

$\Omega = \sum \Omega^n$ -algebra of differential forms on domain $G \subset \mathbb{R}^m$

$\Omega = C^\infty(G) \otimes \Lambda^m$ (Grassmann algebra with coefficients depending on $x \in G$)

Differential n -form $\omega = \frac{1}{n!} \omega_{i_1, \dots, i_n}(x) \xi^{i_1} \dots \xi^{i_n}$

The coefficients are antisymmetric

$\xi^i = dx^i$, $\xi^i \xi^j = -\xi^j \xi^i$

$d = \xi^i \frac{\partial}{\partial x^i} = dx^i \frac{\partial}{\partial x^i}$

$d\omega = 0$ -form is closed $= \omega \in \text{Ker } d$

$d^2 = 0$ hence $\text{Im } d \subset \text{Ker } d$,

Cohomology $H = \text{Ker } d / \text{Im } d$

Smooth manifold is pasted together from domains in \mathbb{R}^n

Symplectic manifold is specified by closed non-degenerate two-form $\omega = \frac{1}{2}\omega_{ij}(x)dx^i dx^j$
 $d\omega = 0$, $\det \omega_{ij} \neq 0$

Phase space is a symplectic manifold with $\omega = dp_i dq^i$

Locally for appropriate change of coordinates $\omega = dp_i dq^i$ (Darboux coordinates)

Symplectomorphisms (canonical transformations) preserve the form ω

If $f : M' \rightarrow M$ is an embedding of symplectic manifold M' with two-form ω' into symplectic manifold M with two-form ω and $f^*\omega = \omega'$ we say that f is a symplectic embedding.

Solitons

Let us consider a translation-invariant Hamiltonian on a phase space consisting of vector-valued functions $f(\mathbf{x})$. We assume that corresponding equations of motion have the form

$$\frac{\partial f}{\partial t} = Af + B(f).$$

(Here A is a linear operator, B is a non-linear operator. Spatial translations act on functions as shifts of arguments.)

We assume B is at least quadratic, hence for small f the linear part dominates. In particular, $f \equiv 0$ is a solution. We say that a soliton (or solitary wave) is a finite energy solution of our equation having the form $s(\mathbf{x} - \mathbf{v}t)$.

Soliton is a bump moving with constant speed without changing the form. Generalized soliton is a bump that pulsates moving with constant average speed

For almost all initial data asymptotically we get several solitons and a tail obeying a linear equation

Grand conjecture (Soffer), Soliton resolution conjecture (Tao)

$$D^+(t) : \mathcal{R} \rightarrow \mathcal{R}_{as}$$

Initial data at the moment t to asymptotic data at $t \rightarrow +\infty$ (solitons, solution of linear equation)

$$D^-(t) : \mathcal{R} \rightarrow \mathcal{R}_{as}$$

Data at the moment t to asymptotic data at $t \rightarrow -\infty$

$$(D^+(t))^{-1} = S(t, +\infty), (D^-(t))^{-1} = S(t, -\infty)$$

Asymptotic data \rightarrow initial data at the moment t

Non-linear scattering matrix

$$S = S(0, +\infty)^{-1} S(0, -\infty) : \mathcal{R}_{as} \rightarrow \mathcal{R}_{as}$$

If the theory is Lorenz-invariant then applying Lorenz transformations to a soliton we get a family of solitons.

Similar statement for Galilean invariance.

Let us consider a symplectic manifold \mathcal{M} with action of commutative group \mathcal{T} of space and time translations. Let us fix a \mathcal{T} -invariant (= stationary translation-invariant) point $m \in \mathcal{M}$.

A point $n \in \mathcal{M}$ is an excitation of m if it has finite energy (we assume that the energy of m is equal to zero).

We say that \mathcal{E} is an elementary symplectic manifold if \mathcal{T} acts on \mathcal{E} by symplectomorphisms and in Darboux coordinates \mathbf{p}, \mathbf{x} the spatial translations act by the formula $\mathbf{x} \rightarrow \mathbf{x} + \mathbf{a}$, $\mathbf{p} \rightarrow \mathbf{p}$. (Then the time translations act by the formula $\mathbf{x} \rightarrow \mathbf{x} + \mathbf{v}(\mathbf{p})t, \mathbf{p} \rightarrow \mathbf{p}$. Here $\mathbf{v}(\mathbf{p}) = \nabla \epsilon(\mathbf{p})$, where $\epsilon(\mathbf{p})$ stands for the Hamiltonian.)

