The most non-algebraic complex tori - an algebraic construction

Yuri Zarhin (Penn State, MPIM Bonn)

based on a joint work with Tatiana Bandman (Bar-Ilan)

Definition Let E be a number field.

■ E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.

- E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.
- *E* is purely imaginary if for every field embedding $\sigma : E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \not\subset \mathbb{R}$.

- E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.
- *E* is purely imaginary if for every field embedding $\sigma : E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \not\subset \mathbb{R}$.
- E is a CM field if it has a totally real subfield E_0 such that there is $\delta \in E_0$ that enjoys the following properties.

- E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.
- *E* is purely imaginary if for every field embedding $\sigma : E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \not\subset \mathbb{R}$.
- E is a CM field if it has a totally real subfield E_0 such that there is $\delta \in E_0$ that enjoys the following properties.
 - a) $\sigma(\delta)$ is a **positive** real number for all σ .

- E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.
- *E* is purely imaginary if for every field embedding $\sigma : E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \not\subset \mathbb{R}$.
- E is a CM field if it has a totally real subfield E_0 such that there is $\delta \in E_0$ that enjoys the following properties.
 - a) $\sigma(\delta)$ is a **positive** real number for all σ .

b)
$$E = E_0(\sqrt{-\delta})$$
.

- E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.
- *E* is purely imaginary if for every field embedding $\sigma : E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \not\subset \mathbb{R}$.
- E is a CM field if it has a totally real subfield E_0 such that there is $\delta \in E_0$ that enjoys the following properties.
 - a) $\sigma(\delta)$ is a **positive** real number for all σ .
 - b) $E = E_0(\sqrt{-\delta})$. In particular, E is purely imaginary.

- E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.
- *E* is purely imaginary if for every field embedding $\sigma : E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \not\subset \mathbb{R}$.
- E is a CM field if it has a totally real subfield E_0 such that there is $\delta \in E_0$ that enjoys the following properties.
 - a) $\sigma(\delta)$ is a **positive** real number for all σ .
 - b) $E = E_0(\sqrt{-\delta})$. In particular, E is purely imaginary.
- An order in E is a free abelian subgroup of rank $[E : \mathbb{Q}]$ in E that is also a **subring** of E.

- E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.
- *E* is purely imaginary if for every field embedding $\sigma : E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \not\subset \mathbb{R}$.
- E is a CM field if it has a totally real subfield E_0 such that there is $\delta \in E_0$ that enjoys the following properties.
 - a) $\sigma(\delta)$ is a **positive** real number for all σ .
 - b) $E = E_0(\sqrt{-\delta})$. In particular, E is purely imaginary.
- An order in E is a free abelian subgroup of rank $[E : \mathbb{Q}]$ in E that is also a **subring** of E.
 - Each order is a subring and a subgroup of finite index in the ring O_E of all algebraic integers in E.

- E is totally real if for every field embedding $\sigma: E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \subset \mathbb{R}$.
- *E* is purely imaginary if for every field embedding $\sigma : E \hookrightarrow \mathbb{C}$ its image $\sigma(E) \not\subset \mathbb{R}$.
- E is a CM field if it has a totally real subfield E_0 such that there is $\delta \in E_0$ that enjoys the following properties.
 - a) $\sigma(\delta)$ is a **positive** real number for all σ .
 - b) $E = E_0(\sqrt{-\delta})$. In particular, E is purely imaginary.
- An order in E is a free abelian subgroup of rank $[E : \mathbb{Q}]$ in E that is also a **subring** of E.
 - Each order is a subring and a subgroup of finite index in the ring O_E of all algebraic integers in E.

The goal:

Very non-algebraic object!

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) :

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) : $V \cong \mathbb{C}^g = \mathbb{R}^{2g}$ is a g-dimensional complex vector space;

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) :

 $V\cong\mathbb{C}^g=\mathbb{R}^{2g}$ is a g-dimensional complex vector space;

A discrete lattice $\Gamma \subset V$ (of maximal rank 2g).

