THE STRENGTH OF SOME CONSEQUENCES OF RT_2^2 OVER RCA_0^*

Marta Fiori Carones

(Joint work with Leszek Kołodziejczyk and Katarzyna Kowalik)

Sobolev Institute of Mathematics

Steklov Institute of Mathematics, 06.06.2022

Reverse mathematics questions

What is the exact strength needed to prove a mathematical theorem?

■ Which are the appropriate axioms for mathematics?

Reverse mathematics questions

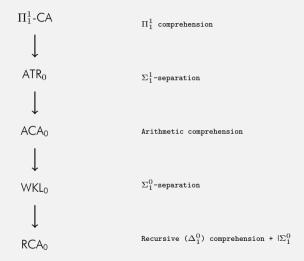
What is the exact strength needed to prove a mathematical theorem?

Subsystems of Z_2

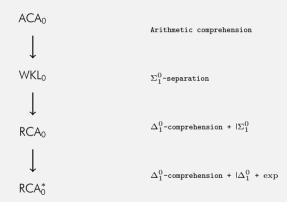
■ Which are the appropriate axioms for mathematics?

$$\exists X\,\forall n\,(n\in X\leftrightarrow \varphi(n))$$

Subsystems



Subsystems



Why $|\Sigma_1^0$?

- RCA₀ (and WKL₀) is Π_2^0 -conservative over PRA
- $I\Sigma_1^0$ proves the totality of primitive recursive functions
- unique notion of infinite set
- $\blacksquare \ \ \mathsf{I}\Sigma^0_1 \text{ is equivalent to bounded } \Sigma^0_1\text{-CA, } \forall \mathsf{k} \, \exists \mathsf{X} \, \forall \mathsf{m} \, (\mathsf{m} \in \mathsf{X} \leftrightarrow \varphi(\mathsf{m}) \wedge \mathsf{m} < \mathsf{k})$

Why not $|\Sigma_1^0$?

- \blacksquare which statements imply $\mathsf{I}\Sigma_1^0$?
- nice interplay with between first and second order arithmetic
- help to study conservativity issues
- study implications among theorems over a weaker base theory

$$RCA_0^*$$
 Δ_1^0 -comprehension + Δ_1^0 -induction + exp

RCA₀
$$\Delta_1^0$$
-comprehension + Σ_1^0 -induction (I Σ_1^0)

S. Simpson and R. Smith

Factorization of polynomials and Σ^0_1 induction.

Annals of Pure and Applied Logic, 1986

RT ₂	For every c: $[\mathbb{N}]^2 o 2$ there exists an unbounded homogeneous set
CAC	Each countable poset contains a <-unbounded chain or a <-unbounded antichain
ADS	Each linear order contains either an unbounded ascending or an unbounded descending chain
CRT ₂	For every $c \colon [\mathbb{N}]^2 \to 2$ there exists an unbounded set $S \subseteq \mathbb{N}$ such that for each $x \in S$ there exists $y \in S$ such that $c(x,z) = c(x,y)$ holds for all $z \in S$ with $z \ge y$.

Σ^0_1 -cut

Let
$$(M, \mathcal{X}) \models RCA_0^* + \neg I\Sigma_1^0$$
.
Then there exists a $\underline{\Sigma_1^0}$ proper cut $I \subsetneq M$, i.e. a subset which is

- closed under successor and closed downwards
- I ≠ M
- \blacksquare is Σ_1^0 -definable in M

Let
$$Cod(M/I) = \{X \cap I \mid X \text{ is } M\text{-finite}\}$$

When I is closed under exp, $(I, Cod(M/I)) \models WKL_n^*$,

Main tool

Theorem

Let $(M, \mathcal{X}) \models RCA_0^*$ and $I \subsetneq_e M$ be a Σ_1^0 -cut.

Then $(M,\mathcal{X}) \vDash RT_2^2/CAC/ADS/CRT_2^2$ if and only if $(I,Cod(M/I)) \vDash RT_2^2/CAC/ADS/CRT_2^2$

Main tool

Theorem

Let $(M, \mathcal{X}) \models RCA_0^*$ and $I \subsetneq_e M$ be a Σ_1^0 -cut.

Then $(M, \mathcal{X}) \vDash RT_2^2/CAC/ADS/CRT_2^2$ if and only if $(I, Cod(M/I)) \vDash RT_2^2/CAC/ADS/CRT_2^2$

Let $(M, \mathcal{X}) \models RCA_0^* + \neg I\Sigma_1(A) + CAC$ and $I \subsetneq_e M$ be a $\Sigma_1(A)$ -cut.

Then $(I, Cod(M/I)) \models CAC$.

Then $(M, \Delta_1\text{-Def}(M; A)) \models RCA_0^* + \neg I\Sigma_1^0 + CAC$

Corollary

 $RCA_0^* + RT_2^2/CAC/ADS/CRT_2^2$ prove the following sentence:

"If $\neg I\Sigma_1$, then any computable instance of $RT_2^2/CAC/ADS/CRT_2^2$ has a computable solution"

Implications

Theorem

 $\mathsf{RCA}_0^* \vdash \mathsf{RT}_2^2 \to \mathsf{CAC} \to \mathsf{ADS} \text{ and } \mathsf{RCA}_0^* \vdash \mathsf{RT}_2^2 \to \mathsf{CRT}_2^2.$

These implications do not reverse, even over $\mathsf{RCA}_0^* + \neg \mathsf{I}\Sigma_1^0$

Implications

Theorem

 $\mathsf{RCA}_0^* \vdash \mathsf{RT}_2^2 \to \mathsf{CAC} \to \mathsf{ADS} \text{ and } \mathsf{RCA}_0^* \vdash \mathsf{RT}_2^2 \to \mathsf{CRT}_2^2.$

These implications do not reverse, even over RCA_0^* + $\neg I\Sigma_1^0$

Question

Over RCA $_0^*$, does CAC or ADS imply CRT $_2^2$?

