

In quantum mechanics one can express the evolution operator and other quantities in terms of functional integrals. Today I prove this fact as well as corresponding results in geometric approach to quantum theory and in the formalism of L -functionals.

$$L(q, \dot{q}) = \frac{m\dot{q}^2}{2} - V(q), H(p, q) = \frac{p^2}{2m} + V(q),$$

$S[q(\tau)] = \int_0^t d\tau L(q(\tau), \dot{q}(\tau))$ -action functional

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{q}), \hat{U}(t) = e^{-\frac{it\hat{H}}{\hbar}}$$

$\langle q_2 | \hat{U}(t) | q_1 \rangle$ (matrix element of evolution operator)
is represented by functional integral with integrand

$$e^{i \frac{S[q(\tau)]}{\hbar}}$$

and integration domain consisting of functions $q(\tau)$
obeying $q(0) = q_1, q(t) = q_2$

To define the functional integral we approximate it with finite-dimensional integral (for example replacing integrals by integral sums and taking the limit).

Problems:

- 1) depends on the choice of approximation
- 2) the limit usually does not exist and to get a finite answer we should disregard infinite contributions

Gaussian integrals

$$\int \exp(+\langle b, x \rangle) dx = (\det A)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\langle A^{-1}b, b \rangle\right),$$

$$\int \exp\left(\frac{i}{2}\langle Ax, x \rangle + i\langle b, x \rangle\right) dx =$$

$$(\det A)^{-\frac{1}{2}} \exp\left(-\frac{i}{2}\langle A^{-1}b, b \rangle\right),$$

Differentiating with respect to b we can calculate

$$\int P(x) \exp\left(-\frac{1}{2}\langle Ax, x \rangle\right) dx$$

where $P(x)$ is a polynomial

Perturbation theory

If $W(x) = Q(x) + gV(x)$ where Q is quadratic then

$$\frac{\int e^{W(x)dx}}{\int e^{Q(x)dx}}$$

can be represented as a series with respect to g as a sum of Feynman diagrams

More generally we can decompose $W(x)$ in a neighborhood of non-degenerate critical point x_0 as a sum of quadratic part and a part containing only monomials with respect to $x - x_0$ having degrees ≥ 3 and use the same techniques.

In geometric approach the evolution operator of physical system obeys the equation of motion

$$\frac{d\sigma}{dt} = H(t)\sigma(t)$$

where $H(t)$ is a linear operator acting in Banach space (or, more, generally, in complete topological vector space) \mathcal{L} . We say that $H(t)$ is the "Hamiltonian" of the physical system. In what follows we assume that $H(t) = H$ does not depend on time t . This condition is imposed only to simplify notations; all results can be proved also for time- dependent "Hamiltonian".

In the standard approach to QM the evolution operator acts in Hilbert space and $H(t)$ is a self-adjoint operator multiplied by i .

Let us consider linear operators acting in the space \mathcal{L} . A symbol of an operator A is a function \underline{A} defined on some measure space. It should depend linearly of A . We assume that the symbol of the identity operator 1 is equal to 1 and the composition of operators corresponds to the operation on symbols denoted by $*$: if $C = AB$ then $\underline{C} = \underline{A} * \underline{B}$.

The evolution operator can be represented in the form

$$\sigma(t) = e^{tH} = \lim_{N \rightarrow \infty} \left(1 + \frac{tH}{N}\right)^N.$$

For $N \rightarrow \infty$ the symbol of the operator $1 + \frac{tH}{N}$ can be approximated by $\exp \frac{t}{N} H$:

$$\underline{1 + \frac{tH}{N}} = e^{\frac{t}{N} H} + O(N^{-2}).$$

Using this relation we obtain an expression for the symbol of the evolution operator;

$$\underline{\sigma(t) = \lim_{N \rightarrow \infty} I_N(t)}$$

$$I_N(t) = e^{\frac{t}{N} H} * \dots * e^{\frac{t}{N} H}$$

(N factors)

In many cases $I_N(t)$ can be interpreted as an approximation to a functional integral. Notice, however, that even without this interpretation we can apply Laplace or stationary phase method to calculate $I_N(t)$. This allows us to obtain some results that often are obtained in the language of functional integrals without using this language.