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) : $V \cong \mathbb{C}^g = \mathbb{R}^{2g}$ is a g-dimensional complex vector space;

 $V \cong \mathbb{C}^s = \mathbb{R}^{2s}$ is a g-dimensional complex vector space;

A discrete lattice $\Gamma \subset V$ (of maximal rank 2g). The natural map $\Gamma \otimes \mathbb{R} \mapsto V$, $\gamma \otimes r \mapsto r\gamma$

is an isomorphism of real vector spaces.

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) : $V \cong \mathbb{C}^g = \mathbb{R}^{2g}$ is a g-dimensional complex vector space;

A discrete lattice $\Gamma \subset V$ (of maximal rank 2g). The natural map $\Gamma \otimes \mathbb{R} \mapsto V$, $\gamma \otimes r \mapsto r\gamma$

is an isomorphism of real vector spaces.

Complex Torus $T := V/\Gamma$ is an irreducible compact complex manifold with $\dim(T) = g$ and the natural structure of a commutative complex Lie group.

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) : $V \cong \mathbb{C}^g = \mathbb{R}^{2g}$ is a g-dimensional complex vector space;

A discrete lattice $\Gamma \subset V$ (of maximal rank 2g). The natural map $\Gamma \otimes \mathbb{R} \mapsto V, \ \gamma \otimes r \mapsto r\gamma$

is an isomorphism of real vector spaces.

Complex Torus $T := V/\Gamma$ is an irreducible compact complex manifold with $\dim(T) = g$ and the natural structure of a commutative complex Lie group.

 $\mathcal{M}(T)$ - the field of meromorphic functions on T;

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) : $V \cong \mathbb{C}^g = \mathbb{R}^{2g}$ is a g-dimensional complex vector space;

A discrete lattice $\Gamma \subset V$ (of maximal rank 2g). The natural map $\Gamma \otimes \mathbb{R} \mapsto V$, $\gamma \otimes r \mapsto r\gamma$

is an isomorphism of real vector spaces.

Complex Torus $T := V/\Gamma$ is an irreducible compact complex manifold with $\dim(T) = g$ and the natural structure of a commutative complex Lie group.

 $\mathcal{M}(T)$ - the field of meromorphic functions on T;

Div(T) - the group of divisors on T.

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) : $V \cong \mathbb{C}^g = \mathbb{R}^{2g}$ is a g-dimensional complex vector space;

A discrete lattice $\Gamma \subset V$ (of maximal rank 2g). The natural map $\Gamma \otimes \mathbb{R} \mapsto V$, $\gamma \otimes r \mapsto r\gamma$

is an isomorphism of real vector spaces.

Complex Torus $T := V/\Gamma$ is an irreducible compact complex manifold with $\dim(T) = g$ and the natural structure of a commutative complex Lie group.

 $\mathcal{M}(T)$ - the field of meromorphic functions on T;

Div(T) - the group of divisors on T.

 $\operatorname{End}(T)$ - the endomorphism ring of T

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) : $V \cong \mathbb{C}^g = \mathbb{R}^{2g}$ is a g-dimensional complex vector space;

A discrete lattice $\Gamma \subset V$ (of maximal rank 2g). The natural map $\Gamma \otimes \mathbb{R} \mapsto V$, $\gamma \otimes r \mapsto r\gamma$

is an isomorphism of real vector spaces.

Complex Torus $T := V/\Gamma$ is an irreducible compact complex manifold with $\dim(T) = g$ and the natural structure of a commutative complex Lie group.

 $\mathcal{M}(T)$ - the field of meromorphic functions on T;

Div(T) - the group of divisors on T.

 $\operatorname{End}(T)$ - the endomorphism ring of T and $\operatorname{Aut}(T) = \operatorname{End}(T)^*$.

 $\mathrm{End}^0(T):=\mathrm{End}(T)\otimes \mathbb{Q}$ - the endomorphism-algebra of T

Very non-algebraic object!

Let's start with generalities about complex tori defined by (V, Γ) : $V \cong \mathbb{C}^g = \mathbb{R}^{2g}$ is a g-dimensional complex vector space;

A discrete lattice $\Gamma \subset V$ (of maximal rank 2g). The natural map $\Gamma \otimes \mathbb{R} \mapsto V$, $\gamma \otimes r \mapsto r\gamma$

is an isomorphism of real vector spaces.

