Some open problems in Invariant Theory

Dmitri I. Panyushev

Семинар по группам Λ и и теории инвариантов 30 марта 2022 г.

Frobenius subalgebras of simple Lie algebras

Notation. $\mathbb{k} = \overline{\mathbb{k}}$, char $\mathbb{k} = 0$.

- \mathfrak{q} is any algebraic Lie algebra and ind \mathfrak{q} is the *index* of \mathfrak{q} ;
- \mathfrak{q} is called a *Frobenius* Lie algebra, if ind $\mathfrak{q} = 0$ (i.e., Q has a dense orbit in \mathfrak{q}^* or det $\mathcal{M} \neq 0$, where $\mathcal{M}_{ij} = [x_i, x_j]$);
- $-\mathfrak{g}$ is a simple Lie algebra.

Problem 1. Determine the maximal dimension of a Frobenius subalgebra of \mathfrak{g} .

Example 1. If $\mathfrak{g} = \mathfrak{sl}_n$ (or \mathfrak{gl}_n), then max dim(frob-subalg) = $n^2 - n$.

This value is attained on a maximal parabolic subalgebra, which is also a subalgebra of \mathfrak{sl}_n of maximal dimension.

Fact 1 (В.В.Морозов, 1943). If $\mathfrak{q} \subsetneq \mathfrak{g}$ is a maximal subalgebra, then \mathfrak{q} is semisimple or regular, i.e., is normalised by a Cartan subalgebra ("Теорема регулярности"). He also gives lists of maximal regular subgroups.

Fact **2** (Ф.И.Карпелевич, 1951). A maximal nonsemisimple subalgebra of $\mathfrak g$ is parabolic.

Example 2. $\mathfrak{g} = \mathbf{G}_2$. The maximal subalgebras are:

- (a) Two maximal parabolic subalgebras, where dim = 9 & ind = 1;
- (b) regular: \mathfrak{sl}_3 or $\mathfrak{sl}_2 + \mathfrak{sl}_2$ with ind = 2 & the S-subalgebra \mathfrak{sl}_2 .

Here a Borel $\mathfrak{b}=\mathfrak{b}(G_2)$ is a Frobenius subalgebra of maximal dimension, dim $\mathfrak{b}=8$.

It is known for a long time (see e.g. В.В.Трофимов, 1979-80) that

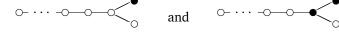
- ind $\mathfrak{b} = 0$ if and only if $\mathfrak{g} \notin \{A_n, D_{2n+1}, E_6\}$;
- ind $\mathfrak{b}(\mathfrak{sl}_{n+1}) = [n/2]$, ind $\mathfrak{b}(\mathfrak{so}_{4n+2}) = 1$, and ind $\mathfrak{b}(E_6) = 2$.

Question 1. Suppose that ind $\mathfrak{b} = 0$. Is it true that \mathfrak{b} is a Frobenius subalgebra of maximal dimension?

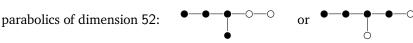
- If ind $\mathfrak{b} = 0$, then ind $\mathfrak{p} > 0$ for any $\mathfrak{p} \supsetneq \mathfrak{b}$. This exploits the general formula for the index of seaweed subalgebras of \mathfrak{g} (Joseph, Tauvel–Yu).
- If ind $\mathfrak{b} > 0$, then there do exist Frobenius parabolic subalgebras \mathfrak{p} .

Question 2. Is it true that the maximum of dimension of the Frobenius subalgebras of \mathfrak{g} is always attained on parabolic subalgebras?

Example 3. If \mathfrak{g} is of type \mathbf{D}_{2n+1} , then dim $\mathfrak{b}=(2n+1)^2$ and there are Frobenius parabolics of dimension dim $\mathfrak{b}+1$ and dim $\mathfrak{b}+3$:



Example 4. If ${\mathfrak g}$ is of type $E_6,$ then $dim\,{\mathfrak b}=42$ and there are Frobenius



One can verify that these are Frobenius parabolics of maximal dimension.