Let us consider a class of symbols generalizing $q - p$ symbols and Wick symbols in quantum mechanics. We assume that the symbol of an operator A acting in \mathcal{L} is a function $\underline{A}(\alpha, \beta)$ of two variables (a function on $\mathcal{M} \times \mathcal{M}'$) and that the symbol of the product C of operators A and B can be expressed in terms of the symbols of operators A and B by the formula

$$\underline{C}(\alpha, \beta) =$$

$$\int d\gamma d\gamma' \underline{A}(\alpha, \gamma) \underline{B}(\gamma', \beta) e^{c(\alpha, \gamma) + c(\gamma', \beta) - c(\alpha, \beta) - r(\gamma', \gamma)}$$

where $c(\alpha, \beta)$ and $r(\alpha, \beta)$ are functions on $\mathcal{M} \times \mathcal{M}'$.

For $q - p$ -symbols $c(\mathbf{q}, \mathbf{p}) = r(\mathbf{q}, \mathbf{p}) = -i\mathbf{p}\mathbf{q}$.

It follows that the symbol $\underline{C}(\alpha, \beta)$ of the product C of n operators A_1, \dots, A_N is given by the formula

$$\underline{C}(\alpha, \beta) = \int d\gamma_1 d\gamma'_1 \dots d\gamma_{N-1} d\gamma'_{N-1} \times \\ A_1(\alpha, \gamma_1) A_2(\gamma'_1, \gamma_2) \dots A_n(\gamma'_{N-1}, \beta) e^{\rho_N}$$

where

$$\rho_N = c(\alpha, \gamma_1) + c(\gamma'_1, \gamma_2) + \dots + c(\gamma'_{N-1}, \beta) - \\ c(\alpha, \beta) - r(\gamma'_1, \gamma_1) - \dots - r(\gamma_{N-1}, \gamma_{N-1})$$

We see that in our case

$$I_N(t) = \int d\gamma_1 d\gamma'_1 \dots d\gamma_{N-1} d\gamma'_{N-1} e^{\rho_N} \times \\ \exp\left(\frac{t}{N}(\underline{H}(\alpha, \gamma_1) + \underline{H}(\gamma_1, \gamma_2) + \dots + \underline{H}(\gamma_{N-1}, \beta))\right)$$

The simplest way to construct symbols of operators in quantum mechanics is to use the fact that the Fourier transform of delta-function is a constant.

The matrix (the kernel in the language of mathematics) of unit operator is

$\langle \mathbf{q}_2 | 1 | \mathbf{q}_1 \rangle = \delta(\mathbf{q}_1 - \mathbf{q}_2)$ in coordinate representation and $\langle \mathbf{p}_2 | 1 | \mathbf{p}_1 \rangle = \delta(\mathbf{p}_1 - \mathbf{p}_2)$ in momentum representation. Taking Fourier transform of matrix $\langle \mathbf{q}_2 | A | \mathbf{q}_1 \rangle$ of the operator A with respect to the variable $\mathbf{q}_1 - \mathbf{q}_2$ we obtain $q - p$ symbol:

$$\underline{A}^{q-p}(\mathbf{q}, \mathbf{p}) = \int d\mathbf{y} \langle \mathbf{y} | A | \mathbf{q} \rangle e^{i\mathbf{p}(\mathbf{q}-\mathbf{y})}$$

Similarly taking Fourier transform of $\langle \mathbf{p}_2 | A | \mathbf{p}_1 \rangle$ with respect to variable $\mathbf{p}_1 - \mathbf{p}_2$ we obtain $p - q$ -symbol.

If A is a differential operator with polynomial coefficients we can express it as a polynomial of operators \hat{q}^j (operators corresponding to the coordinates q^j) and $\hat{p}_j = \frac{1}{i} \frac{\partial}{\partial q^j}$ (momentum operators) Representing A in $q - p$ form (coordinate operators from the left of momentum operators) and "removing hats" we obtain $q - p$ -symbol.

