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Abstract

We define inclusive scattering matrix in the framework of geometric ap-
proach to quantum field theory. We review the definitions of scattering theory
in the algebraic approach and relate them to the definitions in geometric ap-
proach.

1 Introduction

Geometric approach to quantum theory where the starting point is the set of states
was suggested in [1],[2]. In this approach one can work with convex set C0 of normal-
ized states or with convex cone C of not necessarily normalized states ( proportional
points of the cone C specify the same state). In present paper we discuss scattering
theory in geometric approach. Our starting point is a cone C and a group V con-
sisting of automorphisms of the cone C. Sometimes we will use also a semiring W
consisting of endomorphisms of the cone.

We review geometric and algebraic approaches to quantum theory and the relation
between these approaches. We give definitions of scattering matrix and inclusive
scattering in algebraic approach. This makes the present paper independent of papers
[1],[2] and of the papers [?], [3] devoted to the scattering in algebraic approach.

Let us recall the relation of the geometric approach to the algebraic approach
to quantum theory [2]. In algebraic approach a starting point is an associative
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algebra A with involution ∗. The cone C ⊂ A∗ of not necessarily normalized states
is defined as a set of linear functionals on A obeying f(A∗A) ≥ 0. Every element
B ∈ A specifies two operators on A∗; one of them, denoted by the same symbol
B, transforms a functional f(A) into the functional f(AB), another, denoted by
the symbol B̃, transforms f(A) ito the functional f(B∗A). The operator B̃B is an
endomorphism of the cone C. The set of endomorphisms of a cone is a semiring (it
is closed with respect to addition and composition of operators). We define V as
a group of involution preserving automorphisms of A acting in natural way on C.
The semiring W is defined as the minimal set of endomorphisms of C containing all
endomorphisms of the form B̃B. and closed with respect to addition and composition
(it is closed also with respect to multiplication on positive number as all semirings
we consider).

To define scattering in any approach to quantum theory we need the notions of
time and spatial translations. In algebraic approach translations (as any symmetries)
are automorphisms of the algebraA; these automorphisms induce the automorphisms
of the cone C and other objects related to the algebra A. In geometric approach trans-
lations should be regarded as elements of the group V consisting of automorphisms of
the cone C; their action on the cone induces an action onW . Particles and quasipar-
ticles are defined as elementary excitations of stationary translation-invariant state
ω.

In algebraic approach one can define the notion of scattering matrix of elementary
excitations. It seems that it is impossible to generalize this notion to geometric
approach, however, there exists a very natural definition of inclusive scattering matrix
of elementary excitations of stationary translation-invariant state ω in geometric
approach. It is easy to show that this notion agrees with analogous notion in algebraic
approach.

Notice that our constructions can be applied also to scattering of quasiparticles
in equilibrium and non-equilibrium statistical physics. ( The conventional scattering
matrix does not make sense in this situation, but the inclusive scattering matrix
does; see [5],[3]).

In [4] we apply the notions of present paper to define scattering in the framework
of Jordan algebras.

2 Geometric approach

In geometric approach to quantum theory we start with a convex closed cone C of
(non-normalized) states in Banach space L (or, more generally, in complete topolog-
ical linear space L). We fix a subgroup V consisting of automorphisms of the cone C.
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In some cases it is useful to add to this data a subsemiringW of the semiring EndC of
endomorphisms of the cone. ( By definition an endomorphism is a continuous linear
operator in L transforming the cone into itself. An automorphisma is an invertible
endomorphism.)

The dynamics in quantum theory is governed by one-parameter group of time
translations Tτ acting on the cone C. We assume that Tτ ∈ V . Time translations
can be considered also as transformations of W denoted by the same symbol Tτ . If
A ∈ W the time translation acts as conjugation: Tτ (A) = TτAT−τ ; we will use the
notation Tτ (A) = A(τ).

