
We define elementary space h as a space of test
functions φa(x) where spatial translations act
shifting the argument. Test functions take values
in Cr. For definiteness we assume that test
functions belong to the space S of smooth fast
decreasing functions.
In momentum representation spatial translations
act as multiplication by eika and time translations
as multiplication by e−iE(k)τ . (This follows from
the assumption that that time translations are
unitary operators commuting with spatial
translations.) Here E(k) stands for Hermitian
r × r matrix. Diagonalizing the matrix E(k) we
can reduce the general case to the case r = 1.



An elementary excitation of translation-invariant
stationary state ω (a quasiparticle) is specified by
a map σ of h into the set of excitations. This map
should commute with translations.
In algebraic approach excitations elements of pre
Hilbert space H where the state ω is represented
by cyclic vector θ, σ(φ) = Φ(φ) is a linear map,

Φ(φ) = B(φ)θ

The map σ induces a map σ′ : h→ C
(σ′(φ))(A) = 〈Aσ(φ), σ(φ)〉
If Φ(φ) = B(φ)θ then σ′(φ) = L(φ)ω where

L(φ) = B̃(φ)B(φ)



In geometric approach it is natural to assume
that the map σ′ specifying an elementary
excitation is a Hermitian map σ′ : h→ C and that
σ′(φ) = L(φ)ω where L : h→ L
A map f is Hermitian if there exists a function
F (x, y) linear with respect first argument and
antilinear with respect to second argument
obeying F (x, x) = f(x)
For every linear space E we construct a cone
C(E) as a minimal cone in E ⊗ Ē containg all
elements of the form e⊗ ē.
The cone C(h) is elementary cone.
σ′ can be regarded as a linear map σ′ : C(h)→ C



Let us assume that supp(φ) is a compact set.
Then for large |τ | we have

|(Tτφ)(x)| < Cn(1 + |x|2 + τ 2)−n

where x
τ /∈ Uφ, the initial data φ = φ(x) is the

Fourier transform of φ(k), and n is an integer.
Here supp(φ) is the closure of the set of points
were φ(k) 6= 0, Uφ is a set of all points of the
form ∇ε(k) where k belongs to a neighborhood of
supp(φ), the function ε(k) is smooth.
(Tτφ)(x) =

∫
dkeikx−iε(k)τφ(k),

We say that τUφ is an essential support of the
function (Tτφ)(x). We say that functions do not
overlap if their essential supports do not overlap.



What is a two-particle state?
Let us assume that for φ and φ′ with distant
essential supports (in coordinate representation)
B(φ) almost (anti)commutes with B(φ′) and
Ḃ(φ) almost ( anti)commutes with B(φ′). Boson
and fermions.
The vector B(φ)B(φ′)θ corresponds to a state of
two distant particles.
This state can be written in the form L(φ)L(φ′)ω
where L(φ) = B̃(φ)B(φ), L(φ′) = B̃(φ′)B(φ′)
Notice that L(φ) commutes with L(φ′) also in the
case when B(φ) anticommutes with B(φ′).



Scattering

The axiomatic method has many
advantages over honest work

Bertrand Russell



In algebraic approach σ(φ) = B(φ)θ
In geometric approach we require the existence of
a map L : h→ End(L) obeying σ′(φ) = L(φ)ω.
We introduce notations

B(f, τ) = TτB(T−τf))T−τ .

L(f, τ) = TτL(T−τf)T−τ ,

L(f, τ)ω = TτL(T−τf)ω = Tτσ
′(T−τf)ω = σ′(f)ω

does not depend on τ , hence

L̇(f, τ)ω = 0

Similarly,
Ḃ(f, τ)θ = 0



Let us define in-state by the formula
Ψ(f1, · · · , fn| −∞) = limτ→−∞Ψ(f1, · · · , fn|τ)
where
Ψ(τ) = B(f1, τ)...B(fn, τ)θ
in algebraic approach and by the formula
Λ(f1, · · · , fn| −∞) = limτ→−∞Λ(f1, · · · , fn|τ)
where
Λ(f1, ..., fn|τ) = L(f1, τ), ...L(fn, τ)ω
in geometric approach.



For τ → −∞ the state

TτΛ(f1, · · · , fn| −∞)

can be described as a collection of particles with
wave functions Tτfi. To prove this fact we use the
formulas

Tτ(L(f, τ ′)) = Tτ+τ ′L(T−τ ′f)T−τ−τ ′ = L(Tτf, τ+τ ′),

TτΛ(f1, · · · , fn| −∞) = Λ(Tτf1, · · · , Tτfn| −∞).