Strange orbits

Def. (M. Raïs). The coadjoint orbit $Q \cdot \xi \subset \mathfrak{q}^*$ is said to be *strange*, if there is a subalgebra $\mathfrak{h} \subset \mathfrak{q}$ such that $\mathfrak{h} \oplus \mathfrak{q}^{\xi} = \mathfrak{q}$ (the vector space direct sum).

Lemma 1. If $\mathfrak{h} + \mathfrak{q}^{\xi} = \mathfrak{q}$, then ind $\mathfrak{h} \leq \dim(\mathfrak{q}^{\xi} \cap \mathfrak{h})$ (equivalently, dim $Q \cdot \xi \leq \dim \mathfrak{h} - \operatorname{ind} \mathfrak{h}$.) In particular, if $\mathfrak{h} \oplus \mathfrak{q}^{\xi} = \mathfrak{q}$, then \mathfrak{h} is Frobenius.

Proof. Here $\mathfrak{h}^* \simeq \mathfrak{q}^*/\mathfrak{h}^{\perp}$ and $\bar{\xi} \in \mathfrak{q}^*/\mathfrak{h}^{\perp}$ yields a suitable H-orbit in \mathfrak{h}^* .

Vinberg's inequality: ind $\mathfrak{q}^{\xi} \geqslant \text{ind } \mathfrak{q}$. (This can be strict!)

Question 3. Is it true that if $Q \cdot \xi$ is strange, then ind $\mathfrak{q}^{\xi} = \operatorname{ind} \mathfrak{q}$?

For \mathfrak{g} , we have $\mathfrak{g}\simeq\mathfrak{g}^*$, 'coadjoint' = 'adjoint', and ind $\mathfrak{g}^\xi=\inf\mathfrak{g}\ \forall \xi$ (the Elashvili "conjecture" = "гипотеза" А.Г.Элашвили). By Lemma 1,

 $\max \dim(\text{strange orbit}) \leqslant \max \dim(\text{frob-subalg})$ (*).

Question 4. Is it true that the equality holds in (*)?

The answer is "yes" for

- $\mathfrak{g} = \mathfrak{sl}_n$, where $\mathcal{O}_{reg} \subset \mathfrak{N}$ is strange;
- $\mathfrak{g} = \mathbf{G}_2$, where $\mathcal{O}_8 \subset \mathfrak{N}$ is strange.

It is easily seen that $\mathcal{O}_{\min} \subset \mathfrak{g}$ is always strange.

Proposition 1 (P.).

- (i) If $\mathcal{O} \subset \mathfrak{N}$ and $c_G(\mathcal{O}) \leqslant 1$, then \mathcal{O} is strange. Moreover, if $c_G(\mathcal{O}) = 0$, then the complementary subalgebra \mathfrak{h} can be chosen to be solvable.
- (ii) If $e \in (\mathfrak{sl}_n)_{reg} \cap \mathfrak{N}$, then $SL_n \cdot e^k$ is strange.
 - If $\mathcal{O} \subset \mathfrak{N}$ and $c_{\mathcal{G}}(\mathcal{O}) = 1$, then $\mathfrak{g} = \mathfrak{sl}_n$ and $\mathcal{O} \sim (3, 1, \dots, 1)$;
 - If ind $\mathfrak{b} = 0$, then ("yes" in Question 2) \Rightarrow ("yes" in Question 4).
 - If $\mathcal{O} = G \cdot e$ is strange and $c_G(\mathcal{O}) > 0$, then a complementary subalgebra \mathfrak{h} for \mathfrak{g}^e cannot be solvable;
 - there can be complementary subalgebras \mathfrak{h} with different structure. See e.g. $\mathcal{O} \sim (2, \ldots, 2)$ for \mathfrak{sl}_{2n} .

Proposition 2 (P.). Suppose that $\mathcal{O} \subset \mathfrak{N}$ is strange. Let $\mathcal{S}_{\mathcal{O}}$ be a sheet of \mathfrak{g} that contains \mathcal{O} . Then all G-orbits in $\mathcal{S}_{\mathcal{O}}$ are strange. Moreover, if $e \in \mathcal{O}$ and $\mathfrak{g}^e \oplus \mathfrak{h} = \mathfrak{g}$, then this \mathfrak{h} is also valid for every orbit in $\mathcal{S}_{\mathcal{O}}$.