Notice that in our notations $\hbar = 1$. Sometimes it is convenient to consider families of symbols

$\underline{A}_\hbar^{q-p}(\mathbf{q}, \mathbf{p})$ and $\underline{A}_\hbar^{p-q}(\mathbf{q}, \mathbf{p})$ depending on parameter \hbar .

Let us illustrate general considerations above on the example of $q - p$ -symbols in conventional quantum mechanics. For $q - p$ -symbols we obtain that the symbol of the evolution operator can be calculated as $\lim_{N \rightarrow \infty} I_N(\mathbf{q}, \mathbf{p}, t)$ where

$$I_N(\mathbf{q}, \mathbf{p}, t) = \int \prod_1^{N-1} d\mathbf{q}_\alpha d\mathbf{p}_\alpha \times \\ \exp\left(i \sum_1^N (\mathbf{p}_\alpha(\mathbf{q}_\alpha - \mathbf{q}_{\alpha-1}) - \frac{it}{N} \sum_1^N \underline{H}(\mathbf{p}_\alpha, \mathbf{q}_{\alpha-1}))\right)$$

with $\mathbf{p}_N = \mathbf{p}$, $\mathbf{q}_0 = \mathbf{q}_N = \mathbf{q}$.

The integrand can be represented as e^{iS_N} where S_N is an integral sum for the integral

$$S[\mathbf{p}(\tau), \mathbf{q}(\tau)] = \int_0^t (\mathbf{p}(\tau) \dot{\mathbf{q}}(\tau) - \underline{H}(\mathbf{p}(\tau), \mathbf{q}(\tau))) d\tau.$$

This integral can be interpreted as action functional.

We can say that the $q - p$ -symbol of evolution operator can be represented as functional integral with the integrand

$$e^{iS[\mathbf{p}(\tau), \mathbf{q}(\tau)]}.$$

The integration domain is the set of functions $(\mathbf{p}(\tau), \mathbf{q}(\tau))$ obeying conditions

$$\mathbf{p}(t) = \mathbf{p}, \mathbf{q}(0) = \mathbf{q}(t) = \mathbf{q}.$$

For matrix elements of the evolution operator we obtain a functional integral with the same integrand and with integration domain consisting of functions obeying conditions

$$\mathbf{q}(0) = \mathbf{q}_1, \mathbf{q}(t) = \mathbf{q}_2$$

If $\underline{H}(\mathbf{p}, \mathbf{q})$ is a sum of quadratic function of \mathbf{p} (kinetic energy) and a function $V(\mathbf{q})$ (potential energy) we can integrate over $\mathbf{p}(\tau)$ and obtain a representation of matrix elements of evolution operator in the form of functional integral with the integrand

$$e^{iS[\mathbf{q}(\tau)]} = e^{i(\int_0^t d\tau (T(\dot{\mathbf{q}}(\tau)) - V(\mathbf{q}(\tau)))}$$

and the integration domain consists of functions

$\mathbf{q}(\tau)$ obeying conditions

$$\mathbf{q}(0) = \mathbf{q}_1, \mathbf{q}(t) = \mathbf{q}_2.$$

Here T stands for kinetic energy expressed in terms of $\dot{\mathbf{q}}(\tau)$.

Covariant symbols

Let us consider two Banach spaces \mathcal{L} and \mathcal{L}' and non-degenerate scalar product $\langle I, I' \rangle$ that is linear with respect to $I \in \mathcal{L}$ and antilinear with respect to $I' \in \mathcal{L}'$. Let us fix two systems of vectors $e_\alpha \in \mathcal{L}$ and $e'_\beta \in \mathcal{L}'$ such that

$$\langle I, I' \rangle = \int \langle I, e'_\mu \rangle \langle e_\lambda, I' \rangle e^{-r(\lambda, \mu)} d\lambda d\mu$$

(we assume that $r(\lambda, \mu)$ is a function on measure space $\mathcal{M} \times \mathcal{M}'$).

