Теорема Дженкинса 1966 года как обратный результат к теореме Шталя 1985 года

С. П. Суетин

Математический институт им. В. А. Стеклова РАН, г. Москва

Семинар по комплексному анализу (Семинар Гончара), г. Москва, Россия, 16 мая 2022 г.

Stahl's Theory, 1985–1986.

Let f be a multi-valued analytic function, i.e., f analytic in $\widehat{\mathbb{C}} \setminus \Sigma$, $\Sigma \subset \mathbb{C}$, $\#\Sigma < \infty$, but f not single-valued in $\widehat{\mathbb{C}} \setminus \Sigma$.

Stahl's Theory, 1985–1986.

Let f be a multi-valued analytic function, i.e., f analytic in $\widehat{\mathbb{C}} \setminus \Sigma$, $\Sigma \subset \mathbb{C}$, $\#\Sigma < \infty$, but f not single-valued in $\widehat{\mathbb{C}} \setminus \Sigma$. Let $f_{\infty} \in \mathcal{H}(\infty)$ be a germ of f, $\mathfrak{K}(f_{\infty})$ be the family of all admisible sets for f_{∞} : $K \in \mathfrak{K}(f_{\infty}) \Leftrightarrow \widehat{\mathbb{C}}$

- $K \subset \mathbb{C}$ is a compact set and $D(K) := \widehat{\mathbb{C}} \setminus K$ is a domain;
- the germ f_{∞} admits a meromorphic extention to D(K).

Stahl Theorem, 1985

There exist a compact set $S \in \mathfrak{K}(f_{\infty})$ such that

$$\operatorname{\mathsf{cap}}(S) = \min_{K \in \mathfrak{K}(f_\infty)} \operatorname{\mathsf{cap}}(K).$$

Stahl Theorem, 1985

There exist a compact set $S \in \mathfrak{K}(f_{\infty})$ such that

$$\operatorname{\mathsf{cap}}(S) = \min_{K \in \mathfrak{K}(f_\infty)} \operatorname{\mathsf{cap}}(K).$$

The properties of S:

- for some finite set e the set $S^{\circ} := S \setminus e$ consists of a finite number of (open) analytic arcs;
- compact set S posseses the S-property, i.e., for the Green function $g_S(z,\infty)$ of the domain $D:=\widehat{\mathbb{C}}\setminus S$ we have

$$\frac{\partial g_S(z,\infty)}{\partial n^+} = \frac{\partial g_S(z,\infty)}{\partial n^-}, \quad z \in S^\circ.$$

Let S be a set in the $\mathbb C$ plane consisting of a finite number of Jordan arcs such that $D:=\widehat{\mathbb C}\setminus S$ is a domain.

Let S be a set in the $\mathbb C$ plane consisting of a finite number of Jordan arcs such that $D:=\widehat{\mathbb C}\setminus S$ is a domain. Let $g(z,\infty)=g_S(z,\infty)$ be the Green's function of D. It is well known that an orthogonal trajectory of the level curves of $g(z,\infty)$, apart from a finite number of exceptions, will be an open arc with limiting end points at $z=\infty$ and a point of S. Every point of S will be a limiting end point for two such orthogonal trajectories, with at most a finite number of exceptions.

Let \mathcal{S}^{\perp} be the set of orthogonal trajectories which occur in such pairs and let T be the involutory transformation defined on \mathcal{S}^{\perp} by associating with an element of the other one with the same end point on S.

Let \mathcal{S}^{\perp} be the set of orthogonal trajectories which occur in such pairs and let T be the involutory transformation defined on \mathcal{S}^{\perp} by associating with an element of the other one with the same end point on S.

There is a natural metric determined on \mathcal{S}^{\perp} by the variation of the conjugate of the Green's function $h(z,\infty)=h_{\mathcal{S}}(z,\infty)$. We will denote it by $d\mu$. In particular

$$\int_{S^{\perp}} d\mu = 2\pi.$$

Jenkins Theorem, 1966

Let S be a set consisting of a finite number of Jordan arcs in $\mathbb C$ and such that its complement D is connected.

- (a) Let the involutory transformation T be measure preserving in the metric $d\mu$.
- (b) Let K be a compact set in the $\mathbb C$ such that if $L \in \mathcal S^\perp$ then K meets either L or TL

Jenkins Theorem, 1966

Let S be a set consisting of a finite number of Jordan arcs in $\mathbb C$ and such that its complement D is connected.