Complex Torus $T := V/\Gamma$ is an irreducible compact complex manifold with $\dim(T) = g$ and the natural structure of a commutative complex Lie group.

 $\mathcal{M}(T)$ - the field of meromorphic functions on T;

Div(T) - the group of divisors on T.

 $\operatorname{End}(T)$ - the endomorphism ring of T and $\operatorname{Aut}(T) = \operatorname{End}(T)^*$.

 $\mathrm{End}^0(T):=\mathrm{End}(T)\otimes \mathbb{Q}$ - the endomorphism-algebra of T

$$\operatorname{End}(T) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma)$$

$$\operatorname{End}(T) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma)$$

 $\subset \operatorname{End}_{\mathbb{Z}}(\Gamma) \otimes \mathbb{R} = \operatorname{End}_{\mathbb{R}}(\Gamma \otimes \mathbb{R}) = \operatorname{End}_{\mathbb{R}}(V) \supset \operatorname{End}_{\mathbb{C}}(V),$

$T = V/\Gamma$: properties of End(T) and End⁰(T)

```
\operatorname{End}(T) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma)

\subset \operatorname{End}_{\mathbb{Z}}(\Gamma) \otimes \mathbb{R} = \operatorname{End}_{\mathbb{R}}(\Gamma \otimes \mathbb{R}) = \operatorname{End}_{\mathbb{R}}(V) \supset \operatorname{End}_{\mathbb{C}}(V),

whose image is the intersection of \operatorname{End}_{\mathbb{Z}}(\Gamma) and \operatorname{End}_{\mathbb{C}}(V).
```

$T = V/\Gamma$: properties of End(T) and End⁰(T)

```
\begin{array}{l} \operatorname{End}(T) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma) \\ \subset \operatorname{End}_{\mathbb{Z}}(\Gamma) \otimes \mathbb{R} = \operatorname{End}_{\mathbb{R}}(\Gamma \otimes \mathbb{R}) = \operatorname{End}_{\mathbb{R}}(V) \supset \operatorname{End}_{\mathbb{C}}(V), \\ \text{whose } \textbf{image} \text{ is the } \textbf{intersection} \text{ of } \operatorname{End}_{\mathbb{Z}}(\Gamma) \text{ and } \operatorname{End}_{\mathbb{C}}(V). \Longrightarrow \operatorname{End}(T) \text{ is isomorphic to a subring of } \operatorname{End}_{\mathbb{Z}}(\Gamma) \cong \operatorname{Mat}_{2g}(\mathbb{Z}). \end{array}
```

```
\operatorname{End}(T) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma)

\subset \operatorname{End}_{\mathbb{Z}}(\Gamma) \otimes \mathbb{R} = \operatorname{End}_{\mathbb{R}}(\Gamma \otimes \mathbb{R}) = \operatorname{End}_{\mathbb{R}}(V) \supset \operatorname{End}_{\mathbb{C}}(V),

whose image is the intersection of \operatorname{End}_{\mathbb{Z}}(\Gamma) and \operatorname{End}_{\mathbb{C}}(V). \Longrightarrow \operatorname{End}(T) is isomorphic to a subring of \operatorname{End}_{\mathbb{Z}}(\Gamma) \cong \operatorname{Mat}_{2g}(\mathbb{Z}). \Longrightarrow \operatorname{End}(T) is a free commutative group of finite (positive) rank
```

```
\begin{array}{l} \operatorname{End}(\mathcal{T}) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma) \\ \subset \operatorname{End}_{\mathbb{Z}}(\Gamma) \otimes \mathbb{R} = \operatorname{End}_{\mathbb{R}}(\Gamma \otimes \mathbb{R}) = \operatorname{End}_{\mathbb{R}}(V) \supset \operatorname{End}_{\mathbb{C}}(V), \\ \text{whose } \operatorname{\textbf{image}} \text{ is the } \operatorname{\textbf{intersection}} \text{ of } \operatorname{End}_{\mathbb{Z}}(\Gamma) \text{ and } \operatorname{End}_{\mathbb{C}}(V). \Longrightarrow \\ \operatorname{End}(\mathcal{T}) \text{ is isomorphic to a subring of } \operatorname{End}_{\mathbb{Z}}(\Gamma) \cong \operatorname{Mat}_{2g}(\mathbb{Z}). \Longrightarrow \\ \operatorname{End}(\mathcal{T}) \text{ is a free commutative group of finite (positive) rank and } \\ \operatorname{End}^{0}(\mathcal{T}) \text{ is a } \operatorname{\textbf{finite-dimensional algebra over }} \mathbb{Q}. \end{array}
```

```
End(T) \hookrightarrow End<sub>\mathbb{Z}</sub>(\Gamma)

\subset End<sub>\mathbb{Z}</sub>(\Gamma) \otimes \mathbb{R} = End<sub>\mathbb{R}</sub>(\Gamma \otimes \mathbb{R}) = End<sub>\mathbb{R}</sub>(V) \supset End<sub>\mathbb{C}</sub>(V), whose image is the intersection of End<sub>\mathbb{Z}</sub>(\Gamma) and End<sub>\mathbb{C}</sub>(V). \Longrightarrow End(T) is isomorphic to a subring of End<sub>\mathbb{Z}</sub>(\Gamma) \cong Mat<sub>2g</sub>(\mathbb{Z}). \Longrightarrow End(T) is a free commutative group of finite (positive) rank and End<sup>0</sup>(T) is a finite-dimensional algebra over \mathbb{Q}. Theorem (Oort-Z, 1995) If D is any finite-dimensional \mathbb{Q}-algebra then \exists a complex torus T such that End<sup>0</sup>(T) \cong D.
```

