
Let us consider the case of slowly varying
(adiabatic) Hamiltonian Ĥ(t). We will assume
that the energy levels En(t) are distinct and vary
continuously with t , corresponding eigenvectors
will be denoted by φn(t). We assume that these
eigenvectors constitute an orthonormal
system.Then it is easy to prove that in the first
approximation the evolution operator Û(t)
transforms eigenvector into eigenvector:

Û(t)φn(0) = e−iαn(t)φn(t),
dαn(t)

dt
= En(t)

To verify this fact we check that the RHS satisfies
the equation of motion if we neglect φ̇n(t).



More accurate consideration
Consider a smooth family of Hamiltonians Ĥ(g)
with eigenvectors φn(g) and eigenvalues En(g)
smoothly depending on g. The family
Ĥ(t) = Ĥ(g(t))
is an adiabatic family if ġ(t) can be neglected.
(For example, we can fix a function g(t) and
consider a family of functions ga(t) = g(at) with
a→ 0.) Then

Û(t)φn(g(0)) = e−iαn(t)φn(g(t)),
dαn(t)

dt
= En(g(t))

because φ̇n(g(t)) can be neglected.



U(t)-evolution operator of density matrix K.
dK
dt = H(t)K(t) = 1

i~ [Ĥ(t), K]
Introduce operators ψmn(t) by the formula
ψmn(t)x = 〈x, φn(t)〉φm(t). These operators are
eigenvectors of the operator H(t). In adiabatic
approximation U(t) transforms eigenvector into
eigenvector:

U(t)ψmn(0) = e−iβmn(t)ψmn(t),
dβmn(t)

dt
= Em(t)−En(t)

(this equation is true up to terms that can be
neglected for slowly varying Hamiltonian). Notice
that βmm does not depend on t.



It follows that K(t) = U(t)K where
K =

∑
kmnψmn is given by the formula

K(t) =
∑
kmn(t)ψmn(t) where

kmn(t) = e−iβmn(t)kmn,

βmn(t) =
∫ t
0 (Em(τ)− En(τ))dτ

If Ĥ(T ) = Ĥ(0) we can assume that
φn(T ) = φn(0). Then we see that diagonal entries
of K do not change, but non-diagonal entries are
multiplied by a phase factor.



If Ĥ(t) is an unknown adiabatic deformation of

Hamiltonian Ĥ the non-diagonal entries of K(T )
are unpredictable.
If we consider linear combination (superposition)

α0φ0 + α1φ1 of eigenvectors of Ĥ = Ĥ(0) then

evolving it with respect to the Hamiltonian Ĥ we
get phase factors : αk(t) = e−iEktαk. If we evolve
this linear combination with respect to unknown
adiabatic deformation Ĥ(t) the absolute value
|αk(t)| remains constant ,but the phase factors
are unpredictable.
Decoherence.



We model interaction with environment by
random adiabatic perturbation of Hamiltonian Ĥ.
We assume that random time-dependent
Hamiltonian depends on some parameters λ ∈ Λ
with some probability distribution on Λ . If we
start with density matrix (with matrix entries

kmn in Ĥ -representation) then the density
matrix Kλ(T ) is equal to

∑
Cmn(λ, T )kmnψmn,

i.e. the matrix entries acquire phase factor
Cmn(λ, T ). Now we should take the mixture
K̄(T ) of states Kλ(T ) (this means that we should
take the average of phase factors). It is obvious
that non-diagonal entries of K̄(T ) are smaller by
absolute value than corresponding entries of K.



Imposing some mild conditions on the probability
distribution on Λ one can prove that the
non-diagonal entries of K̄(T ) tend to zero when
the adiabatic parameter α tends to zero. In other
words the matrix K̄(T ) tends to a diagonal
matrix K̄ having the same diagonal entries as K.
The matrix K̄ can be considered as a mixture of
pure states, corresponding to the vectors φn with
probabilities knn.



Let us include the Hamiltonian Ĥ in a family of
Hamiltonians Ĥ(g), where g ∈ Λ. We assume

that Ĥ(0) = Ĥ. Let us consider a time dependent

Hamiltonian Ĥ(g(t)) where g(0) = 0, g(1) = 0.
We can construct an adiabatic Hamiltonian by
the formula
Ĥα(t) = Ĥ(g(αt)) where α→ 0.

It is clear that Ĥα(0) = Ĥα(T ) = Ĥ where
T = α−1.



Denote by En(g) the eigenvalues of Ĥ(g). Then

the eigenvalues of Ĥα(t) are equal to En(g(αt))
The evolution of matrix entries of the density
matrix with respect to the Hamiltonian Ĥα(t) is
governed by phase factors e−iβmn(t) where for
t = T
βmn =

∫ T
0 dτ(Em(g(ατ))− En(g(ατ))) =

1
α

∫ 1

0 dτ(Em(g(τ))− Em(g(τ)))
Introducing probability distribution on the set Λ
we obtain random adiabatic Hamiltonian.
The average phase factor vanishes for m 6= n.



