
Ω =
∑

Ωn -algebra of differential forms on
domain G ⊂ Rm

Ω = C∞(G)⊗ Λm (Grassmann algebra with
coefficients depending on x ∈ G)
Differential n-form ω = 1

n!ωi1,...,in(x)ξi1...ξin

The coefficients are antisymmetric
ξi = dxi , ξiξj = −ξjξi
d = ξi ∂∂xi = dxi ∂∂xi
dω = 0-form is closed=ω ∈ Kerd
d2 = 0 hence Imd ⊂ Kerd,
Cohomology H = Kerd/Imd
Smooth manifold is pasted together from
domains in Rn



Symplectic manifold is specified by closed
non-degenerate two-form ω = 1

2ωij(x)dxidxj

dω = 0, detωij 6= 0
Phase space is a symplectic manifold with
ω = dpidq

i

Locally for appropriate change of coordinates
ω = dpidq

i (Darboux coordinates)
Symplectomorphisms (canonical transformations)
preserve the form ω
If f : M ′ →M is an embedding of symplectic
manifold M ′ with two-form ω′ into symplectic
manifold M with two-form ω and f ∗ω = ω′ we
say that f is a symplectic embedding.



Solitons
Let us consider a translation-invariant
Hamiltonian on a phase space consisting of
vector-valued functions f(x). We assume that
corresponding equations of motion have the form

∂f

∂t
= Af +B(f).

(Here A is a linear operator, B is a non-linear
operator. Spatial translations act on functions as
shifts of arguments.)
We assume B is at least quadratic, hence for
small f the linear part dominates. In particular,
f ≡ 0 is a solution. We say that a soliton ( or
solitary wave) is a finite energy solution of our
equation having the form s(x− vt).



Soliton is a bump moving with constant speed
without changing the form. Generalized soliton is
a bump that pulsates moving with constant
average speed
For almost all initial data asymptotically we get
several solitons and a tail obeying a linear
equation
Grand conjecture (Soffer), Soliton resolution
conjecture (Tao)



D+(t) : R → Ras

Initial data at the moment t to asymptotic data
at t→ +∞ (solitons, solution of linear equation)
D−(t) : R → Ras

Data at the moment t to asymptotic data at
t→ −∞
(D+(t))−1 = S(t,+∞), (D−(t))−1 = S(t,−∞)
Asymptotic data → initial data at the moment t
Non-linear scattering matrix

S = S(0,+∞)−1S(0,−∞) : Ras → Ras



If the theory is Lorenz-invariant then applying
Lorenz transformations to a soliton we get a
family of solitons.
Similar statement for Galilean invariance.



Let us consider a symplectic manifold M with
action of commutative group T of space and time
translations. Let us fix a a T -invariant (=
stationary translation-invariant) point m ∈M.
A point n ∈M is an excitation of m if it has
finite energy ( we assume that the energy of m is
equal to zero).
We say that E is an elementary symplectic
manifold if T acts on E by symplectomorphisms
and in Darboux coordinates p,x the spatial
translations act by the formula x→ x + a,
p→ p. (Then the time translations act by the
formula x→ x + v(p)t,p→ p. Here
v(p) = ∇ε(p) , where ε(p) stands for the
Hamiltonian.)



A symplectic embedding of an elementary
symplectic space into the set of excitations of m
commuting with space and time translations
specifies a family of solitons
Assume that M consists of vector-valued
functions f(x) where x ∈ Rd and spatial
translations act as shifts x→ x + a. A
translation-invariant point m is a constant
function, we can take m = 0. A symplectic
embedding E →M commuting with spatial
translations sends (p, 0) into a function sp(x) and
(p, a) into the function sp(x + a). The
assumption that this map commutes with time
translations means that sp(x− v(p)t) satisfies
the equations of motion.



To define (quasi)particles and scattering in
geometric approach we need spatial translation
Ta and time translations Tτ of cone of states C (a
homomorphism of the group T of space and time
translations into the group of automorphisms of
the cone).
In algebraic approach we need an action of T on
the algebra A (a homomorphism of T into the
group of automorphisms of A). It induces an
action on the cone.
We introduce notation A(τ,x) for TτTxA where
A ∈ A. A state ω is translation- invariant and
stationary iff ω(A(τ,x)) = ω(A).



If A is Weyl algebra with generators â∗(x), â(x)
obeying CCR (coordinate representation) then
spatial translations act as shifts x→ x + a and
the time translation is specified by formal
Hamiltonian where the coefficient functions are
fast decreasing functions of differences xi − xj
If A is Weyl algebra with generators â∗(k), â(k)
obeying CCR (momentum representation) then
spatial translations act as multiplication by
exp(±ika) and the time translation is specified
by formal Hamiltonian where the coefficient
functions are smooth functions multiplied by
δ-functions coming from momentum conservation.