Quantum field theory in geometric approach is specified by a cone C with the
action of spatial translations Tx and time translations Tτ (these translations should
constitute a commutative subgroup of the group V .) The same data specify statistical
physics in the space Rd where d stands for the dimension of the group of spatial
translations. We use the notations

TτTx(A) = TτTxAT−τT−x = A(τ,x)

for an operator A acting in L.
Let us discuss the relation of the above definitions to the quantum theory in the

algebraic approach. In this approach as in geometric one we need time and spatial
translations to define elementary excitations and scattering. The time translations
Tτ and spatial translations Tx act as automorphisms of A; these automorphisms
induce automorphisms of the cone C and semiring W denoted by the same symbols.
If ω ∈ C is a translation-invariant stationary state we can consider a representation
of A on a pre Hilbert space H such that there exists a cyclic vector θ ∈ H obeying
ω(A) = 〈θ, Aθ〉. (This representation is called GNS representation. We denote an
operator in this representation corresponding to A ∈ A by the same symbol A.) We
can consider also the representation of A in the Hilbert space H̄ (in the completion
of H). Time and spatial translations descend to H and to H̄.

For every vector Ψ in the Hilbert space H̄ we define the corresponding state σ by
the formula σ(A) = 〈Ψ, AΨ〉. If Ψ = θ we have σ = ω, if Ψ = Bθ we have σ = B̃Bω.

3 Elementary excitations

Let us repeat the definitions and statements from [2] with small modifications.
We consider a translation-invariant stationary state ω ∈ C. We start with the

definition of excitation of ω in geometric approach. We say that σ ∈ C is an excitation
of ω if Txσ tends to Cω as x tends to ∞ for some constant C. ( We have in mind
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weak convergence in this definition. Recall that u is a weak limit of uα if for every
continuous linear functional f on L the limit of f(uα) is equal to f(u).) We say that
proportional elements of a cone specify the same state, hence this condition means
that for large x the state Txσ coincides with ω.

An elementary excitation of ω is defined as a map σ : h → C of an elementary
space h into the set of excitations of ω . This map should commute with translations
and satisfy the following additional requirement: one can define a map L : h →
End(L) obeying σ(φ) = L(φ)ω .

Here End(L) denotes the space of continuous linear operators acting in L.
Later we impose some extra conditions on the operators L(φ). Not very precisely

one can say that the operators L(φ) and L(ψ) should almost commute if supports of
φ and ψ are far away (see (4) and (7) for precise formulation).

Recall that elementary space h is defined as a space of smooth real-valued or
complex-valued functions on Rd × I with all derivatives decreasing faster than any
power; it is equipped with L2 metric (here I denotes a finite set consisting of m
elements). The spatial translations act naturally on this space; we assume that the
time translations also act on h and commute with spatial translations. In momentum
representation an element φ of h should be considered as a complex function of k ∈ Rd

and discrete variable i ∈ I. If h consists of real-valued functions then in momentum
representation we should impose the condition φ̄(−k) = φ(k). The spatial translation
Tx is represented as multiplication by eixk and the time translation Tτ is represented
as a multiplication by a matrix e−iτE(k) where E(k) is a non-degenerate Hermitian
matrix obeying E(−k) = −E(k) if h consists of real-valued functions. We assume
that E(k) a smooth function of at most polynomial growth, then the multiplication
by E(k) is an operator acting in h. The eigenvalues of E(k) are denoted by εs(k).

Let us denote by Uφ where φ ∈ h an open subset of Rd containing all points having
the form ∇εs(k) where k belongs to supp(φ) = ∪jsuppφj) (to the union of supports
of the functions φ(k, j)).

Lemma 1. Let us assume that supp(φ) is a compact subset of R. Then for large |τ |
we have

|(Tτφ)(x, j)| < Cn(1 + |x|2 + τ 2)−n

where x
τ
/∈ Uφ, the initial data φ = φ(x, j) is the Fourier transform of φ(k, j), and n

is an arbitrary integer.

The proof of this lemma ( Lemma 2 in [2]) can be given by means of the stationary
phase method.