A symplectic embedding of an elementary symplectic space into the set of excitations of m commuting with space and time translations specifies a family of solitons

Assume that \mathcal{M} consists of vector-valued functions $f(\mathbf{x})$ where $\mathbf{x} \in \mathbb{R}^d$ and spatial translations act as shifts $\mathbf{x} \rightarrow \mathbf{x} + \mathbf{a}$. A translation-invariant point m is a constant function, we can take $m = 0$. A symplectic embedding $\mathcal{E} \rightarrow \mathcal{M}$ commuting with spatial translations sends $(\mathbf{p}, 0)$ into a function $s_{\mathbf{p}}(\mathbf{x})$ and (\mathbf{p}, \mathbf{a}) into the function $s_{\mathbf{p}}(\mathbf{x} + \mathbf{a})$. The assumption that this map commutes with time translations means that $s_{\mathbf{p}}(\mathbf{x} - \mathbf{v}(\mathbf{p})t)$ satisfies the equations of motion.

To define (quasi)particles and scattering in geometric approach we need spatial translation $T_{\mathbf{a}}$ and time translations T_{τ} of cone of states \mathcal{C} (a homomorphism of the group \mathcal{T} of space and time translations into the group of automorphisms of the cone).

In algebraic approach we need an action of \mathcal{T} on the algebra \mathcal{A} (a homomorphism of \mathcal{T} into the group of automorphisms of \mathcal{A}). It induces an action on the cone.

We introduce notation $A(\tau, \mathbf{x})$ for $T_{\tau}T_{\mathbf{x}}A$ where $A \in \mathcal{A}$. A state ω is translation- invariant and stationary iff $\omega(A(\tau, \mathbf{x})) = \omega(A)$.

If \mathcal{A} is Weyl algebra with generators $\hat{a}^*(\mathbf{x}), \hat{a}(\mathbf{x})$ obeying CCR (coordinate representation) then spatial translations act as shifts $\mathbf{x} \rightarrow \mathbf{x} + \mathbf{a}$ and the time translation is specified by formal Hamiltonian where the coefficient functions are fast decreasing functions of differences $\mathbf{x}_i - \mathbf{x}_j$

If \mathcal{A} is Weyl algebra with generators $\hat{a}^*(\mathbf{k}), \hat{a}(\mathbf{k})$ obeying CCR (momentum representation) then spatial translations act as multiplication by $\exp(\pm i\mathbf{k}\mathbf{a})$ and the time translation is specified by formal Hamiltonian where the coefficient functions are smooth functions multiplied by δ -functions coming from momentum conservation.

If we have translation symmetry we define an excitation of translation-invariant stationary state $\omega \in \mathcal{C}$ as a state σ obeying

$$(T_{\mathbf{a}}\sigma)(A) \rightarrow \text{const} \cdot \omega(A)$$

In algebraic approach we can apply GNS construction to define pre Hilbert space \mathcal{H} with cyclic vector Φ corresponding to ω (obeying $\omega(A) = \langle \hat{A}\Phi, \Phi \rangle$). The translations $T_{\mathbf{a}}$ and T_{τ} descend to \mathcal{H} as unitary operators.

Momentum and energy operators are defined by formulas

$$T_{\mathbf{a}} = e^{i\hat{\mathbf{P}}\mathbf{a}}, T_{\tau} = e^{-i\hat{H}\tau}$$

Cluster property

$$\lim_{\mathbf{x} \rightarrow \infty} \omega(A(\tau, \mathbf{x})B) = \omega(A)\omega(B)$$

$$\lim_{\mathbf{x} \rightarrow \infty} \omega(B'A(\tau, \mathbf{x})B) = \omega(A)\omega(B'B)$$

$$\lim_{\mathbf{x} \rightarrow \infty} \dot{\omega}(A(\tau, \mathbf{x})B) = \dot{\omega}(A)\omega(B)$$

*It follows from cluster property that a state $\sigma(A) = \langle \hat{A}\hat{B}\Phi, \hat{B}\Phi \rangle = \omega(B^*AB)$*

corresponding to a vector $B\Phi \in \mathcal{H}$ is an excitation of ω

$$(T_{\mathbf{x}}\sigma)(A) = \sigma(A(0, \mathbf{x})) = \omega(B^*A(0, \mathbf{x})B) \rightarrow \omega(A)\omega(B^*B)$$

as $\mathbf{x} \rightarrow \infty$.

In algebraic approach we identify excitations of ω with elements of \mathcal{H} .