There is the natural ring embedding

```
\operatorname{End}(\mathcal{T}) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma)

\subset \operatorname{End}_{\mathbb{Z}}(\Gamma) \otimes \mathbb{R} = \operatorname{End}_{\mathbb{R}}(\Gamma \otimes \mathbb{R}) = \operatorname{End}_{\mathbb{R}}(V) \supset \operatorname{End}_{\mathbb{C}}(V),

whose image is the intersection of \operatorname{End}_{\mathbb{Z}}(\Gamma) and \operatorname{End}_{\mathbb{C}}(V). \Longrightarrow \operatorname{End}(\mathcal{T}) is isomorphic to a subring of \operatorname{End}_{\mathbb{Z}}(\Gamma) \cong \operatorname{Mat}_{2g}(\mathbb{Z}). \Longrightarrow \operatorname{End}(\mathcal{T}) is a free commutative group of finite (positive) rank and \operatorname{End}^{0}(\mathcal{T}) is a finite-dimensional algebra over \mathbb{Q}.
```

Theorem (Oort-Z, 1995) If D is any finite-dimensional \mathbb{Q} -algebra then \exists a complex torus T such that $\operatorname{End}^0(T) \cong D$.

Remark (Albert?) If T is a projective manifold/abelian variety then the algebra $\operatorname{End}^0(T)$ must be semisimple.

$T = V/\Gamma$: properties of End(T) and End⁰(T)

There is the natural ring embedding

```
\operatorname{End}(\mathcal{T}) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma)

\subset \operatorname{End}_{\mathbb{Z}}(\Gamma) \otimes \mathbb{R} = \operatorname{End}_{\mathbb{R}}(\Gamma \otimes \mathbb{R}) = \operatorname{End}_{\mathbb{R}}(V) \supset \operatorname{End}_{\mathbb{C}}(V),

whose image is the intersection of \operatorname{End}_{\mathbb{Z}}(\Gamma) and \operatorname{End}_{\mathbb{C}}(V). \Longrightarrow

\operatorname{End}(\mathcal{T}) is isomorphic to a subring of \operatorname{End}_{\mathbb{Z}}(\Gamma) \cong \operatorname{Mat}_{2g}(\mathbb{Z}). \Longrightarrow

\operatorname{End}(\mathcal{T}) is a free commutative group of finite (positive) rank and \operatorname{End}^{0}(\mathcal{T}) is a finite-dimensional algebra over \mathbb{Q}.
```

Theorem (Oort-Z, 1995) If D is any finite-dimensional \mathbb{Q} -algebra then \exists a complex torus T such that $\operatorname{End}^0(T) \cong D$.