Remark. For G_2 , F_4 , and E_8 , all spherical nilpotent orbits are rigid. In the other series, the non-rigid spherical orbits are Richardson, i.e., $\mathcal{S}_{\mathcal{O}} \neq \mathcal{O}$.

Problem 2. Classify the strange (nilpotent) orbits in the simple Lie algebras.

Question 5. Suppose that ind $\mathfrak{b} = 0$.

Is it true that only the spherical orbits are strange? [Yes, for G_2 .]

Question 6. Are there non-spherical strange orbits for D_{2m+1} or E_6 ?

Example 5. For $\mathfrak{g}=E_6$, there is a unique nilpotent orbit of dim=52.

A₃: $\bigcirc \bigcirc \bigcirc$. Can one prove or disprove that this orbit is strange?

- One always has dim $\mathfrak{N}^{sph} \leq \dim \mathfrak{b} \operatorname{ind} \mathfrak{b}$. (Lemma 1 with $\mathfrak{h} = \mathfrak{b}$.) Actually, dim $\mathfrak{N}^{sph} = \dim \mathfrak{b} \operatorname{ind} \mathfrak{b}$ (P., A.I.F. '99);
- if $\mathfrak p$ is a minimal Frobenius parabolic, then $\dim \mathfrak p = \dim \mathfrak b + \operatorname{ind} \mathfrak b$.

Aside questions:

- Why is $\mathfrak{N}^{\mathsf{sph}}$ irreducible?
- ② Suppose that $\mathfrak{h} \oplus \mathfrak{r} = \mathfrak{g}$. Is it true that ind $\mathfrak{h} + \operatorname{ind} \mathfrak{r} \geqslant \operatorname{ind} \mathfrak{g}$? (One should assume that \mathfrak{g} is semisimple.)

Философский Тезис:

Если имеется проблема/ситуация, включающая параметр, и для значения параметра n_0 всё здорово и прекрасно, то для n_0+1 кое-что тоже может быть хорошо, но при дополнительных ограничениях. А при n_0+2 всё уже нередко плохо!

- $lue{0}$ Rational vs. unirational varieties (the Lüroth problem), dim =1 and 2;
- $c_G(X) = 0$ and 1, where X is a G-variety (numerous topics!);
- $r_G(X) = 0$ and 1;
- dim $V /\!\!/ G = 1$ and 2, where V is a G-module.
- **5** ...

Recollections: Let X be irreducible and (G : X). Then

- $c_G(X) = \dim X \max_{x \in X} \dim B \cdot x$ is the complexity of X;
- if X is quasiaffine and $\mathbb{k}[X]^U = \bigoplus_{\lambda \in \Gamma} \mathbb{k}[X]^U_{\lambda}$, then $r_G(X) = \dim_{\mathbb{Q}}(\mathbb{Q}\Gamma)$ is the rank of X. Here $\Gamma = \Gamma(X)$ is a monoid of dominant weights.

Factorisations of a simple algebraic group G

 H_1 and H_2 are connected reductive subgroups of G.

Def. (А.Л.Онищик). The triple (G, H_1, H_2) is a factorisation (of G) if H_1 acts transitively on G/H_2 . (\diamondsuit)

Then any $g \in G$ can be written as $g = h_1 h_2$. The factorisations of simple algebraic groups have been studied (and classified) by А.Л.Онищик (Труды ММО, т.11, 1962). If (\lozenge) holds, then a generic stabiliser for $(H_1 : G/H_2)$ equals $S = H_1 \cap H_2$ and $G/H_2 \simeq H_1/S$.

- ▶ It is clear that dim $G + \dim S = \dim H_1 + \dim H_2$;
- ▶ condition (\Diamond) \Leftrightarrow $\mathfrak{h}_1 + \mathfrak{h}_2 = \mathfrak{g}$ (Онищик, 1969).

