

Approximations to solutions of Schrödinger equation with Hamiltonian that includes variable coefficients and derivatives of arbitrary high order

I. D. Remizov¹

Keywords: Schrödinger equation; Cauchy problem; solution representation; Chernoff theorem **MSC2010 codes:** 81Q05, 47D08, 35C15, 35J10

In the talk I will explain the idea of the proof of the following theorem, which was published in Potential Analysis journal in 2020, see [1,2]. The theorem provides formulas for approximations for Cauchy problem solution for the Schrödinger equation with a very general Hamiltonian. The solution-giving formula is presented in the item 7) of the theorem.

Theorem 1. Fix arbitrary $K \in \mathbb{N}$. Suppose that for k = 0, 1, ..., K functions $a_k : \mathbb{R} \to \mathbb{R}$ are given. Suppose that for each k = 1, ..., K function a_k belongs to space $C_b^{2k}(\mathbb{R})$ of all bounded functions $\mathbb{R} \to \mathbb{R}$ with bounded derivatives up to (2k)-th order. Suppose that function $a_0 : \mathbb{R} \to \mathbb{R}$ is measurable and belongs to space $L_2^{loc}(\mathbb{R})$, i.e. $\int_{-R}^{R} |a_0(x)|^2 dx < \infty$ for each real number R > 0. Define

$$(\mathcal{H}\varphi)(x) = a_0(x)\varphi(x) + \sum_{k=1}^K \frac{d^k}{dx^k} \left(a_k(x) \frac{d^k}{dx^k} \varphi(x) \right)$$

for each φ from the space $C_0^{\infty}(\mathbb{R})$ of all functions $\varphi \colon \mathbb{R} \to \mathbb{R}$ wich are bounded together with their derivatives of all orders and have compact support (are zero outside of some closed interval). We also use the following condition for coefficients a_k , $k = 0, 1, \ldots, K$: operator \mathcal{H} defined on $C_0^{\infty}(\mathbb{R})$ is essentially self-adjoint in $L_2(\mathbb{R})$, i.e. the operator $(\mathcal{H}, C_0^{\infty}(\mathbb{R}))$ is closable and its closure — let us denote it as $(\mathcal{H}, Dom(\mathcal{H}))$ — is a self-adjoint operator.

Suppose that function $w : \mathbb{R} \to \mathbb{R}$ is continuous, bounded, differentiable at zero and w(0) = 0, w'(0) = 1 (examples include: $w(x) = \arctan(x)$, $w(x) = \sin(x)$, $w(x) = \tanh(x) = (e^x - e^{-x})/(e^x + e^{-x})$, etc). For each $t \ge 0$, k = 1, 2, ..., K, each $x \in \mathbb{R}$, and each $f \in L_2(\mathbb{R})$ define:

$$(B_{a_k}f)(x) = a_k(x)f(x),$$

$$(A(t)f)(x) = f(x+t), \quad (A(t)^*f)(x) = f(x-t),$$

$$F_k(t) = \left(A(t^{1/2k}) - I\right)^k B_{a_k} \left(I - A(t^{1/2k})^*\right)^k, \quad F_0(t)f(x) = w(ta_0(x))f(x),$$

$$F(t) = \sum_{k=0}^K F_k(t), \quad S(t) = I + F(t) = I + \sum_{k=0}^K F_k(t),$$

$$(1)$$

where I is the identity operator (If = f), and expression such as Z^k means the composition ZZ ... Z of k copies of linear bounded operator Z.

Then the following holds:

- 1) For each $t \geq 0$ operators A(t), $A(t)^*$, B_{a_k} for k = 1, 2, ..., K, $F_k(t)$ for k = 0, 1, ..., K and F(t), S(t) are linear bounded operators in $L_2(\mathbb{R})$, and their norms are bounded by a constant that does not depend on t
 - 2) S is Chernoff-tangent to \mathcal{H}
 - 3) $S(t) = S(t)^*$ for each t > 0
 - 4) For each $t \geq 0$ operator $R(t) = \exp[-iF(t)]$ is a well-defined linear operator in $L_2(\mathbb{R})$
 - 5) There exists a C_0 -group $(e^{-it\mathcal{H}})_{t\in\mathbb{R}}$ of linear boounded unitary operators in $L_2(\mathbb{R})$

¹HSE University, Nizhny Novgorod city, Russia. Email: ivremizov@yandex.ru

6) R is Chernoff-equivalent to $(e^{-it\mathcal{H}})_{t\in\mathbb{R}}$, and the following formulas hold for each $f\in L_2(\mathbb{R})$ and $t\geq 0$, where limits exist with respect to norm in $L_2(\mathbb{R})$:

$$e^{-it\mathcal{H}} = \lim_{n \to \infty} R(t/n)^n = \lim_{n \to \infty} \exp\left[-inF(t/n)\right] = \lim_{n \to \infty} \exp\left[-in\sum_{k=0}^K F_k(t/n)\right],$$
$$e^{-it\mathcal{H}} = \lim_{n \to \infty} \lim_{j \to +\infty} \sum_{q=0}^j \frac{(-in)^q}{q!} \left(\sum_{k=0}^K F_k(t/n)\right)^q.$$

7) For each initial condition $\psi_0 \in L_2(\mathbb{R})$ the Cauchy problem (1) can be written in the form

$$\begin{cases} \psi_t'(t) = -i\mathcal{H}\psi(t), \\ \psi(0) = \psi_0, \end{cases}$$

and has a unique (in sense of $L_2(\mathbb{R})$) solution $\psi(t)$ that depends on ψ_0 continuously with respect to norm in $L_2(\mathbb{R})$, and for all $t \geq 0$ and almoust all $x \in \mathbb{R}$ can be expressed in the form

$$\psi(t,x) = \left(e^{-it\mathcal{H}}\psi_0\right)(x) = \left(\lim_{n\to\infty} \lim_{j\to+\infty} \sum_{q=0}^j \frac{(-in)^q}{q!} \left(\sum_{k=0}^K F_k(t/n)\right)^q \psi_0\right)(x).$$

Here linear bounded operators $F_0(t), \ldots, F_K(t)$ are defined above in conditions of the theorem for all $t \geq 0$ (hence $F_0(t/n), \ldots, F_K(t/n)$ are defined for all $t \geq 0$ and all $n \in \mathbb{N}$), and the power q in $\left(\sum_{k=0}^K F_k(t/n)\right)^q$ stands for a composition of q copies of linear bounded operator $\sum_{k=0}^K F_k(t/n)$.

References

- [1] I.D.Remizov. Formulas that represent Cauchy problem solution for momentum and position Schrödinger equation// Potential Analysis, 52 (2020), 339-370
- [2] I. Remizov. Quasi-Feynman formulas a method of obtaining the evolution operator for the Schrödinger equation. // J. Funct. Anal. 2016. Vol. 270. No. 12. P. 4540–4557