Remark (Albert?) If T is a projective manifold/abelian variety then the algebra $\operatorname{End}^0(T)$ must be semisimple. In addition, if $E := \operatorname{End}^0(T)$ is a (number) field then E is either totally real or a CM field

$T = V/\Gamma$: properties of End(T) and End⁰(T)

There is the natural ring embedding

```
\operatorname{End}(\mathcal{T}) \hookrightarrow \operatorname{End}_{\mathbb{Z}}(\Gamma)

\subset \operatorname{End}_{\mathbb{Z}}(\Gamma) \otimes \mathbb{R} = \operatorname{End}_{\mathbb{R}}(\Gamma \otimes \mathbb{R}) = \operatorname{End}_{\mathbb{R}}(V) \supset \operatorname{End}_{\mathbb{C}}(V),

whose image is the intersection of \operatorname{End}_{\mathbb{Z}}(\Gamma) and \operatorname{End}_{\mathbb{C}}(V). \Longrightarrow

\operatorname{End}(\mathcal{T}) is isomorphic to a subring of \operatorname{End}_{\mathbb{Z}}(\Gamma) \cong \operatorname{Mat}_{2g}(\mathbb{Z}). \Longrightarrow

\operatorname{End}(\mathcal{T}) is a free commutative group of finite (positive) rank and \operatorname{End}^{0}(\mathcal{T}) is a finite-dimensional algebra over \mathbb{Q}.
```

Theorem (Oort-Z, 1995) If D is any finite-dimensional \mathbb{Q} -algebra then \exists a complex torus T such that $\operatorname{End}^0(T) \cong D$.

Remark (Albert?) If T is a projective manifold/abelian variety then the algebra $\operatorname{End}^0(T)$ must be semisimple. In addition, if $E := \operatorname{End}^0(T)$ is a (number) field then E is either totally real or a CM field (and in both cases $\operatorname{End}(T)$ is an order in E).

Algebraic model T_a of $T := V/\Gamma$

Algebraic model T_a of $T := V/\Gamma$

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

■ $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

- $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.
- $\mathrm{Div}(T) = \mathrm{Div}(T_a)$, i.e., \forall divisor D on T $\exists !$ a divisor D_a on T_a such that $D = \pi^*(D_a)$.

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

- $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.
- $\mathrm{Div}(T) = \mathrm{Div}(T_a)$, i.e., \forall divisor D on T $\exists !$ a divisor D_a on T_a such that $D = \pi^*(D_a)$.

Algebraic dimension $a(T) := dim(T_a)$.

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

- $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.
- $\mathrm{Div}(T) = \mathrm{Div}(T_a)$, i.e., \forall divisor D on T $\exists !$ a divisor D_a on T_a such that $D = \pi^*(D_a)$.

Algebraic dimension $a(T) := \dim(T_a)$.

$$T_a$$
 is a **point** \iff $a(T) = 0$

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

- $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.
- $\mathrm{Div}(T) = \mathrm{Div}(T_a)$, i.e., \forall divisor D on T $\exists !$ a divisor D_a on T_a such that $D = \pi^*(D_a)$.

Algebraic dimension $a(T) := dim(T_a)$.

$$T_a$$
 is a **point** \iff $a(T) = 0 \iff$

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

- $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.
- $\mathrm{Div}(T) = \mathrm{Div}(T_a)$, i.e., \forall divisor D on T $\exists !$ a divisor D_a on T_a such that $D = \pi^*(D_a)$.

Algebraic dimension $a(T) := \dim(T_a)$.

$$T_a$$
 is a **point** \iff $a(T) = 0 \iff$

 $lackbox{}{}$ $\mathcal{M}(T)=\mathbb{C}$ - **no** non-constant meromorphic functions;

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

- $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.
- $\mathrm{Div}(T) = \mathrm{Div}(T_a)$, i.e., \forall divisor D on T $\exists !$ a divisor D_a on T_a such that $D = \pi^*(D_a)$.

Algebraic dimension $a(T) := dim(T_a)$.

$$T_a$$
 is a **point** \iff $a(T) = 0 \iff$

- $lackbox{ }\mathcal{M}(T)=\mathbb{C}$ **no** non-constant meromorphic functions; \Longleftrightarrow
- $Div(T) = \{0\}$ **no** analytic susbspaces of codim 1.