Geometric approach to quantum theory
We start with a bounded closed convex set
C0 ⊂ L (set of states ) and a subgroup V of the
automorphism group of C0
Here L is a Banach space and automorphisms of
C0 are invertible linear operators in L mapping C0
onto itself.
The evolution operator σ(t) ∈ V transforms the
state in the moment 0 into the state in the
moment t



Equation of motion

dσ

dt
= H(t)σ(t)

This formula can be considered as a definition of
H(t) (”Hamiltonian”), but usually we want to
find the evolution operator knowing the
”Hamiltonian”. If H does not depend on time
then σ(t) = exp(Ht).
Observable - a pair (A, a) where A ∈ Lie(V) and
a is an A-invariant linear functional on L
A ∈ Lie(V) if A generates a one-parameter
subgroup of V denoted by σA(t) = exp(At)



In textbook QM C0 consists of density matrices,
V is unitary group.
Observables are pairs (A, a) where A is
self-adjoint operator, a(K) = tr(AK).
In algebraic approach C0 consists of positive
linear functionals ω on unital associative algebra
with involution denoted by A (positive means
that ω(A∗A) ≥ 0).
Observable is a pair (A, a) where A is a
self-adjoint elements of A and a(ω) = ω(A).



Decoherence in geometric approach
Let us fix a time independent ”Hamiltonian” H.
Evolution operator σ(t) = etH

We assume that H is diagonalizable (there exists
a basis of L consisting of eigenvectors of H). Let
us denote by (ψj) such a basis:

Hψj = εjψj

The eigenvalues εj are purely imaginary.



Let us assume that H(g) is a family of
”Hamiltonians” such that H(0) = H and there
exists a basis (ψj(g)) depending smoothly on g in
such a way that ψj(0) = ψj and

Hψj(g) = εj(g)ψj(g)

We say ψj is a robust zero mode of H if εj(g) ≡ 0.



Let us model the interaction with environment by
random ”Hamiltonian” H(g(t)). Then neglecting
ġ(t) ( in the adiabatic approximation) we obtain

σ(t)ψj = eρj(t)ψj(g(t)),

where
dρj
dt = εj(g(t)).

If ψj is a robust zero mode of H then
σ(t)ψj = ψj(g(t)). If g(T ) = g(0) we have
σ(T )ψj = ψj.
All other modes acquire phase factors. If we have
an unknown adiabatic perturbation it is
impossible to predict these phase factors.



Imposing some conditions on the random
Hamiltonian H(t) we can prove that in average
the random phase factors eρj(t) vanish unless φj is
a robust zero mode of H.
In textbook quantum mechanics robust zero
modes of H are diagonal entries of density matrix
in Ĥ-representation.
Decoherence



Let us denote by P ′ a linear operator leaving
intact robust zero modes of H and sending to
zero all other eigenvectors of H. If x ∈ C0 one can
prove that P ′x ∈ C0. One can represent P ′x as a
mixture of extreme points ui of P ′(C0) (of pure
robust zero modes): P ′x =

∑
piui. The

coefficients pi should be interpreted as
probabilities.
If all zero modes of H are robust P ′ = P where

P = lim
T→∞

1

T

∫ T

0

σ(t)dt



Take observable (A, a) where A ∈ V , a is a
functional obeying a(Ax) = 0.
x is a robust zero mode of A if Ax = 0 and for
every A′ that is close to A there exists x′ that is
close to x and obeys A′x′ = 0.
Assume that all zero modes of A are robust.
Consider the set CA of all states that are zero
modes of A:
CA = (KerA) ∩ C = Im(PA) where

PA = limT→∞
1
T

∫ T
0 dteAt.

Represent PA(x) as a mixture of pure zero modes
of A ( of extreme points of CA):
PA(x) =

∑
piui.

In non-degenerate case pi is the probability of
a(ui) in the state x.



L-functionals
Weyl algebra with generators ûi obeying
ûkûl − ûlûk = i~σk,l
K-density matrix in representation of Weyl
algebra
LK(α) = treiαkû

k

K = trVαK

Vα = eiαkû
k

= eiαu where αk are real is a unitary
operator
VαVβ = e−i

~
2ασβVα+β where ασβ = αkσ

k,lβk.
L -space of all linear functionals on Weyl algebra
LK ∈ L specifies a positive functional (state). It
is normalized: LK(0) = 1.



Every element A of an algebra with involution
specifies two operators on linear functionals: one
(denoted by the same symbol) transforms the
functional ω(x) into the functional
(Aω)(x) = ω(Ax), another (denoted by Ã)
transforms it into the functional
(Ãω)(x) = ω(xA∗).
Denote by C the cone of positive (not necessary
normalized) linear functionals.
The operator ÃA transforms C into C.
If A = etH then Ã = etH̃ . Hence the evolution
operator defined as solution of equation
dσ/dt = (H + H̃)σ
also acts in C.