Example 1. $G = SL_{2n}$, $H_1 = Sp_{2n}$, and $H_2 = SL_{2n-1}$. Then $S = Sp_{2n-2}$.

Let $\mathcal{P}(G; z)$ denote the *Poincaré polynomial* of (a compact real form of G). If $m_i = d_i - 1$ (i = 1, ..., l = rk G) are the *exponents* of G, then

$$\mathcal{P}(G; z) = \prod_{i=1}^{l} (1 + z^{2m_i+1}).$$

Note that deg $\mathcal{P}(G; z) = \dim G$. Let $\exp(G) := \{m_1, \dots, m_l\}$

$$Q(z) = \frac{\mathcal{P}(G;z) \cdot \mathcal{P}(S;z)}{\mathcal{P}(H_1;z) \cdot \mathcal{P}(H_2;z)}.$$

Using cohomological methods, A.Л.Онищик proved that $Q(z) \equiv 1$ for the factorisations. This readily implies that

- **1** $\operatorname{rk} G + \operatorname{rk} S = \operatorname{rk} H_1 + \operatorname{rk} H_2;$
- **1** either H_1 or H_2 is a subgroup of **maximal** exponent in G.

Problem 1. Find another (more algebraic? invariant-theoretic?) proof.

Fact 1. In Onishchik's list, at least one of the subgroups H_i is spherical.

Problem 2. Prove/explain this.

Actually, if $H \subset G$ is a subgroup of maximal exponent (e.g. $\mathfrak{sp}_{2n} \subset \mathfrak{sl}_{2n}$ or $F_4 \subset E_6$), then H appears to be spherical. *Why?*

- ▶ If (G, H_1, H_2) is factorisation, then $\mathfrak{s} \neq 0$;
- \blacktriangleright There is an application of factorisations to classifying the spherical homogeneous spaces of G (И.В. Микитюк, *Матем. Сб.*, 1986).

Quasi-factorisations of G

Def. (P., 1992) The triple (G, H_1, H_2) is called a *quasi-factorisation* (of G) if a generic H_1 -orbit in G/H_2 is of codimension 1.

Then $\dim((G/H_2)/\!\!/H_1) = 1$, hence $\mathbb{k}[G/H_2]^{H_1} = \mathbb{k}[f]$ for some polynomial f. Let S be a generic stabiliser for $(H_1 : G/H_2)$.

- If $\{H_2\} \in G/H_2$ is a generic point, then $S = H_1 \cap H_2$;
- in general, $S = H_1 \cap g \cdot H_2 \cdot g^{-1}$ for a **suitable** $g \in G$.
- Here dim G + dim S = dim H_1 + dim H_2 + 1.

More suggestive (symmetric) notation: $H_1 \setminus G /\!\!/ H_2 = \operatorname{Spec}(^{H_1} \mathbb{k}[G]^{H_2})$.

My observations. For all known examples of quasi-factorisations, one has

- $\mathsf{rk} \; G + \mathsf{rk} \; S = \mathsf{rk} \; H_1 + \mathsf{rk} \; H_2 \pm 1$ (2 possibilities);
- ② At least one homogeneous space G/H_i is of complexity ≤ 1 ;
- **3** either H_1 or H_2 is a subgroup of **submaximal** exponent in G.

Problem 3. Prove all/some of this and explain the rôle of ± 1 .

Problem 4. Classify all quasi-factorisations of simple algebraic groups.

Lemma 1 (P. 1992). (G, H, H) is a quasi-factorisation if and only if G/H is a spherical homogeneous space of rank 1. Then $\operatorname{rk} G = \operatorname{rk} S - 1$ and either $\operatorname{rk} H = \operatorname{rk} G$ (the (-1)-case), or $\operatorname{rk} H = \operatorname{rk} S$ (the (+1)-case).

Proof. dim $(H \backslash G/H) = 2c_G(G/H) + r_G(G/H)$ and $r_G(G/H) = \text{rk } G - \text{rk } S$.

