In quantum mechanics one can express the
evolution operator and other quantities in terms of
functional integrals. Today | prove this fact as well
as corresponding results in geometric approach to
quantum theory and in the formalism of
L-functionals.
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A =5+ V(a). U(f) =e n
(q2|U(t)|q1) (matrix element of evolution operator)
is represented by functional integral with integrand
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and integration domain consisting of functions q()
obeying q(0) = a1, q(t) = @



To define the functional integral we approximate it
with finite-dimensional integral (for example
replacing integrals by integral sums and taking the
limit.

Problems:

1) depends on the choice of approximation

2) the limit usually does not exist and to get a finite
answer we should disregard infinite contributions



Gaussian integrals

[ exp+(b, x))dx = (det A)~ exp(—3(A~1b, b),
[ exp((Ax, x) + i(b,x))dx =

(det A)~> exp(—4(A~1b, b),

Differentlatlng with respect to b we can calculate
[ P(x) exp(—3(Ax, x))dx

where P(x) is a polynomial



Perturbation theory
If W(x)= Q(x)+ gV(x) where Q is quadratic then

f eW(x)dx
f eQ(x)dx

can be represented as a series with respect to g as a
sum of Feynman diagrams

More generally we can decompose W(x) in a
neighborhood of non-degenerate critical point xg as
a sum of quadratic part and a part containing only
monomials with respect to x — xp having degrees

> 3 and use the same techniques.



In geometric approach the evolution operator of
physical system obeys the equation of motion

do
%7~ H(D)o(1)

where H(t) is a linear operator acting in Banach
space (or, more, generally, in complete topological
vector space) L. We say that H(t) is the
"Hamiltonian” of the physical system. In what
follows we assume that H(t) = H does not depend
on time t. This condition is imposed only to
simplify notations; all results can be proved also for
time- dependent " Hamiltonian”.

In the standard approach to QM the evolution
operator acts in Hilbert space and H(t) is a

aeestladioint oo iy lbnlied Dy L



Let us consider linear operators acting in the space
L. A symbol of an operator A is a function A
defined on some measure space. It should depend
linearly of A. We assume that the symbol of the
identity operator 1 is equal to 1 and the composition
of operators corresponds to the operation on
symbols denoted by * : if C = AB then C = Ax B.



The evolution operator can be represented in the
form
o(t) =e™ = lim (1+ —)N

N—oo

For N — oo the symbol of the operator 1 + % can
be approximated by exp f;H:
tH t
]_ _— = eﬁ —2
+ O(N2).

Using this relation we obtain an expression for the
symbol of the evolution operator;

o(0)= fm ()

H H

2|~
2|

In(t) = eV x ... xe

b



In many cases /y(t) can be interpreted as an
approximation to a functional integral. Notice,
however, that even without this interpretation we
can apply Laplace or stationary phase method to
calculate Iy(t). This allows us to obtain some
results that often are obtained in the language of
functional integrals without using this language.



Let us consider a class of symbols generalizing g — p
symbols and Wick symbols in quantum mechanics.
We assume that the symbol of an operator A acting
in L is a function A(«, /) of two variables (a
function on M x M) and that the symbol of the
product C of operators A and B can be expressed in
terms of the symbols of operators A and B by the
formula

) =

[ dydy'A(a,v)B(+, B)ectam+elyf)—cle,f)=r('1)
where c¢(a, 8) and r(«, B) are functions on

M x M.

For g — p-symbols c(q, p) = r(q,p) = —ipq.



It follows that the symbol C(«, ) of the product C
of n operators Aj, ..., Ay is given by the formula
C(o, B) = [ dydy,...dyn—1dyy_g X

Al(av 71)A2(717 72)"'An(7;V—17 B)epN

where
pn = c(a, 1) + (71, 72) + ... + (-1, B) —
c(a,B)) = r(v1,m) — - — r(yn-1, Yn-1)



We see that in our case
In(t) = [ dydy...dyn-1dyn-1e”v %
exp((H(o, m1) + H(71,72) + . + H(yw-1, 3))



The simplest way to construct symbols of operators
in quantum mechanics is to use the fact that the
Fourier transform of delta-function is a constant.
The matrix (the kernel in the language of
mathematics) of unit operator is