We can express Lemma 1 saying that τUφ is an essential support of (Tτφ)(x, j)
for large |τ |.
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In algebraic approach we define an elementary excitation of ω as an isometric map
Φ of elementary space h into the space of GNS representation H commuting with
time and spatial translations. This definition agrees with the definition in geometric
approach. To verify this fact we notice that the assumption that θ is a cyclic vector
implies the existence of operators B(φ) obeying Φ(φ) = B(φ)θ. (Here φ ∈ h. ) We
define a map σ : h→ C saying that σ(φ) is a linear functional onA assigning a number
〈Φ(φ), AΦ(φ)〉 to A ∈ A. The map σ is quadratic if we are working over R, it is
Hermitian if we are working over C. It commutes with time and spatial translations.
Representing σ(φ) in the form σ(φ) = L(φ)ω where L(φ) = B̃(φ)B(φ) ∈ W we
obtain that this map specifies an elementary excitation in geometric approach.

We assume that B(φ) is linear with respect to φ; then L(φ) is quadratic or Her-
mitian.

We say that a map σ of real vector spaces is quadratic if the expression σ(u +
v)−σ(u)−σ(v) is linear with respect to u and v. A map σ of complex vector spaces
is Hermitian if σ(u + v) − σ(u) − σ(v) is linear with respect to u and antilinear
with respect to v. If V is a real vector space then the corresponding cone C(V ) is
defined as a convex envelope of the set of vectors of the form v ⊗ v in the tensor
square V ⊗ V . (If we are dealing with topological vector spaces we should consider
the closure of convex envelope.) A quadratic map V → V ′ induces a linear map of
the cone C(V ) → V ′, a quadratic map of V into a cone C ′ ⊂ V ′ induces a linear
map of cones C(V )→ C ′. Similar statements are true for complex vector spaces and
Hermitian maps. ( The cone corresponding to complex vector space is defined as a
convex envelope of the set of vectors of the form f ⊗ f̄ in the tensor product V ⊗ V̄ .)
If V is a Hilbert space the corresponding cone can be identified with the cone of
positive definite self-adjoint operators.

It is natural to assume that in geometric approach the maps σ and L are quadratic
or Hermitian, but this assumption is not used in most of our statements.

Elementary excitations should be identified with particles or quasiparticles. No-
tice that particles and quasiparticles can be unstable; this means that we should
consider also objects that only approximately obey the conditions we imposed on
elementary excitations. The definition of inclusive scattering matrix given in the
next section works also for such objects, but instead of the time τ tending to ±∞ we
should consider large, but finite τ. (This is true also for the conventional scattering
matrix in algebraic approach.)
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4 Scattering. Møller matrices.

Let us define the operator L(f, τ) ∈ W where f ∈ h by the formula

L(f, τ) = Tτ (L(T−τf)) = TτL(T−τf)T−τ .

(We are using the same notation for time translations in C and in h. The time transla-
tion acts on operators as conjugation with Tτ .) We assume that supτ∈R ||Tτ || <∞
and the operators L(f) are bounded, hence supτ∈R ||L(f, τ)|| < ∞. ( Here and in
what follows we assume that L is a Banach space. If L is a a topological vector
space specified by a system of seminorms we should impose the above conditions for
every seminorm.)

Notice that L(f, τ)ω does not depend on τ. (Using the fact that the map σ
commutes with translations we obtain that L(f, τ)ω = Tτσ(T−τf) = σ(f).). This
means that

L̇(f, τ)ω = 0 (1)

where the dot stands for the derivative with respect to τ.
Let us introduce the notation

Λ(f1, · · · , fn| −∞) = lim
τ1→−∞,··· ,τn→−∞

Λ(f1, τ1, · · · , fn, τn) (2)

where
Λ(f1, τ1, ..., fn, τn) = L(f1, τ1), ...L(fn, τn)ω.

