL QSin(Eaaﬁ)
o= [am®= 2 ra



L-functionals. Another definition.

Take representation of Weyl algebra (of CCR) in
Hilbert space H. (We understand CCR as
relations [ay, a;] = 0k, [ak, ai] = [af,a;] =0,
where k,[ run over a discrete set M.)

To a density matrix K (or more generally to any
trace class operator in ‘H) we can assign a
functional Lk (a*, «) defined by the formula

_ + * 1 % _ + *
Lg(a*, a) =tre”® e* K = e2* “tre” ** T K

Here aa™ stands for Y aya; and a*a for Y ofay,
where £



One can say that Lg is a generating functional of
correlation functions.

One can consider also a more general case when
CCR are written in the form

la(k), o™ (K)] = hé(k, k), [a(k), a(k)] = [a* (k), a” (k)]

k, k" run over a measure space M. We are using
the exponential form of CCR; in this form a
representation of CCR is specified as a collection
of unitary operators e—aa’ta’a obeying
appropriate commutation relations. Here a(k) is
a complex function on the measure space M , the
expressions of the form a*a, Oza,+ Can be written
as integrals [ o*(k)a(k)dk f *(k)dk over
M. We assume that « is square- mtegrable, then
the expression for Ly is well defined.



An action of Weyl algebra A on L (on the space
of L-functionals) can be specified by operators

b* (k) = hei (k) — ca(k), b(k) = (k)

obeying CCR. Here ¢ (k) are multiplication
operators by aj, oy and ¢;(k) are derivatives with
respect to aj, ay. This definition is prompted by
relations

Loy = b(k) Lk, Lo+ye = b" (k) Lk,

Another representation of A on L. is specified by
the operators

b* (k) = —hey (k) + 1 (k), b(k) = —ca(k),
obeying CCR and satisfying
Liovin = b(K)Lw, Loy = bt (k) L.



Let us consider a Hamiltonian H in a space of
representation of CCR. We will write H in the
form

H=>"> Hyulk, k|l o )af, af ay,..ap,

m,n kwlj
(1)
There are two operators in £ corresponding to H:

H=>"Y Hyu(ky, k|l L)l b by,

m,n k;,l;
(2)
(we denote it by the same symbol) and

H=>"> Hyn(ky, k|l L)y b by,

m,n k;,l;
(3)



The equation of motion for the L-functional
L(a*, «) has the form

dL - -
th— =HL=HL—-HL
dt
(We introduced the notation H = H — H.)
It corresponds to the equation for density
matrices.



The equations of motion for L-functionals make
sense even in the situation when the equations of
motion in the Fock space are ill-defined (but
there are no ultraviolet divergences). This is
related to the fact that vectors and density
matrices from all representations of CCR are
described by L-functionals. This means that
applying the formalism of L-functionals we can
avoid the problems related to the existence of
inequivalent representations of CCR.



In perturbation theory for translation-invariant
Hamiltonians these problems appear as
divergences related to infinite volume. Therefore
in the standard formalism it is necessary to
consider at first a Hamiltonian in finite volume V'
(to make volume cutoff or, in another
terminology, infrared cutoff ) and to take the
limit V' — oo in physical quantities.



In the formalism of L-functionals we can work
directly in infinite volume. We can define
adiabatic S-matrix and adiabatic generalized
Green functions repeating the standard
definitions. If the adiabatic parameter a tends to
zero then the adiabatic S-matrix multiplied by
some factors tends to inclusive scattering matrix.
The adiabatic Green functions in the formalism
of L-functionals tend to GGreen functions. This
gives a very simple derivation of the diagram
techniques for the calculation of GGreen
functions.



