

Symplectic manifold M equipped with non-degenerate two-form ω

Isotropic submanifold=submanifold where this two-form vanishes

Lagrangian submanifold $L =$ maximal isotropic submanifold

More precisely, the tangent space $T_x L$ of Lagrangian submanifold at every point $x \in L$ should be a Lagrangian subspace of the tangent space of $T_x M$ considered as linear symplectic space. This means that $e \in T_x M$ belongs to $T_x L$ iff $\omega(e, \ell) = 0$ for every $\ell \in T_x L$.

Quantization

Symplectic manifold \rightarrow Hilbert space

Lagrangian manifold \rightarrow vector in Hilbert space
(in semiclassical approximation)

Phase space with coordinates $(p, q) \rightarrow$ Hilbert
space of functions $\psi(q)$ (or $\psi(p)$)

Lagrangian manifold $p_i = \frac{\partial \sigma(q)}{\partial q^i} \rightarrow$ vector $e^{\frac{i}{\hbar} \sigma(q)}$

One-dimensional local theory with action functional $S[q] = \int dt L(q, \dot{q})$

$$\delta S = \int_{t_0}^{t_1} dt \text{EM} + \text{BT}$$

δS -variation of S = de Rham differential of S on the space of fields

$$\text{EM} = \left(\frac{\partial L}{\partial q^i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} \right) \delta q^i$$

$\text{EM}=0$ -equations of motion

$$\text{BT} = p_i \dot{q}^i \Big|_{t_0}^{t_1} \text{ where } p_i = \frac{\partial L}{\partial \dot{q}^i}$$

In D -dimensional local theory with action functional $S[q] = \int dV L(q, \partial_\mu q)$

$$\delta S = \int_V dV \text{EM} + \text{BT}$$

EM=0 -equations of motion

BT (boundary terms)=

$$\int_v dv A_k \delta q^k = \sum \text{BT}_i^{out} - \sum \text{BT}_j^{in}$$

Here $v = \partial V$ stands for the boundary of bounded domain V ,

BT can be interpreted as one -form on the space of fields.

On the space \mathcal{E} of fields satisfying equations of motions $\delta\alpha_v$ where $\alpha_v = \int_v dv A_k \delta q^k$ and v is a cycle is a closed (even exact) two- form that depends only on homology class of v . (Notice that the integrand in the definition of α_v is a $(D - 1)$ -form in D -dimensional space that is not necessarily exact or even closed).
The form $\delta\alpha_v$ specifies a presymplectic structure on \mathcal{E}

Consider as an example $\beta\gamma$ -model on complex one-dimensional manifold (more details about this model in the next lecture). The action functional of this model is defined by the formula $S = \int_V \beta \bar{\partial} \gamma$ where β is a J -differential (transforms like $(dz)^J$), γ is a $(1 - J)$ -differential, and $\bar{\partial} = d\bar{z} \frac{\partial}{\partial \bar{z}}$.

$$\delta S = \int_V (\delta \beta \bar{\partial} \gamma - \delta \gamma \bar{\partial} \beta) + \int_v \beta \delta \gamma$$

v is the boundary of V . Equations of motion are $\bar{\partial} \gamma = 0$, $\bar{\partial} \beta = 0$ (the space \mathcal{E} consists of holomorphic fields). We see that in the case when v is a boundary the expression $\alpha_v = \int_v \beta \delta \gamma$ is an exact one-form on \mathcal{E} (it is equal to δS .)

It follows that for homologous cycles v_1, v_2 (i.e. in the case when $v_2 - v_1 = \partial V$) we have $\delta\alpha_{v_1} = \delta\alpha_{v_2}$; in other words $\delta\alpha_v = \int_v \delta\beta\delta\gamma$ is a closed (even exact) two-form on \mathcal{E} that depends only of homology class of the cycle v .

The same formulas work for bc -model where the action functional is given by the formula

$S = \int_V b\bar{\partial}c$ where b and c are anticommuting fields.

Two-dimensional CFT (conformal field theory).
In classical theory action functional depends on
some fields ϕ and Riemannian metric on
orientable 2D surface, it should be
reparametrization-invariant and Weyl invariant.
In other words it depends only on conformal
structure. (Conformal
structure+orientation=complex structure.)

Phase space =the space of solutions of EM on a
disc with deleted origin (sometimes it is more
convenient to consider \mathbb{C}^1 with deleted origin=
infinite cylinder= a sphere with two deleted
points instead the disc with deleted point)

Quantized phase space denoted by \mathcal{H}

Segal's axioms (for $c = 0$)

- Space $\mathcal{P}_{g,n}$ of compact complex curves of genus g with n embedded non-overlapping disks (with n marked points and coordinates $|z| \leq 1$ around these points)
- Vector space of quantum states \mathcal{H} with bilinear inner product $\mathcal{H} \otimes \mathcal{H} \rightarrow \mathbb{C}$
- Map $\mathcal{P}_{g,n} \rightarrow \mathcal{H}^n$

If M is an element of $\mathcal{P}_{g,n}$ we denote by $\phi(M)$ the corresponding element of \mathcal{H}^n

In classical theory the space of solutions to EM on M with deleted centers of discs is a Lagrangian submanifold of $(\text{phase space})^n$. Quantizing it we obtain $\phi(M)$

$$\sigma_n : \mathcal{P}_{g,n} \rightarrow \mathcal{P}_{g+1,n-2}$$

(Remove two last discs and paste together the boundaries.)

$$\rho_{n,n'} : \mathcal{P}_{g,n} \times \mathcal{P}_{g',n'} \rightarrow \mathcal{P}_{g+g',n+n'-2}$$

(Take $M \in \mathcal{P}_{g,n}$ and $M' \in \mathcal{P}_{g',n'}$. Remove the last disc in M and the first disc in M' . Paste the boundaries.)

$$S_n : \mathcal{H}^n = \mathcal{H}^{n-2} \otimes \mathcal{H}^2 \rightarrow \mathcal{H}^2$$

$$R_{n,n'} : \mathcal{H}^n \otimes \mathcal{H}^{n'} = \mathcal{H}^{n-1} \otimes \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}^{n'-1} \rightarrow \mathcal{H}^{n+n'-2}$$

MAIN AXIOMS

σ_n agrees with S_n ,

$\rho_{n,n'}$ agrees with $R_{n,n'}$

$$\mathcal{P}_{0,2} \times \mathcal{P}_{0,2} \rightarrow \mathcal{P}_{0,2}$$

$\mathcal{P}_{0,2}$ - Neretin semigroup

$$\mathcal{P}_{g,n} \times \mathcal{P}_{0,2} \rightarrow \mathcal{P}_{g,n}$$

Neretin semigroup acts on $\mathcal{P}_{g,n}$

Lie algebra of Neretin semigroup is an algebra generated by vector fields

$$l_n = z^{n+1} \frac{d}{dz} \text{ (Witt algebra)}$$

$$[l_m, l_n] = (m - n)l_{m+n},$$

After quantization

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{1}{12}c(m^3 - m)\delta_{m+n}$$

c -central charge

Another construction of the action of Witt algebra: change the coordinates in the disc