Let us define covariant symbol $\underline{A}(\alpha, \beta)$ of operator A acting in \mathcal{L} by the formula

$$\underline{A}(\alpha, \beta) = \frac{\langle Ae_\alpha, e_\beta \rangle}{\langle e_\alpha, e_\beta \rangle}$$

Then the symbol \underline{C} of the product $C = AB$ of operators A and B is equal to

$$\begin{aligned}\underline{C}(\alpha, \beta) = & \int d\lambda d\mu B(\alpha, \mu)A(\lambda, \beta) \times \\ & \exp(-r(\lambda, \mu) - c(\alpha, \beta) + c(\alpha, \mu) + c(\lambda, \beta))\end{aligned}$$

(We introduced notation $\langle e_\alpha, e'_\beta \rangle = e^{c(\alpha, \beta)}$)

$$\langle ABe_\alpha, e_\beta \rangle = \langle Be_\alpha, A^*e_\beta \rangle$$

If $\mathcal{L} = \mathcal{L}'$ is a space of Fock representation one can take e_α as Poisson vectors: $e_\alpha = e^{\alpha \hat{a}^*} \theta$. Then $c(\alpha, \beta) = r(\alpha, \beta) = \langle \alpha, \beta \rangle$.
Wick symbol.

More generally we can take as \mathcal{L} (as \mathcal{L}') the smallest linear space containing all Poisson vectors e_α with $\alpha \in L^p$ (with $\alpha \in L^q = (L^p)^*$)
Here $\frac{1}{p} + \frac{1}{q} = 1$, L^q is dual to L^p .

L -functionals

\mathcal{L}' -Weyl algebra, $e'_\alpha = V_\alpha$ -linear exponents

\mathcal{L} - L -functionals, e_β - L -functionals corresponding to
Poisson vectors in Fock space. ? Quadratic
exponents?

L-functionals. Another definition

Take representation of Weyl algebra (of CCR) in Hilbert space \mathcal{H} . (We understand CCR as relations $[a_k, a_l^+] = \delta_{kl}$, $[a_k, a_l] = [a_k^+, a_l^+] = 0$, where k, l run over a discrete set M .)

To a density matrix K (or more generally to any trace class operator in \mathcal{H}) we can assign a functional $L_K(\alpha^*, \alpha)$ defined by the formula

$$L_K(\alpha^*, \alpha) = \text{Tr} e^{-\alpha a^+} e^{\alpha^* a} K$$

Here αa^+ stands for $\sum \alpha_k a_k^+$ and $\alpha^* a$ for $\sum \alpha_k^* a_k$.

One can say that L_K is a generating functional of correlation functions.

One can consider also a more general case when CCR are written in the form

$$[a(k), a^+(k')] = \hbar\delta(k, k'), [a(k), a(k')] = [a^+(k), a^+(k')] = 0$$

k, k' run over a measure space M . If α is square-integrable, the expression for L_K is well defined.

An action of Weyl algebra \mathcal{A} on \mathcal{L} (on the space of L -functionals) can be specified by operators

$$b^+(k) = \hbar c_1^+(k) - c_2(k), b(k) = c_1(k)$$

obeying CCR. Here $c_i^+(k)$ are multiplication operators by α_k^* , α_k and $c_i(k)$ are derivatives with respect to α_k^* , α_k . This definition is prompted by relations

$$L_{a(k)K} = b(k)L_K, L_{a^+(k)K} = b^+(k)L_K,$$

Another representation of \mathcal{A} on \mathcal{L} is specified by the operators

$$\tilde{b}^+(k) = -\hbar c_2^+(k) + c_1(k), \tilde{b}(k) = -c_2(k),$$

obeying CCR and satisfying

$$L_{Ka^+(k)} = \tilde{b}(k)L_K, L_{Ka(k)} = \tilde{b}^+(k)L_K,$$

Let us consider a Hamiltonian \hat{H} in a space of representation of CCR. We will write \hat{H} in the form

$$\hat{H} = \sum_{m,n} \sum_{k_i, l_j} H_{m,n}(k_1, \dots, k_m | l_1, \dots, l_n) a_{k_1}^+ \dots a_{k_m}^+ a_{l_1} \dots a_{l_n}$$