For f1, · · · , fn in a dense open subset of
h× · · · × h the distance between essential supports
of wave functions Tτfi tends to ∞ as τ → −∞.
The state TτΛ(f1, · · · , fn| −∞) describes a
collision of particles with wave functions
(f1, · · · , fn) if these functions do not overlap.



It is obvious that the in-state is symmetric with
respect to f1, ..., fn if

lim
τ→−∞

||[L(fi, τ), L(fj, τ)]|| = 0.

One can replace this condition by

||[L(φ), L(ψ)]|| ≤
∫
dxdx′Dab(x−x′)|φa(x)|·|ψb(x

′)|

where Dab(x) tends to zero faster than any power
as x→∞.
Then the in-state is symmetric if the sets Ufi do
not overlap.



Let us give conditions for the existence of the
limit defining the in-state.
Let us assume that for τ → −∞ the commutators
[L̇(fi, τ), L(fj, τ)] are small. More precisely, the
norms of these commutators should be bounded
from above by a summable function of τ :

||[L̇(fi, τ), L(fj, τ)]|| ≤ c(τ),∫
|c(τ)|dτ <∞.

Then Λ(τ) = Λ(f1, · · · , fn|τ) has a limit as
τ → −∞.



It is sufficient to check that the norm of the
derivative of this vector with respect to τ is a
summable function of τ . (Then
Λ(τ2)− Λ(τ1) =

∫ τ2
τ1

Λ̇(τ)dτ tends to zero as

τ1, τ2 → −∞.)
Calculating Λ̇(τ) by means of Leibniz rule we
obtain n summands; each summand has one
factor with L̇. The assumption about the
behavior of commutators allows us to move the
factor with derivative to the right if we neglect
the terms tending to zero faster than a summable
function of τ. It remains to notice that the
expression with the derivative in the rightmost
position vanishes.



Similar statements in algebraic approach
Let us assume that

||[Ḃ(fi, τ), B(fj, τ)]|| ≤ c(τ)

where c(τ) is a summable function. Then the
vector

Ψ(τ) = B(f1, τ)...B(fn, τ)θ

has a limit in H̄ as τ tends to −∞.



Let us assume that ||[Ḃ(φ), B(ψ)]|| ≤∫
dxdx′Dab(x− x′)|φa(x)| · |ψb(x

′)|
where Dab(x) tends to zero faster than any power
as x→∞. Then for f1, ..., fn in dense open
subset of h× ...× h the vector

Ψ(f1, τ1, ..., fn, τn) = B(f1, τ1)...B(fn, τn)θ

has a limit in H̄ denoted by

Ψ(f1, ..., fn| −∞)

as τj tend to −∞



Let us introduce the asymptotic bosonic Fock
space Has as a Fock representation of canonical
commutation relations

[b(ρ), b(ρ′)] = [b+(ρ), b+(ρ′)] = 0, [b(ρ), b+(ρ′)] = 〈ρ, ρ′〉

where ρ, ρ′ ∈ h.
We define Møller matrix S− as a linear map of
Has into H̄ that transforms b+(f1)...b

+(fn)|0〉 into
Ψ(f1, ..., fn| −∞). ( Here |0〉 stands for the Fock
vacuum.)
Notice that spatial and time translations act
naturally in Has. The Møller matrix commutes
with translations.



Imposing some additional conditions one can
prove that the operator S− can be extended to
isometric embedding of Has into H̄.
Replacing −∞ by +∞ in the definition of S− we
obtain the definition of the Møller matrix S+. If
both Møller matrices are unitary (are surjective
maps) we say that the theory has particle
interpretation. In this case we can define the
scattering matrix of elementary excitations
(particles) by the formula

S = S−1+ S−



Let us define the in-operators a+in by the formula
a+in(f) = limτ→−∞B(f, τ).
This limit exists as strong limit on vectors
Ψ(f1, ..., fn| −∞) if there exists the limit
Ψ(f, f1, ..., fn| −∞) (in particular, if all these
functions do not overlap).
Operators a+out (out-operators) are defined by the
formula
a+out(f) = limτ→+∞B(f, τ). We introduce the
notation a+out(f) =

∫
dpfk(p)a+out,k(p)



Equivalently Møller matrix S− can be defined as
a map Has → H obeying

a+in(ρ)S− = S−b
+(ρ), S−|0〉 = θ.

The operators ain(ρ), aout(ρ) (Hermitian
conjugate to a+in(ρ) and a+out(ρ) ) obey

ain(ρ)S− = S−b(ρ), aout(ρ)S+ = S+b(ρ).



