Q= > Q" -algebra of differential forms on
domain G C R™

Q= C>®(G) @A™ (Grassmann algebra with
coefficients depending on x € ()
Differential n-form w = %wzlzn(x)f’“fz"
The coefficients are antisymmetric

g =dui, gigl = —gigt

d=¢g: =dr'y;

dw = 0-form is closed=w € Kerd

d?> = 0 hence I'md C Kerd,

Cohomology H = Kerd/Imd

Smooth manifold is pasted together from
domains in R"




Symplectic manifold is speciﬁed by closed
non-degenerate two-form w = sw;;(x)dz'dz
dw = 0,detw;; # 0

Phase space is a symplectic manifold with

w = dpdq’

Locally for appropriate change of coordinates
w = dp;dg' (Darboux coordinates)
Symplectomorphisms (canonical transformations)
preserve the form w

If f: M — M is an embedding of symplectic
manifold M’ with two-form «’ into symplectic
manifold M with two-form w and f*w = W’ we
say that f is a symplectic embedding.



Solitons

Let us consider a translation-invariant

Hamiltonian on a phase space consisting of

vector-valued functions f(x). We assume that

corresponding equations of motion have the form
of

(Here A is a linear operator, B is a non-linear
operator. Spatial translations act on functions as
shifts of arguments.)

We assume B is at least quadratic, hence for
small f the linear part dominates. In particular,
f =0 is a solution. We say that a soliton ( or
solitary wave) is a finite energy solution of our
equation having the form s(x — vt).



Soliton is a bump moving with constant speed
without changing the form. Generalized soliton is
a bump that pulsates moving with constant
average speed

For almost all initial data asymptotically we get
several solitons and a tail obeying a linear
equation

Grand conjecture (Soffer), Soliton resolution
conjecture (Tao)



DT(t) : R — Rus

Initial data at the moment ¢ to asymptotic data
at t — +oo (solitons, solution of linear equation)
D= (t) : R = Rus

Data at the moment ¢ to asymptotic data at

t — —00

(D*(t))™" = S(t,+00), (D= ())~" = S(t, —00)
Asymptotic data — initial data at the moment ¢
Non-linear scattering matrix

S = 5(0,+00) 1S(0, —00) : Ras — Reas



If the theory is Lorenz-invariant then applying
Lorenz transformations to a soliton we get a
family of solitons.

Similar statement for Galilean invariance.



Let us consider a symplectic manifold M with
action of commutative group 7 of space and time
translations. Let us fix a a T-invariant (=
stationary translation-invariant) point m € M.
A point n € M is an excitation of m if it has
finite energy ( we assume that the energy of m is
equal to zero).

We say that £ is an elementary symplectic
manifold if 7 acts on £ by symplectomorphisms
and in Darboux coordinates p,x the spatial
translations act by the formula x — x + a,

p — p. (Then the time translations act by the
formula x — x + v(p)t,p — p. Here

v(p) = Ve(p) , where ¢(p) stands for the
Hamiltonian.)



A symplectic embedding of an elementary
symplectic space into the set of excitations of m
commuting with space and time translations
specifies a family of solitons

Assume that M consists of vector-valued
functions f(x) where x € R? and spatial
translations act as shifts x —» x+a. A
translation-invariant point m is a constant
function, we can take m = 0. A symplectic
embedding £ — M commuting with spatial
translations sends (p,0) into a function sp(x) and
(p,a) into the function sp(x + a). The
assumption that this map commutes with time
translations means that sp(x — v(p)t) satisfies
the equations of motion.



To define (quasi)particles and scattering in
geometric approach we need spatial translation
Ta and time translations T of cone of states C (a
homomorphism of the group 7T of space and time
translations into the group of automorphisms of
the cone).

In algebraic approach we need an action of 7 on
the algebra A (a homomorphism of 7 into the
group of automorphisms of A). It induces an
action on the cone.

We introduce notation A(7,x) for T,T7xA where
A e A. A state w is translation- invariant and
stationary iff w(A(7,x)) = w(A).