We say that (2) is an in-state.
For τ → −∞ the state

TτΛ(f1, · · · , fn| −∞)

can be described as a collection of particles with wave functions Tτfi. To prove this
fact we use the formulas

Tτ (L(f, τ ′)) = Tτ+τ ′L(T−τ ′f)T−τ−τ ′ = L(Tτf, τ + τ ′),

TτΛ(f1, · · · , fn| −∞) = Λ(Tτf1, · · · , Tτfn| −∞).

For f1, · · · , fn in a dense open subset of h × · · · × h the distance between essential
supports of wave functions Tτfi tends to ∞ as τ → −∞.This follows from Lemma
1.

This remark allows us to say that the state TτΛ(f1, · · · , fn| − ∞) describes a
collision of particles with wave functions (f1, · · · , fn).
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It is obvious that the in-state ( 2) is symmetric with respect to f1, ..., fn if

lim
τ→−∞

||[L(fi, τ), L(fj, τ)]|| = 0. (3)

One can replace (3) by

||[L(φ), L(ψ)]|| ≤
∫
dxdx′Dab(x− x′)|φa(x)| · |ψb(x

′)| (4)

where Dab(x) tends to zero faster than any power as x→∞.
Then the in-state is symmetric if the sets Ufi do not overlap.
Let us give conditions for the existence of the limit

lim
τ1→−∞,··· ,τn→−∞

Λ(f1, τ1, · · · , fn, τn). (5)

For simplicity we consider the case when τ1 = · · · = τn = τ.

Lemma 2. Let us assume that for τ → −∞ the commutators [L̇(fi, τ), L(fj, τ)] are
small. More precisely, the norms of these commutators should be bounded from above
by a summable function of τ :

||[L̇(fi, τ), L(fj, τ)]|| ≤ c(τ),

∫
|c(τ)|dτ <∞. (6)

Then the vector Λ(τ) = Λ(f1, τ, · · · , fn, τ) has a limit as τ → −∞.

It is sufficient to check that the norm of the derivative of this vector with respect
to τ is a summable function of τ . (Then Λ(τ2) − Λ(τ1) =

∫ τ2
τ1

Λ(τ)dτ tends to zero
as τ1, τ2 → −∞.)

Calculating Λ̇(τ) by means of Leibniz rule we obtain n summands; each summand
has one factor with L̇. The assumption about the behavior of commutators allows
us to move the factor with derivative to the right if we neglect the terms tending to
zero faster than a summable function of τ. It remains to notice that the expression
with the derivative in the rightmost position vanishes due to (1).

If L is a complete topological linear space with the topology specified by a system
of seminorms we can generalize the above proof assuming an analog of (6) for every
seminorm.

Notice that Lemma 1 implies that the distance between essential supports of
functions Tτfi grows linearly as τ → −∞ if the sets Ufi do not overlap. This allows
us to derive the existence of the limit for f1, · · · , fn in a dense open subset of h×· · ·×h
if we assume that the commutator [L̇(T−τf)), L(T−τg)] is small when the essential
supports of Tτf and Tτg are far away for τ → ∞. One can make this statement
precise in various ways. For example, one can prove the following statement:
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Lemma 3. Let us assume that

||[L̇(φ), L(ψ)]|| ≤
∫
dxdx′Dab(x− x′)|φa(x)| · |ψb(x

′)| (7)

where Dab(x) tends to zero faster than any power as x → ∞ . Then the limit (2)
exists if the sets Ufi do not overlap (hence it exists for f1, ..., fn in dense open subset
of h× ...× h).

Instead of (6) we can assume that

||[L(fi, τ + α)− L(fi, τ), L(fj, τ)]|| ≤ c|τ |−a, a > 1 (8)

In this formula c is a constant, α belongs to a finite interval. The proof can be easily
modified: instead of conventional Leibniz rule one should use difference Leibniz rule.

Slightly modifying the proof of Lemma 3 we can derive the following statement

Lemma 4. Let us assume that

||[Tα(L(φ)), L(ψ)]|| ≤
∫
dxdx′Dab(x− x′)|φa(x)| · |ψb(x

′)| (9)

where Dab(x) tends to zero faster than any power as x→∞ and α runs over a finite
interval. Then the limit (2) exists if the sets Ufi do not overlap (hence it exists for
f1, ..., fn in dense open subset of h× ...× h).

