

BOSONIC STRING ACTION

$$S = -\frac{T}{2} \int_M d^2\sigma \sqrt{h} h^{ab}(\sigma) \partial_a X^\mu \partial_b X^\nu \eta_{\mu\nu}$$

h^{ab} -inverse to metric tensor h_{ab} on surface M ,
 $h = |\det h_{ab}|$, $\eta_{\mu\nu}$ stands for Minkowski metric in
 D -dimensional space

Reparametrization invariance

Weyl invariance $h_{ab}(\sigma) \rightarrow \Lambda(\sigma)h_{ab}(\sigma)$

Poincaré invariance $X^\mu \rightarrow a_\nu^\mu X^\nu + b^\mu$

Excluding the metric we get Nambu-Goto action
(the area of embedded surface).

In flat two-dimensional metric $ds^2 = d\sigma^2 - d\tau^2$

$$X^\mu = X_R^\mu(\tau - \sigma) + X_L^\mu(\tau + \sigma)$$

For closed string $X^\mu(\tau, \sigma) = X^\mu(\tau, \sigma + \pi)$, hence

$$X_R^\mu = \frac{1}{2}x^\mu + \frac{1}{2}p^\mu(\tau - \sigma) + \frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \alpha_n^\mu e^{-2in(\tau - \sigma)}$$

$$X_L^\mu = \frac{1}{2}x^\mu + \frac{1}{2}p^\mu(\tau + \sigma) + \frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_n^\mu e^{-2in(\tau + \sigma)}$$

For open string

$$X^\mu = x^\mu + p^\mu\tau + i \sum_{n \neq 0} \frac{1}{n} \alpha_n^\mu e^{-in\tau} \cos n\sigma$$

After quantization

$$[\alpha_m^\mu, \alpha_n^\nu] = [\tilde{\alpha}_m^\mu, \tilde{\alpha}_n^\nu] = m\delta_{m+n}\eta^{\mu\nu}$$

$$[\alpha_m^\mu, \tilde{\alpha}_n^\nu] = 0$$

$$\alpha_{-n}^\mu = (\alpha_n^\mu)^*, \tilde{\alpha}_{-n}^\mu = (\tilde{\alpha}_n^\mu)^*$$

Oscillators. Fock representation

$$\alpha_m^\mu |0, p\rangle = \tilde{\alpha}_m^\mu |0, p\rangle = 0 \text{ for } m > 0$$

Indefinite norm because $[\alpha_m^0, \alpha_m^{0*}] = -1$

Notation: $\alpha_0^\mu = \tilde{\alpha}_0^\mu = \frac{1}{2}p^\mu$.

Energy-momentum tensor

$$T_{ab} = -\frac{2}{T\sqrt{h}} \frac{\delta S}{\delta h^{ab}}$$

Equation of motion $T_{ab} = 0$

L_m -Fourier components of energy-momentum for open strings

$$L_m = \frac{1}{2} \sum_{-\infty}^{+\infty} \alpha_{m-n} \cdot \alpha_n$$

Normal ordering for $L_0 =: \frac{1}{2} \sum_{-\infty}^{+\infty} \alpha_{-n} \cdot \alpha_n :$

$$L_{-m} = L_m^*$$

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{1}{12}D(m^3 - m)\delta_{m+n}$$

Virasoro algebra

For closed strings L_m and \tilde{L}_m (two copies of Virasoro)

D -dimension, $D = 26$ -critical dimension

In complex variables for closed string

$$X^\mu(z, \bar{z}) = x^\mu - ip^\mu \ln |z|^2 + i \sum_{-\infty}^{\infty} \left(\frac{\alpha_m^\mu}{z^m} + \frac{\tilde{\alpha}_m^\mu}{\bar{z}^m} \right)$$