It is easy to calculate that
(VβL)(α) = e−i

~
2ασβL(α + β),

(ṼβL)(α) = ei−
~
2ασβL(α− β).

An element of Weyl algebra Ĥ =
∫
dβh(β)Vβ is

self-adjoint if h(−β) = h(β)∗. Taking H = − i
~Ĥ

we obtain the equation of motion

i~dσdt = (Ĥ − ˜̂
H)σ , hence



i~
dL

dt
=∫

dβh(β)e−i
~
2ασβL(α+β)−

∫
dβh(−β)e−i

~
2ασβL(α−β)

=

∫
dβh(β)(e−i

~
2ασβ − ei

~
2ασβ)L(α + β)

Finally,

dL

dt
=

∫
dβh(β)

2 sin(~2ασβ)

~
L(α + β)



L-functionals. Another definition.
Take representation of Weyl algebra (of CCR) in
Hilbert space H. (We understand CCR as
relations [ak, a

+
l ] = δkl, [ak, al] = [a+k , a

+
l ] = 0,

where k, l run over a discrete set M.)
To a density matrix K (or more generally to any
trace class operator in H) we can assign a
functional LK(α∗, α) defined by the formula

LK(α∗, α) = tre−αa
+

eα
∗aK = e

1
2α

∗αtre−αa
++α∗aK

Here αa+ stands for
∑
αka

+
k and α∗a for

∑
α∗kak,

where k



One can say that LK is a generating functional of
correlation functions.
One can consider also a more general case when
CCR are written in the form

[a(k), a+(k′)] = ~δ(k, k′), [a(k), a(k′)] = [a+(k), a+(k′)] = 0,

k, k′ run over a measure space M . We are using
the exponential form of CCR; in this form a
representation of CCR is specified as a collection
of unitary operators e−αa

++α∗a obeying
appropriate commutation relations. Here α(k) is
a complex function on the measure space M , the
expressions of the form α∗a, αa+ can be written
as integrals

∫
α∗(k)a(k)dk,

∫
α(k)a+(k)dk over

M. We assume that α is square-integrable, then
the expression for LK is well defined.



An action of Weyl algebra A on L (on the space
of L-functionals) can be specified by operators

b+(k) = ~c+1 (k)− c2(k), b(k) = c1(k)

obeying CCR. Here c+i (k) are multiplication
operators by α∗k, αk and ci(k) are derivatives with
respect to α∗k, αk. This definition is prompted by
relations

La(k)K = b(k)LK , La+(k)K = b+(k)LK ,

Another representation of A on L. is specified by
the operators

b̃+(k) = −~c+2 (k) + c1(k), b̃(k) = −c2(k),

obeying CCR and satisfying

LKa+(k) = b̃(k)LK , LKa(k) = b̃+(k)LK ,



Let us consider a Hamiltonian Ĥ in a space of
representation of CCR. We will write Ĥ in the
form

Ĥ =
∑
m,n

∑
ki,lj

Hm,n(k1, ...km|l1, ..., ln)a+k1...a
+
km
al1...aln

(1)

There are two operators in L corresponding to Ĥ:

Ĥ =
∑
m,n

∑
ki,lj

Hm,n(k1, ...km|l1, ..., ln)b+k1...b
+
km
bl1...bln

(2)
(we denote it by the same symbol) and

H̃ =
∑
m,n

∑
ki,lj

Hm,n(k1, ...km|l1, ..., ln)b̃+k1...b̃
+
km
b̃l1...b̃ln

(3)



The equation of motion for the L-functional
L(α∗, α) has the form

i~
dL

dt
= HL = ĤL− H̃L

(We introduced the notation H = Ĥ − H̃.)
It corresponds to the equation for density
matrices.



The equations of motion for L-functionals make
sense even in the situation when the equations of
motion in the Fock space are ill-defined (but
there are no ultraviolet divergences). This is
related to the fact that vectors and density
matrices from all representations of CCR are
described by L-functionals. This means that
applying the formalism of L-functionals we can
avoid the problems related to the existence of
inequivalent representations of CCR.



In perturbation theory for translation-invariant
Hamiltonians these problems appear as
divergences related to infinite volume. Therefore
in the standard formalism it is necessary to
consider at first a Hamiltonian in finite volume V
(to make volume cutoff or, in another
terminology, infrared cutoff ) and to take the
limit V →∞ in physical quantities.



In the formalism of L-functionals we can work
directly in infinite volume. We can define
adiabatic S-matrix and adiabatic generalized
Green functions repeating the standard
definitions. If the adiabatic parameter a tends to
zero then the adiabatic S-matrix multiplied by
some factors tends to inclusive scattering matrix.
The adiabatic Green functions in the formalism
of L-functionals tend to GGreen functions. This
gives a very simple derivation of the diagram
techniques for the calculation of GGreen
functions.