Applying Lemma 1 and the assumption (9) we obtain estimates for commuta-
tors [Tα(L(T−τf)), L(T−τg)] that are sufficient to prove the inequality (8), hence the
existence of the limit (5).( We are using the relation

||[L(f, τ + α), L(g, τ)]|| = ||[Tτ+α(L(T−(τ+α)f), Tτ (L(T−τg))]|| ≤ (10)

C||[Tα(L(T−(τ+α)f), L(T−τg)]||

and its particular case for α = 0.) To prove the existence of more general limit
(2) we should slightly modify our arguments.

Let us review shortly the scattering theory in the algebraic approach (for more
details see [3])1. Recall that in this approach an elementary excitation of translation-
invariant stationary state ω is specified by an isometric map Φ : h → H commuting

1Notice that the operators B(f, τ) of present paper correspond to the operators B(fφ−1, τ) of
[3]. The properties of operators B(f, τ) that are taken for granted in the present paper are derived
in [3] from asymptotic commutativity of the algebra A and some properties of energy-momentum
spectrum.
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with translations and obeying Φ(f) = B(f)θ where B(f) ∈ A. ( Here θ stands for a
a vector corresponding to ω in the space H of GNS representation.)

Let us define the operator B(f, τ) by the formula

B(f, τ) = Tτ (B(T−τf)) = TτB(T−τf))T−τ .

Notice that B(f, τ)θ does not depend on τ . This follows from the remark that ω is
stationary, hence T−τθ = θ and B(f, τ)θ = TτΦ(T−τf) = Φ(f).

Lemma 5. Let us assume that

||[Ḃ(fi, τ), B(fj, τ)]|| ≤ c(τ)

where c(τ) is a summable function. Then the vector

Ψ(τ) = B(f1, τ)...B(fn, τ)θ

has a limit in H̄ as τ tends to −∞.

Lemma 6. Let us assume that

||[Ḃ(φ), B(ψ)]|| ≤
∫
dxdx′Dab(x− x′)|φa(x)| · |ψb(x

′)| (11)

where Dab(x) tends to zero faster than any power as x → ∞. Then for f1, ..., fn in
dense open subset of h× ...× h the vector

Ψ(f1, τ1, ..., fn, τn) = B(f1, τ1)...B(fn, τn)θ

has a limit in H̄ as τj tend to −∞; this limit will be denoted by

Ψ(f1, ..., fn| −∞)

The proof of Lemma 5 is very similar to the proof of Lemma 2 and the proof of
Lemma 6 repeats the proof of Lemma 3.

Let us introduce the asymptotic bosonic Fock space Has as a Fock representation
of canonical commutation relations

[b(ρ), b(ρ′)] = [b+(ρ), b+(ρ′)] = 0, [b(ρ), b+(ρ′)] = 〈ρ, ρ′〉

where ρ, ρ′ ∈ h.
We define Møller matrix S− as a linear map of Has into H̄ that transforms

b+(f1)...b
+(fn)|0〉 into Ψ(f1, ..., fn| − ∞). ( Here |0〉 stands for the Fock vacuum.)
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Imposing some additional conditions one can prove that the operator S− can be
extended to isometric embedding of Has into H̄ (see [3]).

Replacing −∞ by +∞ in the definition of S− we obtain the definition of the
Møller matrix S+. If both Møller matrices are surjective maps we say that the
theory has particle interpretation. In this case we can define the scattering matrix
of elementary excitations (particles) by the formula S = S−1+ S−.

Let us define the in-operators a+in by the formula

a+in(f) = lim
τ→−∞

B(f, τ). (12)

This limit exists as as strong limit on vectors Ψ(f1, ..., fn| − ∞) if there exists the
limit Ψ(f, f1, ..., fn| −∞).