If A is Weyl algebra with generators a*(x), a(x)
obeying CCR (coordinate representation) then
spatial translations act as shifts x — x + a and
the time translation is specified by formal
Hamiltonian where the coefficient functions are
fast decreasing functions of differences x; — x;
If A is Weyl algebra with generators a*(k), a(k)
obeying CCR (momentum representation) then
spatial translations act as multiplication by
exp(tika) and the time translation is specified
by formal Hamiltonian where the coefficient
functions are smooth functions multiplied by
d-functions coming from momentum conservation.



If we have translation symmetry we define an
excitation of translation-invariant stationary
state w € C as a state o obeying

(Tao)(A) — const - w(A)

In algebraic approach we can apply GNS
construction to define pre Hilbert space H with
cyclic vector ® corresponding to w (obeying
w(A) = (A®, ®)). The translations T, and T
descend to ‘H as unitary operators.

Momentum and energy operators are defined by

formulas .
_ P _ il
Ta — ¢l a’ TT — ¢ tHT



Cluster property

limy 00 w(A(T,x) B) = w(A)w(B)

limy 00 w(B’ A(T x)B) = w(A)w(B'B)
limy 00 W(A(T, %) B) = w(A)w(B)

It follows fﬁom cluster property that a state
o(A) = (AB®, BP) = w(B*AB)
corresponding to a vector B® € H 1s an
excitation of w

(Txo)(A) = 0(A(0,x) = w(B*A(0,x)B) —
w(A)w(B*B)

as X — 00.

In algebraic approach we identify excitations of w
with elements of H.



Quasi-particles=elementary excitations of
translation-invariant stationary state w
Particles=elementary excitations of ground state
Thermal quasi-particles=elementary excitations
of equilibrium state



Elementary excitations in algebraic approach
Pd(p) = p&(p) ~ Tu®(p) = ¢P*®(p),

Ho(p) = e(p)®(p) ~ TrP(p) = e " ®(p)
®(p)- generalized function

®(¢) = [ dpd(p)®(p) where ¢(p) is a test
function

Normalization condition

(®(p), (p")) = (p — P') or

(®(6), 8(9))) = (6, ")

If there are several types of excitations ®(p) and
¢(p) depend on discrete index.

If we have rotational invariance then in
three-dimensional space this index takes 2s + 1
values for a particle having spin s



We define elementary space h as a space of test
functions ¢,(x) where spatial translations act
shifting the argument. The test functions take
values in C"

In momentum representation spatial translations
act as multiplication by e and time translations
as multiplication by e &7 Here E(k) stands
for Hermitian » x r matrix. Diagonalizing the
matrix F(k) we can reduce the general case to
the case r = 1.

For » = 1 elementary space is a quantization of
elementary symplectic manifold.



An elementary excitation of translation-invariant
stationary state w (a quasiparticle) is specified by
a map o of h into the set of excitations. This map
should commute with translations.

In algebraic approach o(¢) = ®(¢) is a linear
map.

In geometric approach (o(¢))(A) = (AD(¢), (o))
If ®(¢) = B(¢)® then o(¢) = L(¢)w where

L(¢) = B*(¢)B*(¢)



Only translation symmetry is relevant in the
definition of scattering, but if there are other
symmetries we can impose additional conditions
on the state w and on the map o.

In particular, in relativistic quantum field theory
it is natural to assume that the ground state and
the corresponding vector ¢ are
Poincaré-invariant, that Poincaré group acts on
elementary space b specifying an irreducible
representation and the map o commutes with
this action.



Let us consider translation-invariant Hamiltonian
of non-relativistic quantum mechanics in Fock
space. In this case

®(p) =a’(p)d

is an elementary excitation (a particle).
If

[dpl...d})nlll(pl, . Pr)o(P1L+ ..+ Pu) X
a*(pl)"'a*(pn)e

1S a bound state then

®(p) = [ dpi...dp, ¥ (p1,...pn) X

0(p = P1— . = Pu)@’ (P1)...0" (Pn)0
is an elementary excitation (composite particle).



One particle state ®(¢) = B(¢)®
TT(D(¢) - (I)(TT¢)
In momentum representation

(T:9) (k) = e~ 7g(k)

In coordlnate representatlon

( TCb j‘dkezxk ie(k T¢( )

for large |7] is small outside the set 7U where U
is defined as e-neighborhood of the set of points
v(k) = Ve(k) where ¢(k) # 0.

We say that TU is an essential support of

(T ¢)(x) for large |T|.