Example 2. $G = SO_n$ and $H_1 = H_2 = SO_{n-1}$. Then $S = SO_{n-2}$ and the '+1' -case occurs if and only if n is even.

For the quasi-factorisations, Q is a rational function in z of degree 1.

• In all examples, we have Q(1) = 2 or 1/2.

Question 1. Is there a geometric meaning of \mathcal{Q} for quasi-factorisations?

Example 3. Some quasi-factorisations $\mathfrak{g} \supset (\mathfrak{h}_1, \mathfrak{h}_2) \supset \mathfrak{s}$:

$$\diamond$$
 (-1) $\mathbf{B}_n \supset (\mathbf{D}_n, \mathbf{D}_n) \supset \mathbf{B}_{n-1}, \qquad \qquad \mathcal{Q} = (1 + z^{4n-1})/(1 + z^{2n-1})^2;$

$$\diamond \ (-1) \ E_6 \supset (F_4, D_5 \dotplus t_1) \supset B_3, \qquad \mathcal{Q} = (1+z^{17})/(1+z)(1+z^{15});$$

$$\diamond$$
 (+1) $D_4 \supset (B_3, G_2) \supset A_2$, $Q = (1 + z^5)(1 + z^7)/(1 + z^{11})$.

It is important to keep track of the embeddings $H_i \hookrightarrow G$.

$$\mathfrak{so}_8 \supset (\mathfrak{so}_7, \mathfrak{spin}(7)) \supset \mathbf{G}_2$$
 vs. $\mathfrak{so}_8 \supset (\mathfrak{so}_7, \mathfrak{so}_7) \supset \mathfrak{so}_6$ factorisation (A.A.OH.) quasi-factorisation (P.).

A generalisation of Example 2:

$$\mathfrak{so}_n \supset (\mathfrak{so}_{n-1}, \, \mathfrak{so}_k \dotplus \mathfrak{so}_{n-k}) \supset \mathfrak{so}_{k-1} \dotplus \mathfrak{so}_{n-k-1},$$

where $1 \le k \le n - k$. Here the '+1'-case occurs if and only if n + k is odd.

• It can happen that $\mathfrak{s} = \{0\}$, e.g. $\mathbf{B}_3 \supset (\mathbf{G}_2, \mathbf{A}_1 \dotplus \mathbf{A}_1) \supset \{0\}$.

Two related exotic cases:

- **0** $D_8 \supset (B_7, B_4) \supset B_3$ factorisation (Онищик);
- ${f 2}$ ${f D}_8\supset \left({f D}_7,{f B}_4\right)\supset {f A}_2$ quasi-factorisation (P.).

Here the embedding $\mathbf{B}_4 \hookrightarrow \mathfrak{so}_{16}$ is given by the spinor representation and $SO_{16}/Spin(9)$ is an isotropy irreducible homogeneous space.

- ® Note that $c(D_8/B_7) = 0$, $c(D_8/D_7) = 1$, and $c(D_8/B_4) = 20$.
- \blacktriangleright There is an application of (certain!) quasi-factorisations to classifying the homogeneous spaces of G of complexity 1 (Panyushev, 1992).

References for Part 2

- А.Л. Онищик. Отношения включения между транзитивными компактными группами преобразований, Труды Моск. Матем. Об-ва, т.11 (1962), с.199–242.
- А.Л. Онищик. Разложения редуктивных групп Ли, Матем. сб., т. 80(122):4(12) (1969), с.553-599.
- D. Panyushev. Complexity of quasiaffine homogeneous varieties, t-decompositions and affine homogeneous spaces of complexity 1, in:
 E.B. Vinberg (Ed.), "Lie groups, their discrete subgroups and Invariant Theory" (Adv. Sov. Math., vol. 8, pp.151–166) Providence: AMS 1992. [83]
- D. Panyushev. Complexity and rank of actions in invariant theory, J. Math. Sci. (New York), 95 (1999), 1925-1985. [Chap. 3]

THANKS FOR YOUR ATTENTION!

Это рисунок лауреата Международной Ленинской премии "За укрепление мира между народами" (1962) Пабло Пикассо.