- (a) Let the involutory transformation T be measure preserving in the metric $d\mu$.
- (b) Let K be a compact set in the $\mathbb C$ such that if $L \in \mathcal S^\perp$ then K meets either L or TL.

Then

$$cap(K) \geqslant cap(S)$$
,

where equality can occur only if K differs from S at most by a set of zero capacity.

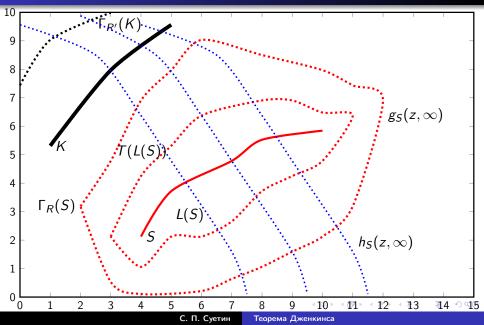
Jenkins' Theorem and Stahl's Theorem

Since under conditions of Stahl's Theorem

$$\frac{\partial \textit{h}(\textit{z},\infty)}{\partial \textit{s}} = \frac{\partial \textit{g}(\textit{z},\infty)}{\partial \textit{n}}, \quad \textit{z} \in \textit{S}^{\circ} := \textit{S} \setminus \textit{e},$$

 \Rightarrow the property of measure preserving of $\mathcal T$ is equivalent to Stahl S-property

$$\frac{\partial g(z,\infty)}{\partial n^+} = \frac{\partial g(z,\infty)}{\partial n^-}, \quad z \in S^{\circ}.$$



Let compact set K be regular and $g_K(z,\infty)$ be its Green's function. The level curve $\Gamma(K,R)$, $g_K(z,\infty)=R$, for R sufficiently large is a Jordan curve behaving asymptotically like the circle $|z|={\sf cap}(K)e^R$.

Let compact set K be regular and $g_K(z,\infty)$ be its Green's function. The level curve $\Gamma(K,R)$, $g_K(z,\infty)=R$, for R sufficiently large is a Jordan curve behaving asymptotically like the circle $|z|={\rm cap}(K)e^R$.

Let D(K, R) be the domain bounded by K and $\Gamma(K, R)$ and $\mathcal{G}(K, R)$ be the class of locally rectifiable curves running in D(K, R) from K to $\Gamma(K, R)$.

Let compact set K be regular and $g_K(z,\infty)$ be its Green's function. The level curve $\Gamma(K,R)$, $g_K(z,\infty)=R$, for R sufficiently large is a Jordan curve behaving asymptotically like the circle $|z|={\rm cap}(K)e^R$.

Let D(K, R) be the domain bounded by K and $\Gamma(K, R)$ and $\mathcal{G}(K, R)$ be the class of locally rectifiable curves running in D(K, R) from K to $\Gamma(K, R)$.

Let m(K,R) be the module of this class of curves. It is well known that $m(K,R) = 2\pi/R$, the extremal metric being $R^{-1}|\operatorname{grad} g_K(z,\infty)|$.

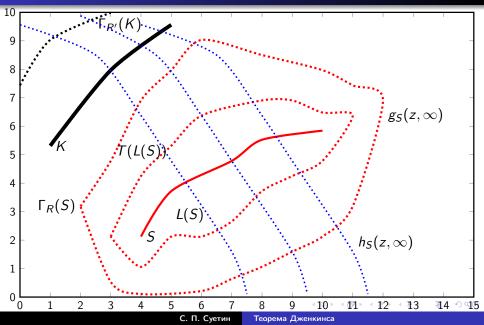
The transformation T induces a point transformation T on a subset \widetilde{D} of $D:=\widehat{\mathbb{C}}\setminus S$ obtained by deleting a finite number of open analytic arcs and points (i.e., \widetilde{D} is the point set union of $L\in \mathcal{S}^\perp$) by taking T(P) for $P\in L$ to be the point on T(L) with

$$g_{\mathcal{S}}(\mathcal{T}(P),\infty)=g_{\mathcal{S}}(P,\infty).$$

The transformation T induces a point transformation T on a subset \widetilde{D} of $D:=\widehat{\mathbb{C}}\setminus S$ obtained by deleting a finite number of open analytic arcs and points (i.e., \widetilde{D} is the point set union of $L\in \mathcal{S}^\perp$) by taking T(P) for $P\in L$ to be the point on T(L) with

$$g_S(\mathcal{T}(P), \infty) = g_S(P, \infty).$$

Under condition (a), \mathcal{T} is an anticonformal mapping on \widetilde{D} thus we can speak of its distortion $\tau(P) = \tau(z)$.