All above statements remain correct if
commutators are replaced by anticommutators.
Then instead of bosonic Fock space one should
consider fermionic Fock space.



There exists an obvious relation between our
considerations in geometric and algebraic
approach. It is clear that the operator L(f, τ) in
the space of states corresponds to the operator
B(f, τ) in H̄ (i.e L(f, τ) = B̃(f, τ)B(f, τ).) It
follows that the state Λ(f1, . . . , fn|τ) corresponds
to vector Ψ(f1, . . . , fn|τ) , the state
Λ(f1, . . . , fn| −∞) (the in-state) corresponds to
the vector Ψ(f1, . . . , fn| −∞).



Λ(f1, · · · , fn| −∞) specifies a map of symmetric
power of h into the cone C. This map (defined on
a dense subset) will be denoted by S̃−; it can be
regarded as an analog of the Møller matrix S−.
The above statements allow us to relate S̃− with
S− for theories that can be formulated
algebraically. In this case S− maps symmetric
power of h considered as a subspace of the Fock
space into H̄. Composing this map with the
natural map of H̄ into the cone of states C we
obtain S̃−.
The map S̃− is not linear, but in the case when L
is quadratic or Hermitian it induces a multilinear
map of the symmetric power of the cone C(h)
corresponding to h into the cone C.



Inclusive cross-section of the process
(M,N)→ (Q1..., Qm) is defined as a sum (more
precisely a sum of integrals) of effective
cross-sections of the processes
(M,N)→ (Q1, ..., Qm, R1, ..., Rn) over all possible
R1, ..., Rn. If the theory does not have particle
interpretation this formal definition of inclusive
cross-section does not work, but still the inclusive
cross-section can be defined in terms of
probability of the process
(M,N)→ (Q1, ..., Qn+ something else)
and expressed in terms of inclusive S-matrix
defined below.



To verify this statement we consider the
expectation value

ν(a+out,k1(p1)aout,k1(p1) . . . a
+
out,km

(pm)aout,km(pm))

where ν is an arbitrary state. This quantity is the
probability density in momentum space for
finding m outgoing particles of the types
k1, . . . , kn with momenta p1, . . . ,pm plus other
unspecified outgoing particles. It gives inclusive
cross-section if ν is an in-state:

ν = Λ(g1, ..., gn| −∞) = lim
τ→−∞

L(g1, τ)...L(gn, τ)ω



Let us consider the expression

〈1|L(g′1, τ
′)...L(g′n′, τ

′)L(g1, τ)...L(gn, τ)|ω〉

We assume that g′i as well as gj are not
overlapping, then this expression has a limit as
τ ′ → +∞, τ → −∞; we denote this limit by Q. It
is clear that Q can be written in the form

Q = lim
τ ′→+∞

〈1|L(g′1, τ
′)...L(g′n′, τ

′)ν〉

where ν = Λ(g1, ..., gn| −∞) stands for in-state.
Notice that Q does not change if we permute
g1, ..., gn (in the limit τ → −∞ the operators
L(gj, τ) commute). Similarly Q does not change
if we permute g′1, ..., g

′
n′.



Using formulas L(g, τ) = B̃(g, τ)B(g, τ) and
(M̃Nν)(X) = ν(M ∗XN) and noticing that
〈1|σ〉 = σ(1) we obtain that
Q =
limτ ′→+∞ ν(B∗(g′n′, τ

′)...B∗(g′1, τ
′)B(g′1, τ

′)...B(g′n′, τ
′))

Finally using limτ ′→+∞B(g, τ ′) = a+out(g) we see
that

Q = ν(aout(g
′
n′)...aout(g

′
1)a

+
out(g

′
1)...a

+
out(g

′
n′)))



We say that

Q = Q(g′1, ..., g
′
n′, g1, .., gn)

is inclusive scattering matrix.
It is quadratic (more precisely Hermitian) with
respect to its arguments, hence we can replace it
with multilinear function having 2(n+ n′)
arguments. It also can be called inclusive
scattering matrix.
Inclusive cross-sections can be obtained from
inclusive scattering matrix.



Inclusive scattering matrix in geometric approach

lim
τ ′→+∞,τ→−∞

〈α|L(g1, τ
′)...L(gm, τ

′)×

L(f1, τ)...L(fn, τ)|ω〉
α ∈ L∗ and ω ∈ L are translation-invariant
stationary states
They are on equal footing. Interchanging α and
ω we should get a kind of duality.