$l_m = z^{m+1} \frac{\partial}{\partial z}$, $\tilde{l}_m = \bar{z}^{m+1} \frac{\partial}{\partial \bar{z}}$ correspond to L_m, \tilde{L}_m ,
 $\delta_m \alpha_r = r \alpha_{m+r}$, $\delta_m \tilde{\alpha}_r = r \tilde{\alpha}_{m+r}$

left \rightarrow holomorphic, right \rightarrow antiholomorphic

For open string

$$X^\mu(z, \bar{z}) = x^\mu - 2ip^\mu \ln |z|^2 + i \sum_{-\infty}^{\infty} \frac{\alpha_m^\mu}{m} (z^{-m} + \bar{z}^{-m})$$

Classically $L_m = 0$

QM physical state

$L_m\psi = 0$ for $m > 0$, $(L_0 - 1)\psi = 0$

It follows that $\langle\psi|L_m|\psi\rangle = 0$ for all $m \neq 0$

For closed strings $(L_0 - \tilde{L}_0)|\psi\rangle = 0$

$|0, k\rangle$ -physical state if $k^2 = 2$ (tachyon)

$\zeta\alpha_{-1}|0, k\rangle$ -physical state if $k^2 = 0$ and $\zeta k = 0$

$T_a|0, k\rangle = e^{iak}|0, k\rangle$, $T_a\zeta\alpha_{-1}|0, k\rangle = e^{iak}\zeta\alpha_{-1}|0, k\rangle$

where $T_a = (T_{a^0}, T_{\mathbf{a}})$ are time and space
translations.

26-dimensional particles

L -functionals=positive linear functionals \mathbf{L} on
Weyl algebra

$$\mathbf{L}(\xi, \kappa, A_n, A_n^*) =$$

$$\mathbf{L}\left(e^{i\xi x} e^{i\kappa p} \exp\left(\sum_{n=1}^{\infty} A_n \alpha_{-n}\right) \exp\left(\sum_{n=1}^{\infty} (-A_n^*) \alpha_n\right)\right)$$

Physical state conditions $\mathbf{L}(L_n) = 0$ for all $n \neq 0$,

$$\mathbf{L}(L_0 - 1) = 0$$

Vertex operators

$$V(k, \tau) =: e^{ikX(\tau)} := \exp \left(k \cdot \sum_{n=1}^{\infty} \frac{\alpha_{-n}}{n} e^{in\tau} \right) \times \\ \times e^{ik \cdot x(\tau)} \exp \left(- k \cdot \sum_{n=1}^{\infty} \frac{\alpha_n}{n} e^{-in\tau} \right)$$

$$\text{where } x^{\mu}(\tau) = x^{\mu} + p^{\mu}\tau$$

Simple action on L -functionals

$$(\mathbf{V}(k, \tau)\mathbf{L})(\Psi) = \mathbf{L}(V(k, \tau)\Psi - \Psi V^*(k, \tau))$$

$$[L_m, V(k, \tau)] = e^{im\tau} \left(-i \frac{d}{d\tau} + \frac{1}{2} m k^2 \right) V(k, \tau)$$

$$[L_m, A(\tau)] = e^{im\tau} \left(-i \frac{d}{d\tau} + mJ \right) A(\tau)$$

Conformal dimension $J = \frac{k^2}{2}$

If $J = 1$ then $[L_m, A_0] = 0$, hence A_0 transforms a physical state into physical state

More general vertex operators have the form

$$\zeta^{\mu\nu\dots\rho} : \dot{X}^\mu \dot{X}^\nu \dots \dot{X}^\rho e^{ikX} :$$

If this operator has conformal dimension it is equal to $N + \frac{k^2}{2}$ where N is the number of factors \dot{X} .

Vertex operators of conformal dimension 1 correspond to particles with the mass M where $M^2 = -2 + 2N$

Conformal dimension of $A(\tau)$ describes behavior of $A(\tau)$ by the change of variables $\tau \rightarrow \tau'(\tau)$:

$$A'(\tau') = \left(\frac{d\tau}{d\tau'} \right)^J A(\tau)$$

Scaling dimension describes the behavior of $A(\tau)$ by the change of variables $\tau \rightarrow \tau' = \lambda\tau$

R -module = "vector space" over a ring R

(Additive group V with multiplication by $r \in R$ from the left obeying $(rr')v = r(r'v)$ and $1 \cdot v = v$.