Now consider $\Gamma(S,R):=\{z:g_S(z,\infty)=R\}$ for R sufficiently large. There will be a level curve $\Gamma(K,R')$ lying inside $\Gamma(S,R)$ and touching it with

$$R' = R + \log(\operatorname{cap}(S)/\operatorname{cap}(K)) + o(1), \quad R \to \infty.$$

Now consider $\Gamma(S,R) := \{z : g_S(z,\infty) = R\}$ for R sufficiently large. There will be a level curve $\Gamma(K,R')$ lying inside $\Gamma(S,R)$ and touching it with

$$R' = R + \log(\operatorname{cap}(S)/\operatorname{cap}(K)) + o(1), \quad R \to \infty.$$

Let $\rho(z)$ be the extremal metric for m(K, R'). Let

$$\rho_1(z) = \begin{cases} \rho(z), & z \in D(S,R) \cap D(K,R'), \\ 0, & z \in D(S,R) \setminus D(K,R'). \end{cases}$$

Let

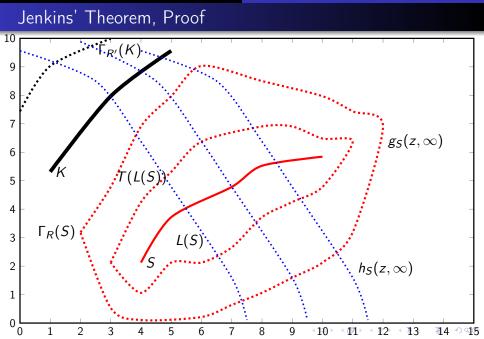
$$\rho_2(z) := \begin{cases} \frac{1}{2}(\rho_1(z) + \tau(z)\rho_1(\mathcal{T}z)), & z \in D(S,R) \cap \widetilde{D}, \\ 0, & z \in D(S,R) \setminus \widetilde{D}. \end{cases}$$

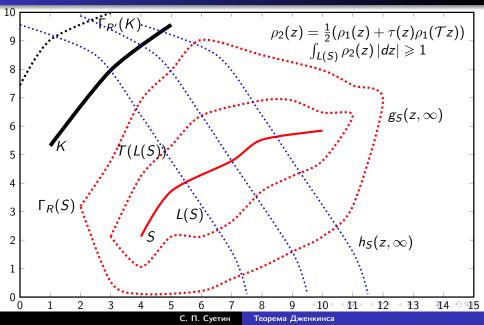
Let

$$\rho_2(z) := \begin{cases} \frac{1}{2}(\rho_1(z) + \tau(z)\rho_1(\mathcal{T}z)), & z \in D(S,R) \cap \widetilde{D}, \\ 0, & z \in D(S,R) \setminus \widetilde{D}. \end{cases}$$

If L(R) denotes the (open) arc on $L \in \mathcal{S}^{\perp}$ for which $0 < g_{\mathcal{S}}(z, \infty) < R$ we have

$$\int_{L(R)} \rho_2(z) |dz| \geqslant 1.$$





Since the L(R), $0 < g_S 0 < g_S (z, \infty) < R$, are precisely those curves in $\mathcal{G}(S,R)$ which have length 1 in the extremal metric for the module problem defining m(S,R) we have

$$\iint_{D(S,R)} \rho_2^2(z) dA \geqslant m(S,R),$$

where dA denotes the element of area in the \mathbb{C} .

Moreover

$$\iint_{D(S,R)} \rho_2^2(z) dA = \frac{1}{4} \iint_{D(S,R)} (\rho_1(z) + \tau(z)\rho_1(\mathcal{T}z))^2 dA$$

$$\leq \frac{1}{2} \iint_{D(S,R)} (\rho_1(z))^2 dA + \frac{1}{2} \iint_{D(S,R)} (\rho_1(\mathcal{T}z))^2 (\tau(z))^2 dA.$$

This last term is just

$$\iint_{D(S,R)} (\rho_1(z))^2 dA \leqslant m(K,R')$$

(actually since S has zero area). Thus

$$m(K, R') \geqslant m(S, R)$$

or

$$R \geqslant R' = R + \log(\operatorname{cap}(S)/\operatorname{cap}(K)) + o(1).$$

So finally

$$cap(K) \geqslant cap(S)$$
.

Теорема Дженкинса

[1] James A. Jenkins, "On certain problems of minimal capacity.", *Illinois J. Math.*, **10** (1966), 460–465.

Теорема Дженкинса

Спасибо за внимание!