Quasi-particles=elementary excitations of
translation-invariant stationary state ω

Particles=elementary excitations of ground state

Thermal quasi-particles=elementary excitations
of equilibrium state

Elementary excitations in algebraic approach

$$\hat{\mathbf{P}}\Phi(\mathbf{p}) = \mathbf{p}\Phi(\mathbf{p}) \sim T_a\Phi(\mathbf{p}) = e^{i\mathbf{p}\mathbf{a}}\Phi(\mathbf{p}),$$

$$\hat{H}\Phi(\mathbf{p}) = \epsilon(\mathbf{p})\Phi(\mathbf{p}) \sim T_\tau\Phi(\mathbf{p}) = e^{-i\epsilon\tau}\Phi(\mathbf{p})$$

$\Phi(\mathbf{p})$ - generalized function

$\Phi(\phi) = \int d\mathbf{p}\phi(\mathbf{p})\Phi(\mathbf{p})$ where $\phi(\mathbf{p})$ is a test function

Normalization condition

$$\langle \Phi(\mathbf{p}), \Phi(\mathbf{p}') \rangle = \delta(\mathbf{p} - \mathbf{p}') \text{ or}$$

$$\langle \Phi(\phi), \Phi(\phi') \rangle = \langle \phi, \phi' \rangle$$

If there are several types of excitations $\Phi(\mathbf{p})$ and $\epsilon(\mathbf{p})$ depend on discrete index.

If we have rotational invariance then in three-dimensional space this index takes $2s + 1$ values for a particle having spin s

We define elementary space \mathfrak{h} as a space of test functions $\phi_a(\mathbf{x})$ where spatial translations act shifting the argument. The test functions take values in \mathbb{C}^r

In momentum representation spatial translations act as multiplication by $e^{i\mathbf{k}\mathbf{a}}$ and time translations as multiplication by $e^{-iE(\mathbf{k})\tau}$. Here $E(\mathbf{k})$ stands for Hermitian $r \times r$ matrix. Diagonalizing the matrix $E(\mathbf{k})$ we can reduce the general case to the case $r = 1$.

For $r = 1$ elementary space is a quantization of elementary symplectic manifold.

An elementary excitation of translation-invariant stationary state ω (a quasiparticle) is specified by a map σ of \mathfrak{h} into the set of excitations. This map should commute with translations.

In algebraic approach $\sigma(\phi) = \Phi(\phi)$ is a linear map.

In geometric approach $(\sigma(\phi))(A) = \langle A\Phi(\phi), \Phi(\phi) \rangle$

If $\Phi(\phi) = B(\phi)\Phi$ then $\sigma(\phi) = L(\phi)\omega$ where

$$L(\phi) = \widetilde{B^*}(\phi)B^*(\phi)$$

Only translation symmetry is relevant in the definition of scattering, but if there are other symmetries we can impose additional conditions on the state ω and on the map σ .

In particular, in relativistic quantum field theory it is natural to assume that the ground state and the corresponding vector Φ are

Poincaré-invariant, that Poincaré group acts on elementary space \mathfrak{h} specifying an irreducible representation and the map σ commutes with this action.

Let us consider translation-invariant Hamiltonian of non-relativistic quantum mechanics in Fock space. In this case

$$\Phi(\mathbf{p}) = \hat{a}^*(\mathbf{p})\theta$$

is an elementary excitation (a particle).

If

$$\int d\mathbf{p}_1 \dots d\mathbf{p}_n \Psi(\mathbf{p}_1, \dots, \mathbf{p}_n) \delta(\mathbf{p}_1 + \dots + \mathbf{p}_n) \times \hat{a}^*(\mathbf{p}_1) \dots \hat{a}^*(\mathbf{p}_n) \theta$$

is a bound state then

$$\Phi(\mathbf{p}) = \int d\mathbf{p}_1 \dots d\mathbf{p}_n \Psi(\mathbf{p}_1, \dots, \mathbf{p}_n) \times \delta(\mathbf{p} - \mathbf{p}_1 - \dots - \mathbf{p}_n) \hat{a}^*(\mathbf{p}_1) \dots \hat{a}^*(\mathbf{p}_n) \theta$$

is an elementary excitation (composite particle).

One particle state $\Phi(\phi) = B(\phi)\Phi$

$T_\tau\Phi(\phi) = \Phi(T_\tau\phi)$

In momentum representation

$(T_\tau\phi)(\mathbf{k}) = e^{-i\epsilon(\mathbf{k})\tau}\phi(\mathbf{k})$

In coordinate representation

$(T_\tau\phi)(\mathbf{x}) = \int d\mathbf{k} e^{i\mathbf{x}\mathbf{k} - i\epsilon(\mathbf{k})\tau}\phi(\mathbf{k})$

for large $|\tau|$ is small outside the set τU where U is defined as ϵ -neighborhood of the set of points

$\mathbf{v}(\mathbf{k}) = \nabla\epsilon(\mathbf{k})$ where $\phi(\mathbf{k}) \neq 0$.

We say that τU is an essential support of

$(T_\tau\phi)(\mathbf{x})$ *for large $|\tau|$.*