Conservation

Theorem

 ${\rm CAC/ADS/CRT_2^2}$ are $\Pi_3^0\text{-conservative}$ over ${\rm RCA_0^*}.$

Conservation

Theorem

CAC/ADS/CRT $_2^2$ are Π_3^0 -conservative over RCA $_0^*$.

Theorem

CAC/ADS are not Π_4^0 -conservative over RCA $_0^*$.

Conservation

Theorem

 ${\rm CAC/ADS/CRT_2^2}$ are $\Pi_3^0\text{-conservative}$ over ${\rm RCA_0^*}.$

Theorem

CAC/ADS are not Π_4^0 -conservative over RCA $_0^*$.

 CRT_2^2 is not Π_5^0 -conservative over RCA_0^* .

Question

Is $CRT_2^2 \Pi_4^0$ -conservative over RCA_0^* ?

 $I_1^0 = \{x \in \mathbb{N} \mid \text{ every unbounded } S \subseteq \mathbb{N} \text{ has a subset of cardinality } x\}$

 $I_1^0 = \{x \in \mathbb{N} \mid \text{ every unbounded } S \subseteq \mathbb{N} \text{ has a subset of cardinality } x\}$

Theorem (Kołodziejczyk, Wong, Yokoyama)

 RT_2^2 proves that I_1^0 is closed under exp

 $I_1^0 = \{x \in \mathbb{N} \mid \text{ every unbounded } S \subseteq \mathbb{N} \text{ has a subset of cardinality } x\}$

Theorem (Kołodziejczyk, Wong, Yokoyama)

 RT_2^2 proves that I_1^0 is closed under exp

Theorem

CAC, and hence ADS, does not prove that I_1^0 is closed under exp

 $I_1^0 = \{x \in \mathbb{N} \mid \text{ every unbounded } S \subseteq \mathbb{N} \text{ has a subset of cardinality } x\}$

Theorem (Kołodziejczyk, Wong, Yokoyama)

 RT_2^2 proves that I_1^0 is closed under exp

Theorem

CAC, and hence ADS, does not prove that I_1^0 is closed under exp

Question

Does CRT_2^2 prove that I_1^0 is closed under exp?

Normal vs long version: CAC

CAC Each countable poset (\mathbb{N}, \prec) contains a <-cofinal chain or a <-cofinal antichain long-CAC Each countable poset (\mathbb{N}, \prec) contains a chain of cardinality \mathbb{N} or an antichain of cardinality \mathbb{N}

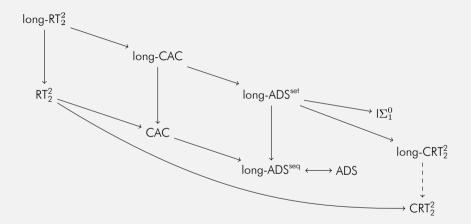
What is an ω chain?

ADS | Each countable linear order (\mathbb{N}, \prec) contains an ω or an ω^* chain.

- lack a a <u>set</u> $S\subseteq \mathbb{N}$ which is increasingly ordered with respect to both < and \prec
- \blacksquare a sequence $(s_i)_{i\in\mathbb{N}}$ which is strictly $\prec\text{-increasing}$
- \blacksquare a set S $\subseteq \mathbb{N}$ such that each element of S has only finitely many predecessors

Normal vs long version: ADS

ADS	For each linear order (\mathbb{N}, \prec) there exists a cofinal set $S \subseteq \mathbb{N}$ such that either for all $x, y \in S$ it holds that $x < y$ iff $x \prec y$ or for all $x, y \in S$ it holds that $x < y$ iff $x \succ y$
long-ADS ^{set}	For each linear order (\mathbb{N}, \prec) there exists a set $S \subseteq \mathbb{N}$ of universe cardinality such that either for all $x, y \in S$ it holds that $x < y$ iff $x \prec y$ or for all $x, y \in S$ it holds that $x < y$ iff $x \succ y$
long-ADS ^{seq}	For each linear order (\mathbb{N}, \prec) there exists a sequence $(s_i)_{i \in \mathbb{N}}$ which is either strictly \prec -increasing or strictly \prec -decreasing



Marta Fiori-Carones, Leszek Kołodziejczyk, Katarzyna W. Kowalik Weaker cousins of Ramsey's theorem over a weak base theory 2021

Leszek Kołodziejczyk, Katarzyna W. Kowalik, and Keita Yokoyama How strong is Ramsey's theorem if infinity can be weak? 2020

Leszek Kołodziejczyk, Tin Lok Wong, Keita Yokoyama Ramsey's theorem for pairs, collection, and proof size 2020

Stephen Simpson and Richard Smith Factorization of polynomials and Σ^0_1 induction Annals of Pure and Applied Logic 1986