If we have translation symmetry we define an
excitation of translation-invariant stationary
state ω ∈ C as a state σ obeying
(Taσ)(A)→ const · ω(A)
In algebraic approach we can apply GNS
construction to define pre Hilbert space H with
cyclic vector Φ corresponding to ω (obeying

ω(A) = 〈ÂΦ,Φ〉). The translations Ta and Tτ
descend to H as unitary operators.
Momentum and energy operators are defined by
formulas
Ta = eiP̂a, Tτ = e−iĤτ



Cluster property
limx→∞ ω(A(τ,x)B) = ω(A)ω(B)
limx→∞ ω(B′A(τ,x)B) = ω(A)ω(B′B)
limx→∞ ω̇(A(τ,x)B) = ω̇(A)ω(B)
It follows from cluster property that a state
σ(A) = 〈ÂB̂Φ, B̂Φ〉 = ω(B∗AB)
corresponding to a vector BΦ ∈ H is an
excitation of ω
(Txσ)(A) = σ(A(0,x) = ω(B∗A(0,x)B)→
ω(A)ω(B∗B)
as x→∞.
In algebraic approach we identify excitations of ω
with elements of H.



Quasi-particles=elementary excitations of
translation-invariant stationary state ω
Particles=elementary excitations of ground state
Thermal quasi-particles=elementary excitations
of equilibrium state



Elementary excitations in algebraic approach
P̂Φ(p) = pΦ(p) ∼ TaΦ(p) = eipaΦ(p),

ĤΦ(p) = ε(p)Φ(p) ∼ TτΦ(p) = e−iετΦ(p)
Φ(p)- generalized function
Φ(φ) =

∫
dpφ(p)Φ(p) where φ(p) is a test

function
Normalization condition
〈Φ(p),Φ(p′)〉 = δ(p− p′) or
〈Φ(φ),Φ(φ′)〉 = 〈φ, φ′〉
If there are several types of excitations Φ(p) and
ε(p) depend on discrete index.
If we have rotational invariance then in
three-dimensional space this index takes 2s+ 1
values for a particle having spin s



We define elementary space h as a space of test
functions φa(x) where spatial translations act
shifting the argument. The test functions take
values in Cr

In momentum representation spatial translations
act as multiplication by eika and time translations
as multiplication by e−iE(k)τ . Here E(k) stands
for Hermitian r × r matrix. Diagonalizing the
matrix E(k) we can reduce the general case to
the case r = 1.
For r = 1 elementary space is a quantization of
elementary symplectic manifold.



An elementary excitation of translation-invariant
stationary state ω (a quasiparticle) is specified by
a map σ of h into the set of excitations. This map
should commute with translations.
In algebraic approach σ(φ) = Φ(φ) is a linear
map.
In geometric approach (σ(φ))(A) = 〈AΦ(φ),Φ(φ)〉
If Φ(φ) = B(φ)Φ then σ(φ) = L(φ)ω where

L(φ) = B̃∗(φ)B∗(φ)



Only translation symmetry is relevant in the
definition of scattering, but if there are other
symmetries we can impose additional conditions
on the state ω and on the map σ.
In particular, in relativistic quantum field theory
it is natural to assume that the ground state and
the corresponding vector Φ are
Poincaré-invariant, that Poincaré group acts on
elementary space h specifying an irreducible
representation and the map σ commutes with
this action.



Let us consider translation-invariant Hamiltonian
of non-relativistic quantum mechanics in Fock
space. In this case

Φ(p) = â∗(p)θ

is an elementary excitation (a particle).
If∫
dp1...dpnΨ(p1, ...pn)δ(p1 + ...+ pn)×

â∗(p1)...â
∗(pn)θ

is a bound state then
Φ(p) =

∫
dp1...dpnΨ(p1, ...pn)×

δ(p− p1 − ...− pn)â
∗(p1)...â

∗(pn)θ
is an elementary excitation (composite particle).



One particle state Φ(φ) = B(φ)Φ
TτΦ(φ) = Φ(Tτφ)
In momentum representation
(Tτφ)(k) = e−iε(k)τφ(k)
In coordinate representation
(Tτφ)(x) =

∫
dkeixk−iε(k)τφ(k)

for large |τ | is small outside the set τU where U
is defined as ε-neighborhood of the set of points
v(k) = ∇ε(k) where φ(k) 6= 0.
We say that τU is an essential support of
(Tτφ)(x) for large |τ |.