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

- $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.
- $\mathrm{Div}(T) = \mathrm{Div}(T_a)$, i.e., \forall divisor D on T $\exists !$ a divisor D_a on T_a such that $D = \pi^*(D_a)$.

Algebraic dimension $a(T) := dim(T_a)$.

$$T_a$$
 is a **point** \iff $a(T) = 0 \iff$

- $lackbox{ }\mathcal{M}(T)=\mathbb{C}$ **no** non-constant meromorphic functions; \Longleftrightarrow
- $Div(T) = \{0\}$ **no** analytic susbspaces of codim 1. \iff
- If \mathcal{L} is a **nontrivial** holomorphic line bundle on T then $H^0(T,\mathcal{L}) = \{0\}$

There exist unique (up to an isomorphism) an abelian variety T_a and a surjective holomorphic homomorphism $\pi: T \twoheadrightarrow T_a$ with connected kernel such that:

- $\mathcal{M}(T) = \mathcal{M}(T_a)$, i.e., \forall meromorphic function $f \in \mathcal{M}(T)$ $\exists ! \ f_a \in \mathcal{M}(T_a)$ such that $f = \pi^*(f_a)$.
- $\mathrm{Div}(T) = \mathrm{Div}(T_a)$, i.e., \forall divisor D on T $\exists !$ a divisor D_a on T_a such that $D = \pi^*(D_a)$.

Algebraic dimension $a(T) := dim(T_a)$.

 T_a is a **point** \iff $a(T) = 0 \iff$

- $lackbox{ }\mathcal{M}(T)=\mathbb{C}$ **no** non-constant meromorphic functions; \Longleftrightarrow
- $Div(T) = \{0\}$ **no** analytic susbspaces of codim 1. \iff
- If \mathcal{L} is a **nontrivial** holomorphic line bundle on T then $H^0(T,\mathcal{L}) = \{0\}$ (Indeed, a nonzero section of \mathcal{L} vanishes precisely at a codim 1 subspace of T).

1. A very general torus T has a(T) = 0 when g > 1.

1. A very general torus T has a(T) = 0 when g > 1.

Meaning: there is no good moduli space of tori of dimension g > 1.

1. A very general torus T has a(T) = 0 when g > 1.

Meaning: there is no good moduli space of tori of dimension g>1. But there is a "versal family", i.e., there is a flat morphism $\tau:\mathcal{X}_g\to\mathcal{B}_g$ of irreeducible complex spaces $\mathcal{X}_g,\mathcal{B}_g$ such that

1. A very general torus T has a(T) = 0 when g > 1.

Meaning: there is no good moduli space of tori of dimension g>1. But there is a "versal family", i.e., there is a flat morphism $\tau:\mathcal{X}_g\to\mathcal{B}_g$ of irreeducible complex spaces $\mathcal{X}_g,\mathcal{B}_g$ such that

• every fiber of τ is a torus of dimension g,

1. A very general torus T has a(T) = 0 when g > 1.

Meaning: there is no good moduli space of tori of dimension g>1. But there is a "versal family", i.e., there is a flat morphism $\tau:\mathcal{X}_g\to\mathcal{B}_g$ of irreeducible complex spaces $\mathcal{X}_g,\mathcal{B}_g$ such that

- every fiber of τ is a torus of dimension g,
- every torus of dimension g is isomorphic to a fiber of τ .

1. A very general torus T has a(T) = 0 when g > 1.

Meaning: there is no good moduli space of tori of dimension g>1. But there is a "versal family", i.e., there is a flat morphism $\tau:\mathcal{X}_g\to\mathcal{B}_g$ of irreeducible complex spaces $\mathcal{X}_g,\mathcal{B}_g$ such that

- every fiber of τ is a torus of dimension g,
- every torus of dimension g is isomorphic to a fiber of τ .

Tori with a(T) > 0 correspond to a **countable union** of certain proper closed subsets of \mathcal{B}_g .

