
BOSONIC STRING ACTION
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hab -inverse to metric tensor hab on surface M ,
h = | dethab|, ηµν stands for Minkowski metric in
D -dimensional space
Reparametrization invariance
Weyl invariance hab(σ)→ Λ(σ)hab(σ)
Poincaré invariance Xµ → aµνX

ν + bµ

Excluding the metric we get Nambu-Goto action
(the area of embedded surface).



In flat two-dimensional metric ds2 = dσ2 − dτ 2
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For open string
Xµ = xµ + pµτ + i
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After quantization
[αµm, α

ν
n] = [α̃µm, α̃

ν
n] = mδm+nη

µν

[αµm, α̃
ν
n] = 0

αµ−n = (αµn)∗, α̃µ−n = (α̃µn)∗

Oscillators. Fock representation
αµm|0, p〉 = α̃µm|0, p〉 = 0 for m > 0
Indefinite norm because [α0

m, α
0∗
m ] = −1

Notation: αµ0 = α̃µ0 = 1
2p

µ.



Energy-momentum tensor
Tab = − 2

T
√
h
δS
δhab

Equation of motion Tab = 0
Lm-Fourier components of energy-momentum for
open strings
Lm = 1
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Normal ordering for L0 =: 1
2

∑+∞
−∞ α−n · αn :

L−m = L∗m
[Lm, Ln] = (m− n)Lm+n + 1

12D(m3 −m)δm+n

Virasoro algebra
For closed strings Lm and L̃m (two copies of
Virasoro)
D-dimension, D = 26-critical dimension



In complex variables for closed string

Xµ(z, z̄) = xµ − ipµ ln |z|2 + i
∞∑
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)

lm = zm+1 ∂
∂z , l̃m = z̄m+1 ∂

∂z̄ correspond to Lm, L̃m,
δmαr = rαm+r, δmα̃r = rα̃m+r

left → holomorphic, right → antiholomorphic

For open string

Xµ(z, z̄) = xµ− 2ipµ ln |z|2 + i

∞∑
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)



Classically Lm = 0
QM physical state
Lmψ = 0 for m > 0, (L0 − 1)ψ = 0
It follows that 〈ψ|Lm|ψ〉 = 0 for all m 6= 0
For closed strings (L0 − L̃0)|ψ〉 = 0
|0, k〉 -physical state if k2 = 2 (tachyon)
ζα−1|0, k〉 -physical state if k2 = 0 and ζk = 0

Ta|0, k〉 = eiak|0, k〉, Taζa−1|0, k〉 = eiakζα−1|0, k〉
where Ta = (Ta0, Ta) are time and space
translations.
26-dimensional particles



L-functionals=positive linear functionals L on
Weyl algebra
L(ξ, κ, An, A

∗
n) =

L
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)
Physical state conditions L(Ln) = 0 for all n 6= 0,
L(L0 − 1) = 0



Vertex operators
V (k, τ) =: eikX(,τ) := exp
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where xµ(τ) = xµ + pµτ
Simple action on L-functionals
(V(k, τ)L)(Ψ) = L(V (k, τ)Ψ−ΨV ∗(k, τ))
[Lm, V (k, τ)] = eimτ(−i ddτ + 1

2mk
2)V (k, τ)

[Lm, A(τ)] = eimτ(−i ddτ +mJ)A(τ)

Conformal dimension J = k2

2
If J = 1 then [Lm, A0] = 0, hence A0 transforms a
physical state into physical state



More general vertex operators have the form

ζµν...ρ : ẊµẊν...ẊρeikX :

If this operator has conformal dimension it is
equal to N + k2

2 where N is the number of factors

Ẋ.
Vertex operators of conformal dimension 1
correspond to particles with the mass M where
M 2 = −2 + 2N
Conformal dimension of A(τ) describes behavior
of A(τ) by the change of variables τ → τ ′(τ):

A′(τ ′) =
(
dτ
dτ ′

)J
A(τ)

Scaling dimension describes the behavior of A(τ)
by the change of variables τ → τ ′ = λτ



R-module= ”vector space” over a ring R
(Additive group V with multiplication by r ∈ R
from the left obeying (rr′)v = r(r′v) and 1 · v = v.
If V is a vector space and R is an algebra then
R-module =representation of algebra R)
ek is a system of generators R-module V if V is a
minimal submodule containing ek
ek is a free system of generators of V if every map
ek → Ek where Ek ∈ V ′ can be extended to a
homomorphism V → V ′.
Free module = a module that has a free system
of generators=direct sum of several copies of R
Z-graded R-module =direct sum of R-modules Vk
where k ∈ Z. Such a module can be regarded as a
Z2-graded R-module



DIFFERENTIAL MODULE. HOMOLOGY
A Z2-graded R-module E = E0 + E1 is called a
differential module if it is equipped with a parity
reversing homomorphism d obeying d2 = 0. We
define the space of cycles Z = Z0 + Z1 as Kerd
and the space of boundaries B = B0 +B1 as the
image of d. (More precisely,
Zi = Kerd

⋂
Ei, B1 = dE0 = E0/Z0, B0 = dE1 =

E1/Z1.) Homology H = H0 +H1 is defined as
Kerd/Imd = Z0/B0 + Z1/B1.