Operators a+out (out-operators) are defined by the formula

a+out(f) = lim
τ→+∞

B(f, τ). (13)

Equivalently Møller matrix S− can be defined as a map Has → H obeying

a+in(ρ)S− = S−b
+(ρ), S−|0〉 = θ.

The operators ain(ρ), aout(ρ) (Hermitian conjugate to a+in(ρ) and a+out(ρ) ) obey

ain(ρ)S− = S−b(ρ), aout(ρ)S+ = S+b(ρ).

Notice that spatial and time translations act naturally in Has. The Møller matrix
commutes with translations.

There exists an obvious relation between our considerations in geometric and
algebraic approach. It is clear that the operator L(f, τ) in the space of states cor-
responds to the operator B(f, τ) in H̄ (i.e L(f, τ) = B̃(f, τ)B(f, τ).) It follows that
the state Λ(f1, τ1, · · · , fn, τn) corresponds to vector Ψ(f1, τ1, · · · , fn, τn) , the state
Λ(f1, · · · , fn| −∞) (the in-state) corresponds to the vector Ψ(f1, · · · , fn| −∞).

The relation (9) implies that (5) specifies a map of symmetric power of h into
the cone C. This map (defined on a dense subset) will be denoted by S̃−; it can
be regarded as an analog of the Møller matrix S− in the geometric approach. The
above statements allow us to relate S̃− with S− for theories that can be formulated
algebraically. In this case S− maps symmetric power of h considered as a subspace
of the Fock space into H̄. Composing this map with the natural map of H̄ into the
cone of states C we obtain S̃−.

The map S̃− is not linear, but in the case when L is quadratic or Hermitian it
induces a multilinear map of the symmetric power of the cone C(h) corresponding to
h into the cone C.
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Notice that one can weaken the conditions on the map L assuming asymptotic
commutativity of the semiring W .

Constructing the scattering matrix in algebraic approach we imposed some con-
ditions on commutators ( for example the condition (11) in Lemma 5). These con-
ditions can be replaced by similar conditions on anticommutators, the above state-
ments remain correct after slight modifications. ( In particular, we should consider
the fermionic Fock space instead of bosonic one.)

5 Inclusive scattering matrix

Instead of the cone C one can consider the dual cone C∗. The semiring W and the
group of translations act on C∗.

Let us consider a translation invariant element α ∈ C∗ obeying the conditions
similar to the conditions we imposed on ω. ( In algebraic approach we can take
α(σ) = σ(1), the value of σ on the unit of algebra.)

Taking
lim

τ→+∞
α(L(g1, τ)...L(gm, τ)Λ(f1, · · · , fn| −∞))

we obtain a number characterizing the result of the collision. In bra-ket notation we
can write this number as

lim
τ ′→+∞,τ→−∞

〈α|L(g1, τ
′)...L(gm, τ

′)L(f1, τ)...L(fn, τ)|ω〉 (14)

By definition of elementary excitation σ(φ) is a quadratic (or Hermitian) map, hence
it is natural to assume that the map L(φ) is also quadratic (or Hermitian). Then it
can be extended to a bilinear (or sesquilinear) map L(φ̃, φ). (If we assume that the
bilinear map is symmetric then the extension is unique, but in algebraic approach
it is convenient to consider an extension that is not symmetric. Recall that in the
algebraic approach we define L(φ) as B̃(φ)B(φ); the extension can be defined by the
formula L(φ̃, φ) = B̃(φ̃)B(φ).)

Using the extension we can define a functional

σ(g̃′1, g
′
1, ..., g̃

′
n′ , g′n′ , g̃1, g1, ..., g̃n, gn) =

〈α| lim
τ ′i→+∞,τj→−∞

L(g̃′1, g
′
1, τ
′
1)...L(g̃′n′ , g′n′ , τ ′n′)L(g̃1, g1, τ1)...L(g̃n, gn, τn)|ω〉 (15)

that is linear or antilinear with respect to all of its arguments.
We say that (15) is inclusive scattering matrix. ( If we do not assume that the

map L(φ) is quadratic or Hermitian the inclusive scattering matrix should be defined
by the formula (14).)
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The inclusive scattering matrix was expressed in [5],[6],[11] in terms of on-shell
GGreen functions that appear in the formalism of L-functionals (used in [5], [6], [11])
and in Keldysh formalism [8],[9],][10].