1. A very general torus T has a(T) = 0 when g > 1.

Meaning: there is no good moduli space of tori of dimension g>1. But there is a "versal family", i.e., there is a flat morphism $\tau:\mathcal{X}_g\to\mathcal{B}_g$ of irreeducible complex spaces $\mathcal{X}_g,\mathcal{B}_g$ such that

- every fiber of τ is a torus of dimension g,
- every torus of dimension g is isomorphic to a fiber of τ .

Tori with a(T) > 0 correspond to a **countable union** of certain proper closed subsets of \mathcal{B}_g .

2. Properties of \mathbb{P}^1 -bundles over T.

1. A very general torus T has a(T) = 0 when g > 1.

Meaning: there is no good moduli space of tori of dimension g>1. But there is a "versal family", i.e., there is a flat morphism $\tau:\mathcal{X}_g\to\mathcal{B}_g$ of irreeducible complex spaces $\mathcal{X}_g,\mathcal{B}_g$ such that

- every fiber of τ is a torus of dimension g,
- every torus of dimension g is isomorphic to a fiber of τ .

Tori with a(T) > 0 correspond to a **countable union** of certain proper closed subsets of \mathcal{B}_g .

2. Properties of \mathbb{P}^1 -bundles over T.

We studied the groups $\operatorname{Bim}(X)$ and $\operatorname{Aut}(X)$ (bimeromorphic and biregular self-maps) of \mathbb{P}^1 – bundles X over a torus T.

1. A very general torus T has a(T) = 0 when g > 1.

Meaning: there is no good moduli space of tori of dimension g>1. But there is a "versal family", i.e., there is a flat morphism $\tau:\mathcal{X}_g\to\mathcal{B}_g$ of irreeducible complex spaces $\mathcal{X}_g,\mathcal{B}_g$ such that

- every fiber of τ is a torus of dimension g,
- every torus of dimension g is isomorphic to a fiber of τ .

Tori with a(T) > 0 correspond to a **countable union** of certain proper closed subsets of \mathcal{B}_g .

2. Properties of \mathbb{P}^1 -bundles over T.

We studied the groups $\operatorname{Bim}(X)$ and $\operatorname{Aut}(X)$ (bimeromorphic and biregular self-maps) of \mathbb{P}^1- bundles X over a torus T.

The cases a(T) > 0 and a(T) = 0 are drastically different. (Will be discussed later)

Let $T = \mathbb{C}^g/\Gamma$ and $\phi \in \operatorname{End}(T)$. Let $K = T/(\pm 1)$ be the generalized **Kummer manifold** of T.

Let $T=\mathbb{C}^g/\Gamma$ and $\phi\in \mathrm{End}(T)$. Let $K=T/(\pm 1)$ be the generalized **Kummer manifold** of T. By blowing up the **diagonal** and (the image) of the **graph** of ϕ in $K\times K$, one gets the compact complex manifold X.

Voisin proved that X cannot be deformed to a projective manifold if ϕ enjoys the following

Conditions Let ϕ_{Γ} be the endomorphism of Γ induced by ϕ .

Let $T=\mathbb{C}^g/\Gamma$ and $\phi\in \operatorname{End}(T)$. Let $K=T/(\pm 1)$ be the generalized **Kummer manifold** of T. By blowing up the **diagonal** and (the image) of the **graph** of ϕ in $K\times K$, one gets the compact complex manifold X.

Voisin proved that X cannot be deformed to a projective manifold if ϕ enjoys the following

Conditions Let ϕ_{Γ} be the endomorphism of Γ induced by ϕ . Then its **characteristic polynomial** $f(x) \in \mathbb{Z}[x] \subset \mathbb{Q}[x]$ of degree 2g is irreducible (over \mathbb{Q})

Let $T = \mathbb{C}^g/\Gamma$ and $\phi \in \operatorname{End}(T)$. Let $K = T/(\pm 1)$ be the generalized **Kummer manifold** of T. By blowing up the **diagonal** and (the image) of the **graph** of ϕ in $K \times K$, one gets the compact complex manifold X.

Voisin proved that X cannot be deformed to a projective manifold if ϕ enjoys the following

Conditions Let ϕ_{Γ} be the endomorphism of Γ induced by ϕ . Then its **characteristic polynomial** $f(x) \in \mathbb{Z}[x] \subset \mathbb{Q}[x]$ of degree 2g is irreducible (over \mathbb{Q}) without real roots; its Galois group is the full symmetric group \mathbf{S}_{2g} .