EULER CHARACTERISTIC
Let us consider Z2-graded vector space E0 + E1

equipped with a differential d.(Recall that d is a
parity reversing linear operator obeying d2 = 0.)
We see that
dimH0 = dimZ0 − dimB0,
dimH1 = dimZ1 − dimB1,
dimB1 = dimE0 − dimZ0,
dimB0 = dimE1 − dimZ1.
It follows immediately from these equations
that
dimH0 − dimH1 = dimE0 − dimE1

This number is called Euler characteristic and
denoted χ(E).



Notice that above considerations remain correct if
E is a differential R-module and dimension is
replaced by any functional φ on the class of
R-modules obeying

φ(A/B) = φ(A)− φ(B)

(Euler-Poincare functional). For example, in the
case when R is a group algebra FG we can
identify R-modules with representations of the
group G; then we can define φ as the character of
representation.
Euler characteristic of Z-graded vector space
E =

∑
Ek is equal to

χ(E) =
∑

(−1)kdimEk.



Lefschetz trace formula
Let us consider differential module E = E0 + E1

and a parity preserving linear operator
A : E → E commuting with the differential d.
This operator induces and operator Â : H → H
acting on homology.It is easy to prove that the
supertrace of the operator Â is equal to the
supertrace of A:
TrÂ|H0

− TrÂ|H1
= TrA|E0

− TrA|E1

(Lefschetz trace formula).
For R-modules the trace is an arbitrary
functional on endomorphisms of R-modules such
that the trace of endomorphism C of module X
transforming a submodule Y into itself is equal to
the trace of C restricted to Y plus the trace of
the operator induced by C on the quotient X/Y .



BRST-formalism
We want to calculate a partition function

Tre−βÂ. where Â is an operator acting in vector
space V. Represent V as homology of differential
(of BRST -operator ) Q acting in E = E0 + E1

(i.e. V = H0, H1 = 0. Lift Â to a parity
preserving operator A commuting with Q. Then
the partition function is equal to the supertrace
of e−βA.



HOMOTOPY, QUASI-ISOMORPHISM
A homomorphism Φ of differential modules
induces a homomorphism Φ∗ of corresponding
homology. (By definition homomorphism of
differential modules commutes with the
differential.)
We say that Φ is a quasi-isomorphism if Φ∗ is an
isomorphism.



Two homomorphisms Φi : E ′ → E ′′, i = 1, 2 are
homotopic if there exists R-linear, parity
reversing map h such that Φ1 − Φ2 = hd+ dh.
Two homotopic homomorphisms induce the same
map on homology: (Φ1)∗ = (Φ2)∗. To prove this
we take a cycle x in E ′ and notice that
Φ1x− Φ2x = h(dx) + d(hx). The first term
vanishes because x is a cycle, the second term
vanishes in homology because it is a boundary.
If we have two homomorphisms of differential
modules Φ : E ′ → E ′′ , Ψ : E ′′ → E ′ and the
compositions ΦΨ, ΨΦ both are homotopic to
identity we say that modules are homotopy
equivalent. Then homomorphisms induce
isomorphisms of homology (because Φ∗Ψ∗ and
Ψ∗Φ∗ are identities).
It follows that two homotopy equivalent
differential modules are quasii-somorphic.



FREE RESOLUTIONS
Take R-module E. It can be represented as a
quotient E = E0/V0 where E0 is a free module.
Further V0 = E1/V1, V1 = E2/V2, V2 = E3/V3, .....
where Ei is free.
We obtain a sequence of free modules and
homomorphisms
...→ En → En−1 → ...→ E2 → E1 → E0.
This sequence can be regarded as differential
Z-graded module E . It is called free resolution of
E. It is easy to check that all homology of E are
trivial except H0 and H0 = E. Two free
resolutions are homotopy equivalent.
E is quasi-isomorphic to E considered as a
differential module with trivial differential and
trivial grading (all elements have degree 0).



EXAMPLES OF DIFFERENTIALS
M -smooth manifold with coordinates xi,
Ω(M) =

∑
Ωk(M)-differential forms.

d = dxi ∂∂xi - de Rahm differential

Homology Hk(M) of de Rham differential-
cohomology of M



E-functions of commuting variables xi and
anticommuting variable ck
E =

∑
Er where Er = R⊗ Λr where R is a

commutative ring
d = fk(x) ∂

∂ck
-Koszul differential d : Er → Er−1

H0 = R/I where I is an ideal generated by
f1, .., fn
H0-ring of functions on variety singled out by
equations f1(x) = 0, ..., fn(x) = 0
Hr = 0 for r > 0 generically



Constraints Tax = 0 where x ∈ E is an element of
a module E
[Ta, Tb] = fkabTk where fkab are structure constants
of Lie algebra g
Ta specify a representation of Lie algebra g
Differential in E ⊗ Λ[c1, ..., cn]
Q = Tac

a − 1
2f

k
abc

acb ∂
∂ck

= Tac
a − 1

2f
k
abc

acbbk
where [ck, bl]+ = δkl , [ck, cl]+ = [bk, bl]+ = 0
Hk(g, E) = KerQ/ImQ-cohomology of Lie
algebra g with coefficients in g-module E
(grading=degree with respect to c)
H0 = {x ∈ E|Tax = 0}
Another form of the differential Q =

(
Ta + 1

2T
c
a

)
ca

where T ca = fkambkc
m is adjoint representation.