The functional (15) can be considered as a generalized function

σ(k̃′1, ĩ
′
1,k

′
1, i
′
1, ..., k̃

′
n′ , ĩ′n′ ,k′n′ , i′n′ , k̃1, ĩ1,k1, i1, ..., k̃n, ĩn,kn, in) (16)

This generalized function is defined for open dense subset of its arguments. It is
sufficient to require that k̃′i 6= k̃′j,k

′
i 6= k′j, k̃i 6= k̃j,ki 6= kj, for i 6= j if we assume

that k 6= k′ implies ∇εj(k) 6= ∇ε′j(k′) ( Recall that we use the notation εj(k) for
eigenvalues of the matrix E(k).) More generally we can consider the sets U(k)
consisting of vectors ∇εj(k) and assume that the sets U(k) and U(k′) do not overlap.
Then the essential support of a function T−τ (f) is far away from the essential support
of a function T−τ (f

′) if the support of f lies in the neighborhood of k, the support
of f ′ lies in the neighborhood of k′ 6= k and τ →∞.

One can say that the function (16) gives matrix elements of inclusive scattering
matrix.

Let us show that in the algebraic approach inclusive cross-sections can be ex-
pressed in terms of these matrix elements. Notice that in this approach

σ(g̃′1, g
′
1, ..., g̃

′
n′ , g′n′ , g̃1, g1, ..., g̃n, gn) =

〈1| lim
τ ′i→+∞,τj→−∞

B̃(g̃′1, τ
′
1)B(g′1, τ

′
1)...B̃(g̃′n′ , τ ′n)B(g′n′ , τ ′n′)B̃(g̃1, τ1)B(g1, τ1)...B̃(g̃n, τn)

(17)
B(gn, τn)|ω〉 = 〈a+out(g̃′1)...a+out(g̃′n′)Ψ(g̃1, ..., g̃n|−∞, a+out(g′1)...a+out(g′n′)Ψ(g1, ..., gn|−∞)〉 =

〈aout(g′n′)..., aout(g
′
1)a

+
out(g̃

′
1)...a

+
out(g̃

′
n′)Ψ(g̃1, ..., g̃n| −∞),Ψ(g1, ..., gn| −∞)〉 =

We have used (13) and relations (B̃1B2ω)(A) = ω(B∗1AB2) = 〈θ, , B∗1AB2θ〉 =
〈B1θ, AB2θ〉, 〈1|B̃1B2|ω〉 = 〈B1θ, B2θ〉 in this derivation.

In terms of generalized funcions

σ(k̃′1, ĩ
′
1,k

′
1, i
′
1, ..., k̃

′
n′ , ĩ′n′ ,k′n′ , i′n′ , k̃1, ĩ1,k1, i1, ..., k̃n, ĩn,kn, in) = (18)

〈aout(k′n′ , i′n′)..., aout(k
′
1, i
′
1)a

+
out(k̃

′
1, ĩ
′
1)...a

+
out(k̃

′
n′ , ĩ′n′)Ψ(k̃1, ĩ1, ..., k̃n, ĩn)|−∞),Ψ(k1, i1, ...,kn, in|−∞)〉

The inclusive cross-section of the process (M,N) → (Q1..., Qm) is defined as a
sum (more precisely a sum of integrals) of effective cross-sections of the processes
(M,N)→ (Q1, ..., Qm, R1, ..., Rn) over all possible R1, ..., Rn. If the theory does not
have particle interpretation this formal definition of inclusive cross-section does not
work, but still the inclusive cross-section can be defined in terms of probability of the
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process (M,N) → (Q1, ..., Qn+ something else) and expressed in terms of inclusive
scattering matrix defined above. To verify this statement we consider the expectation
value

ν(a+out(p1, k1)aout(p1, k1) . . . a
+
out(pm, km)aout(pm, km)) (19)

where ν is an arbitrary state.
This quantity is the probability density in momentum space for finding m outgo-

ing particles of the types k1, . . . , kn with momenta p1, . . . ,pm plus other unspecified
outgoing particles. It gives inclusive cross-section if ν is an in-state.