There are two operators in \mathcal{L} corresponding to \hat{H} :

$$\hat{H} = \sum_{m,n} \sum_{k_i, l_j} H_{m,n}(k_1, \dots, k_m | l_1, \dots, l_n) b_{k_1}^+ \dots b_{k_m}^+ b_{l_1} \dots b_{l_n}$$

(we denote it by the same symbol) and

$$\tilde{H} = \sum_{m,n} \sum_{k_i, l_j} H_{m,n}(k_1, \dots, k_m | l_1, \dots, l_n) \tilde{b}_{k_1}^+ \dots \tilde{b}_{k_m}^+ \tilde{b}_{l_1} \dots \tilde{b}_{l_n}$$

The equation of motion for the L -functional $L(\alpha^*, \alpha)$ has the form

$$i\hbar \frac{dL}{dt} = HL = \hat{H}L - \tilde{H}L$$

(We introduced the notation $H = \hat{H} - \tilde{H}$.)

It corresponds to the equation for density matrices.

For translation-invariant Hamiltonians $H_{m,n}$ should contain $\delta(k_1 + \dots + k_m - l_1 - \dots - l_n)$ (momentum conservation)

The equations of motion for L -functionals make sense even in the situation when the equations of motion in the Fock space are ill-defined (but there are no ultraviolet divergences). This is related to the fact that vectors and density matrices from all representations of CCR are described by L -functionals. This means that applying the formalism of L -functionals we can avoid the problems related to the existence of inequivalent representations of CCR.

In perturbation theory for translation-invariant Hamiltonians these problems appear as divergences related to infinite volume. Therefore in the standard formalism it is necessary to consider at first a Hamiltonian in finite volume V (to make volume cutoff or, in another terminology, infrared cutoff) and to take the limit $V \rightarrow \infty$ in physical quantities. In the formalism of L -functionals we can work directly in infinite volume.

Adiabatic approximation in the formalism of L -functionals is simpler. Let us consider a family $H(g)$ of "Hamiltonians" and a smooth family of stationary states $\omega(g)$. (For example we can take $H(g) = H_0 + gV.$) Then $\omega(g(t))$ is a solution of the equations of motion for non-stationary "Hamiltonian" $H(g(t))$ if we can disregard $\dot{g}(t)$:

$$\frac{d\omega(g(t))}{dt} = 0 = H(g(t))\omega(g(t)).$$

Consider the operator $\sigma_\alpha(t, t_0)$ describing the evolution from the time t_0 until the time t under the "Hamiltonian" $H_0 + g e^{-\alpha|t|} V$. Then

$$\omega(g) = \lim_{\alpha \rightarrow 0} \sigma_\alpha(0, -\infty) \omega(0).$$

We can define adiabatic S -matrix as
 $\sigma_\alpha(+\infty, -\infty)$.

If the adiabatic parameter α tends to zero then the adiabatic S -matrix multiplied by some factors tends to inclusive scattering matrix.

Let us define generalized Green functions (GGreen functions) in the translation-invariant state ω by the following formula where $B_i \in \mathcal{A}$:

$$G_n = \omega(NM)$$

where

$$N = T(B_1(\mathbf{x}_1, t_1) \dots B_n(\mathbf{x}_n, t_n))$$

stands for chronological product (times decreasing)
and

$$M = T^{opp}(B_1^*(\mathbf{x}'_1, t'_1) \dots B_n^*(\mathbf{x}'_n, t'_n))$$

stands for antichronological product (times increasing).

Introduce notations $M = T^{opp}(B'^*)$, $N = T(B)$.

In the formalism of L -functionals

$$(T(B\tilde{B}')\omega)(x) = \omega(T(B)xT^{opp}(B'^*)) = \omega(NxM)$$

To get GGreen function take $x = 1$.

Hence we can apply the formalism of L -functionals to calculate GGreen functions. This gives a very simple derivation of the diagram techniques for the calculation of GGreen functions.