If V is a vector space and R is an algebra then

R -module = representation of algebra R)

e_k is a system of generators R -module V if V is a minimal submodule containing e_k

e_k is a free system of generators of V if every map $e_k \rightarrow E_k$ where $E_k \in V'$ can be extended to a homomorphism $V \rightarrow V'$.

Free module = a module that has a free system of generators = direct sum of several copies of R

\mathbb{Z} -graded R -module = direct sum of R -modules V_k where $k \in \mathbb{Z}$. Such a module can be regarded as a \mathbb{Z}_2 -graded R -module

DIFFERENTIAL MODULE. HOMOLOGY

A \mathbb{Z}_2 -graded R -module $E = E_0 + E_1$ is called a differential module if it is equipped with a parity reversing homomorphism d obeying $d^2 = 0$. We define the space of cycles $Z = Z_0 + Z_1$ as $\text{Ker}d$ and the space of boundaries $B = B_0 + B_1$ as the image of d . (More precisely,

$Z_i = \text{Ker}d \bigcap E_i$, $B_1 = dE_0 = E_0/Z_0$, $B_0 = dE_1 = E_1/Z_1$.) Homology $H = H_0 + H_1$ is defined as $\text{Ker}d/Imd = Z_0/B_0 + Z_1/B_1$.

EULER CHARACTERISTIC

Let us consider \mathbf{Z}_2 -graded vector space $E_0 + E_1$ equipped with a differential d . (Recall that d is a parity reversing linear operator obeying $d^2 = 0$.) We see that

$$\dim H_0 = \dim Z_0 - \dim B_0,$$

$$\dim H_1 = \dim Z_1 - \dim B_1,$$

$$\dim B_1 = \dim E_0 - \dim Z_0,$$

$$\dim B_0 = \dim E_1 - \dim Z_1.$$

It follows immediately from these equations that

$$\dim H_0 - \dim H_1 = \dim E_0 - \dim E_1$$

This number is called Euler characteristic and denoted $\chi(E)$.

Notice that above considerations remain correct if E is a differential R -module and dimension is replaced by any functional ϕ on the class of R -modules obeying

$$\phi(A/B) = \phi(A) - \phi(B)$$

(Euler-Poincare functional). For example, in the case when R is a group algebra $\mathbf{F}G$ we can identify R -modules with representations of the group G ; then we can define ϕ as the character of representation.

Euler characteristic of \mathbb{Z} -graded vector space $E = \sum E_k$ is equal to

$$\chi(E) = \sum (-1)^k \dim E_k.$$

Lefschetz trace formula

Let us consider differential module $E = E_0 + E_1$ and a parity preserving linear operator $A : E \rightarrow E$ commuting with the differential d .

This operator induces an operator $\hat{A} : H \rightarrow H$ acting on homology. It is easy to prove that the supertrace of the operator \hat{A} is equal to the supertrace of A :

$$Tr \hat{A}|_{H_0} - Tr \hat{A}|_{H_1} = Tr A|_{E_0} - Tr A|_{E_1}$$

(Lefschetz trace formula).

For R -modules the trace is an arbitrary functional on endomorphisms of R -modules such that the trace of endomorphism C of module X transforming a submodule Y into itself is equal to the trace of C restricted to Y plus the trace of the operator induced by C on the quotient X/Y .

BRST-formalism

We want to calculate a partition function $\text{Tr}e^{-\beta\hat{A}}$. where \hat{A} is an operator acting in vector space V . Represent V as homology of differential (of *BRST*-operator) Q acting in $E = E_0 + E_1$ (i.e. $V = H_0$, $H_1 = 0$). Lift \hat{A} to a parity preserving operator A commuting with Q . Then the partition function is equal to the supertrace of $e^{-\beta A}$.

HOMOTOPY, QUASI-ISOMORPHISM

A homomorphism Φ of differential modules induces a homomorphism Φ_* of corresponding homology. (By definition homomorphism of differential modules commutes with the differential.)