Comparing this statement with (18) we obtain that inclusive cross-section can be
obtained from inclusive scattering matrix if k̃i tends to ki and k̃′i tends to k′i. ( We
assume that the expression

ν(a+out(p̃1, k1)aout(p1, k1) . . . a
+
out(p̃m, km)aout(pm, km)) (20)

tends to (19) as p̃i tends to pi.)

6 Discussion

Let us discuss some properties of the above construction of in-state and of inclusive
scattering matrix.

We start again with elementary excitation σ : h → C of state ω. By definition of
elementary excitation there exists a map L : h→W obeying σ(φ) = L(φ)ω. The map
L is not unique; let us prove that under some conditions the in-state does not change
when we are changing L. More precisely we can prove the following statement:

Let us assume that the maps Li : h→W can be used to define in-state and

||[Li(φ), Lj(ψ)]|| ≤
∫
dxdx′Dab(x− x′)|φa(x)| · |ψb(x

′)|.

where Dab tends to zero faster than any power. Then

Λ(f1, · · · , fn| −∞) = lim
τ1→−∞,··· ,τn→−∞

Li1(f1, τ1), ...Lin(fn, τn)ω.

(We assume that the sets Ufi do not overlap.)
To prove this statement we notice first of all that Li(f, τ)ω = Lj(f, τ)ω hence

the choice of the operator Li in the rightmost position does not matter. Then we use
the fact that one can move every factor to the rightmost position without changing
the limit (the commutators are small when τj → −∞.)
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Similar statement is true for inclusive scattering matrix.
Let us consider a Poincaré -invariant theory. Recall that in our definitions we

started with the homomorphism of the translation group T into a subgroup of W
consisting of invertible operators. We assume that this homomorphism can be ex-
tended to a homomorphism of the Poincaré group P . The translation group acts also
on the elementary space h; we assume that this action also can be extended to the
action of Poincaré group and that the elementary excitation of Poincaré invariant
state ω considered as a map σ : h→ C commutes with the actions of Poincaré group
on h and C : for every P ∈ P and f ∈ h we have

σ(Pf) = Pσ(f) (21)

Then we say that the theory is Poincaré-invariant.
By definition of elementary excitation there exists a map L : h → W obeying

σ(f) = L(f)ω. If L commutes with Poincaré transformations the scattering is obvi-
ously Poincaré-invariant. However, one can prove Poincaré invariance of scattering
in much more general situation. Let us sketch a proof of this fact assuming that

lim
τ→−∞

||[L(Pfi, τ), LP (fj, τ)|| = 0 (22)

(We introduced notation LP (f, τ) = PL(f, τ)P−1.)
The generalized Møller matrix S̃− is a map of the symmetric power of h into C.

Let us check that this map commutes with actions of Poincaré group. (Similar proof
can be applied to inclusive scattering matrix.)

We should identify
L(Pf1, τ), ...L(Pfn, τ)ω (23)

with
PL(f1, τ), ...L(fn, τ)ω = LP (f1, τ), ...LP (fn, τ)ω

in the limit τ → −∞. We will show that we can replace L(Pfi, τ) with LP (fi, τ) in
any number of factors of (23) without changing the limit. For the rightmost factor
this statement is equivalent to (21). Let us assume that this statement is correct for
the last k factors. Then it is true also for (k+ 1)-th factor from the right. (To prove
this we interchange the (k + 1)-th factor with k-th factor from the right using (22)
and use the induction hypothesis.) We proved the statement by induction.

Modifying the the considerations in the proof of Lemma 3 we can give various
conditions for Poincaré invariance of scattering thery on a dense subset of h× ...× h.
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