(g2|1]la1) = 9(q1 — g2) in coordinate representation
and (p2|1|p1) = d(p1 — p2) in momentum
representation. Taking Fourier transform of matrix
(g2|A|q1) of the operator A with respect to the
variable q; — g, we obtain g — p symbol:

A9P(q,p) = / dy(y|Alq)e®aY)

Similarly taking Fourier transform of (p,|A|p1) with

respect to variable p; — p2 we obtain p — g-symbol.
D



If Ais a differential operator with polynomial
coefficients we can express it as a polynomial of
operators § ( operators corresponding to the
coordinates ¢) and p; = %a%’ (momentum
operators) Representing A in g — p form (coordinate
operators from the left of momentum operators)
and "removing hats” we obtain g — p-symbol.
Notice that in our notations & = 1. Sometimes it it
is convenient to consider families of symbols
Al"P(q,p) and A2"%(q, p) depending on parameter
h.



Let us illustrate general considerations above on the
example of g — p-symbols in conventional quantum
mechanics. For g — p-symbols we obtain that the
symbol of the evolution operator can be calculated

as limy_ o In(q, p, t) where
In(a, p, fv) =[1I; " dqadpax
eXp('Zl (pa(qa qdo— 1) N 1 H(paaQa 1))

with py = p,qo = qnv = q. .
The integrand can be represented as eV where Sy

is an integral sum for the integral

Slp(7),a(7)] = [, (p()g(r) — H(p(7), a(r))d.

This integral can be mterpreted as action functional.



We can say that the g — p-symbol of evolution
operator can be represented as functional integral
with the integrand

oiSIp(r).a(7)]

The integration domain is the set of functions
(p(7),q(7)) obeying conditions

p(t) = p.a(0) =q(t) =aq.

For matrix elements of the evolution operator we

obtain a functional integral with the same integrand

and with integration domain consisting of functions

obeying conditions

q0) = d1,q(t) = q>
D



If H(p,q) is a sum of quadratic function of p
(kinetic energy) and a function V/(q) (potential
energy) we can integrate over p(7) and obtain a
representation of matrix elements of evolution
operator in the form of functional integral with the
integrand

eSIa] — Gilf; dr(T(a(r)-V(a(r)

and the integration domain consists of functions
q(7) obeying conditions

q0) = qu1,q(t) = .

Here T stands for kinetic energy expressed in terms
of q(7).



Covariant symbols

Let us consider two Banach spaces £ and £’ and
non-degenerate scalar product (/, I') that is linear
with respect to / € L and antilinear with respect to
I" e L. Let us fix two systems of vectors ¢, € L
and ej € L' such that

LIy = [ (e )ey, INe "M d\d
. 1T

(we assume that r(\, i) is a function on measure

space M x M’).



Let us define covariant symbol A(«, ) of operator
A acting in L by the formula

Ae,, e
A(av 6) - M

<eom eﬁ>
Then the symbol C of the product C = AB of
operators A and B is equal to
Cla, B) = [ dAduB(a, A, B)
exp(—r(\, 1) — c(a, B) + c(a, ) + c(A, B))
(We introduced notation (e,, €j) = e<(:9)
(ABe,, e3) = (Be,, A*ep)



If £ = L'is a space of Fock representation one can
take e, as Poisson vectors: e, = e“@ f. Then
c(a B) = r(a, 8) = (o, B).

Wick symbol.

More generally we can take as £ (as £’ ) the
smallest linear space containing all Poisson vectors
e, with a € LP (with a € L9 = (LP)*)

Here £ 4 2 =1,L9 is dual to LP.



L-functionals

L'-Weyl algebra, €/, = V,-linear exponents

L - L-functionals, eg -L-functionals corresponding to
Poisson vectors in Fock space. 7 Quadratic
exponents?



L-functionals. Another definition

Take representation of Weyl algebra (of CCR) in
Hilbert space H. (We understand CCR as relations
[ak, a] = Ou, [ak, al) = [a), 3] = 0, where k, [ run
over a discrete set M.)