We say that Φ is a quasi-isomorphism if Φ_* is an isomorphism.

Two homomorphisms $\Phi_i : E' \rightarrow E'', i = 1, 2$ are homotopic if there exists R -linear, parity reversing map h such that $\Phi_1 - \Phi_2 = hd + dh$.

Two homotopic homomorphisms induce the same map on homology: $(\Phi_1)_* = (\Phi_2)_*$. To prove this we take a cycle x in E' and notice that

$\Phi_1 x - \Phi_2 x = h(dx) + d(hx)$. The first term vanishes because x is a cycle, the second term vanishes in homology because it is a boundary.

If we have two homomorphisms of differential modules $\Phi : E' \rightarrow E'', \Psi : E'' \rightarrow E'$ and the compositions $\Phi\Psi, \Psi\Phi$ both are homotopic to identity we say that modules are homotopy equivalent. Then homomorphisms induce isomorphisms of homology (because $\Phi_*\Psi_*$ and $\Psi_*\Phi_*$ are identities).

FREE RESOLUTIONS

Take R -module E . It can be represented as a quotient $E = E_0/V_0$ where E_0 is a free module. Further $V_0 = E_1/V_1, V_1 = E_2/V_2, V_2 = E_3/V_3, \dots$, where E_i is free.

We obtain a sequence of free modules and homomorphisms

$$\dots \rightarrow E_n \rightarrow E_{n-1} \rightarrow \dots \rightarrow E_2 \rightarrow E_1 \rightarrow E_0.$$

This sequence can be regarded as differential \mathbb{Z} -graded module \mathcal{E} . It is called free resolution of E . It is easy to check that all homology of \mathcal{E} are trivial except H_0 and $H_0 = E$. Two free resolutions are homotopy equivalent.

\mathcal{E} is quasi-isomorphic to E considered as a differential module with trivial differential and trivial grading (all elements have degree 0).

EXAMPLES OF DIFFERENTIALS

M -smooth manifold with coordinates x^i ,

$\Omega(M) = \sum \Omega^k(M)$ -differential forms.

$d = dx^i \frac{\partial}{\partial x^i}$ - de Rahm differential

Homology $H^k(M)$ of de Rham differential-cohomology of M

E -functions of commuting variables x^i and anticommuting variable c_k

$E = \sum E_r$ where $E_r = R \otimes \Lambda_r$ where R is a commutative ring

$d = f_k(x) \frac{\partial}{\partial c_k}$ -Koszul differential $d : E_r \rightarrow E_{r-1}$

$H_0 = R/I$ where I is an ideal generated by f_1, \dots, f_n

H_0 -ring of functions on variety singled out by equations $f_1(x) = 0, \dots, f_n(x) = 0$

$H_r = 0$ for $r > 0$ generically

Constraints $T_a x = 0$ where $x \in E$ is an element of a module E

$[T_a, T_b] = f_{ab}^k T_k$ where f_{ab}^k are structure constants of Lie algebra \mathfrak{g}

T_a specify a representation of Lie algebra \mathfrak{g}

Differential in $E \otimes \Lambda[c^1, \dots, c^n]$

$$Q = T_a c^a - \frac{1}{2} f_{ab}^k c^a c^b \frac{\partial}{\partial c^k} = T_a c^a - \frac{1}{2} f_{ab}^k c^a c^b b_k$$

where $[c^k, b_l]_+ = \delta_l^k$, $[c^k, c^l]_+ = [b_k, b_l]_+ = 0$

$H^k(\mathfrak{g}, E) = \text{Ker } Q / \text{Im } Q$ -cohomology of Lie algebra \mathfrak{g} with coefficients in \mathfrak{g} -module E

(grading=degree with respect to c)

$$H^0 = \{x \in E \mid T_a x = 0\}$$

Another form of the differential $Q = (T_a + \frac{1}{2} T_a^c) c^a$

where $T_a^c = f_{am}^k b_k c^m$ is adjoint representation.