To a density matrix K (or more generally to any
trace class operator in ) we can assign a
functional Lx(a*, ) defined by the formula

Lx(a*, @) = Tre ** 2K

+ -+ * *
Here aa™ stands for ) axa; and a*a for ) ajax.



One can say that Lk is a generating functional of
correlation functions.

One can consider also a more general case when
CCR are written in the form

[a(k), a" (K')] = hé(k, k'), [a(k), a(k')] = [a" (k),a" (K')]

k, k’ run over a measure space M. If « is
square-integrable, the expression for Ly is well
defined.



An action of Weyl algebra .4 on £ (on the space of
L-functionals) can be specified by operators

b (k) = et (k) — calk), b(k) = (k)

obeying CCR. Here ¢:"(k) are multiplication
operators by aj, ay and ci(k) are derivatives with
respect to o, ak. This definition is prompted by
relations

La(k)K = b(k)LK, La+(k)K = b+(k)LK,

Another representation of A on L is specified by the
operators

b* (k) = ~1ic; (k) + cu(k), b(k) = —ca(k).

obeying CCR and satisfying
LKafr - b(k)LK7 LKa(k) - b+(k)LK7
—



Let us consider a Hamiltonian H in a space of
representation of CCR. We will write H in the form

H= Z Z Hmn(ky, okl ooy ) ay, ..ap ay...a,

m,n k,-,/j
There are two operators in £ corresponding to H:

A=>" Hnnlk, ..cklh, ... l1)bj...b by...b,

m,n ki,l;

(we denote it by the same symbol) and

A=S"5" Hunlkt, . knlh i) B By B,

m,n k,-,/j



The equation of motion for the L-functional
L(a*, &) has the form

(We introduced the notation H = H — A.)
It corresponds to the equation for density matrices.

For translation-invariant Hamiltonians H,, , should
contain d(ky + ... + km — h — ... — I,) (momentum
conservation)



The equations of motion for L-functionals make
sense even in the situation when the equations of
motion in the Fock space are ill-defined (but there
are no ultraviolet divergences). This is related to
the fact that vectors and density matrices from all
representations of CCR are described by
L-functionals. This means that applying the
formalism of L-functionals we can avoid the
problems related to the existence of inequivalent
representations of CCR.



In perturbation theory for translation-invariant
Hamiltonians these problems appear as divergences
related to infinite volume. Therefore in the standard
formalism it is necessary to consider at first a
Hamiltonian in finite volume V (to make volume
cutoff or, in another terminology, infrared cutoff )
and to take the limit V — oo in physical quantities.
In the formalism of L-functionals we can work
directly in infinite volume.



Adiabatic approximation in the formalism of
L-functionals is simpler. Let us consider a family
H(g) of "Hamiltonians” and a smooth family of
stationary states w(g). ( For example we can take
H(g) = Ho+ gV.) Then w(g(t)) is a solution of
the equations of motion for non-stationary
"Hamiltonian" H(g(t)) if we can disregard g(t):

dw
25 = 0= Hig(6)(g(1)).
Consider the operator o,(t, ty) describing the

evolution from the time ty until the time t under

the ""Hamiltonian" Hy + ge 'V, Then
w(g) = lim 0,(0, —00)w(0).
a—0



We can define adiabatic S-matrix as

Oo(+00, —0).

If the adiabatic parameter o tends to zero then the
adiabatic S-matrix multiplied by some factors tends
to inclusive scattering matrix.



Let us define generalized Green functions (GGreen
functions) in the translation-invariant state w by the
following formula where B; € A:

G, = w(NM)

where
N = T(Bi(x1,t1) ... Bn(xn, ts))

stands for chronological product (times decreasing)
and
M = TPP(Bf(xy, t])...Bi(x),t))
stands for antichronological product (times
increasing).
Introduce notations M = T°PP(B"™), N = T(B).
D



In the formalism of L-functionals
(T(Bé')w)(x) = w(T(B)xT%P(B™)) == w(NxM)

To get GGreen function take x = 1.



Hence we can apply the formalism of L-functionals
to calculate GGreen functions. This gives a very
simple derivation of the diagram techniques for the
calculation of GGreen functions.