Let $T=\mathbb{C}^g/\Gamma$ and $\phi\in \mathrm{End}(T)$. Let $K=T/(\pm 1)$ be the generalized **Kummer manifold** of T. By blowing up the **diagonal** and (the image) of the **graph** of ϕ in $K\times K$, one gets the compact complex manifold X.

Voisin proved that X cannot be deformed to a projective manifold if ϕ enjoys the following

Conditions Let ϕ_{Γ} be the endomorphism of Γ induced by ϕ . Then its **characteristic polynomial** $f(x) \in \mathbb{Z}[x] \subset \mathbb{Q}[x]$ of degree 2g is irreducible (over \mathbb{Q}) without real roots; its Galois group is the full symmetric group \mathbf{S}_{2g} . (Such a pair (T, ϕ) is called a scenic torus.)

If (T, ϕ) is **scenic** then Voisin proved that the Picard number $\rho(T)$ of T is 0, hence T is **non-algebraic**.

Let $T = \mathbb{C}^g/\Gamma$ and $\phi \in \operatorname{End}(T)$. Let $K = T/(\pm 1)$ be the generalized Kummer manifold of T. By blowing up the diagonal and (the image) of the **graph** of ϕ in $K \times K$, one gets the compact complex manifold X.

Voisin proved that X cannot be deformed to a projective manifold if ϕ enjoys the following

Conditions Let ϕ_{Γ} be the endomorphism of Γ induced by ϕ . Then its **characteristic polynomial** $f(x) \in \mathbb{Z}[x] \subset \mathbb{Q}[x]$ of degree 2g is irreducible (over \mathbb{Q}) without real roots; its Galois group is the full symmetric group S_{2g} . (Such a pair (T, ϕ) is called a scenic torus.)

If (T, ϕ) is **scenic** then Voisin proved that the Picard number $\rho(T)$ of T is 0, hence T is **non-algebraic**. Actually, $\rho(T) = 0 \Longrightarrow a(T) = 0.$

$$\mathcal{O}(I) = 0 \Longrightarrow a(I) = 0.$$

Examples of complex manifolds with alg. dimension $\boldsymbol{0}$

Examples of complex manifolds with alg. dimension $\boldsymbol{0}$

dim(T) = g = 1 - all elliptic curves are projective/algebraic.

dim(T) = g = 1 - all elliptic curves are projective/algebraic.

dim(T) = g = 2 - there are explicit examples of tori T with a(T) = 0. (e.g., in the book of C. Birkenhake and H. Lange).

dim(T) = g = 1 - all elliptic curves are projective/algebraic.

dim(T) = g = 2 - there are explicit examples of tori T with a(T) = 0. (e.g., in the book of C. Birkenhake and H. Lange).

There is an example of a K3 surface containing no curves (C.T. McMullen, 2002).

dim(T) = g = 1 - all elliptic curves are projective/algebraic.

dim(T) = g = 2 - there are explicit examples of tori T with a(T) = 0. (e.g., in the book of C. Birkenhake and H. Lange).

There is an example of a K3 surface containing no curves (C.T. McMullen, 2002).

There are already mentioned *scenic tori* introduced C. Voisin (2004) as examples of non-algebraic tori.

 $\dim(T) = g = 1$ - all elliptic curves are projective/algebraic.

dim(T) = g = 2 - there are explicit examples of tori T with a(T) = 0. (e.g., in the book of C. Birkenhake and H. Lange).

There is an example of a K3 surface containing no curves (C.T. McMullen, 2002).

There are already mentioned *scenic tori* introduced C. Voisin (2004) as examples of non-algebraic tori. We prove that a(T) = 0 for scenic T.

dim(T) = g = 1 - all elliptic curves are projective/algebraic.

dim(T) = g = 2 - there are explicit examples of tori T with a(T) = 0. (e.g., in the book of C. Birkenhake and H. Lange).

There is an example of a K3 surface containing no curves (C.T. McMullen, 2002).

There are already mentioned *scenic tori* introduced C. Voisin (2004) as examples of non-algebraic tori. We prove that a(T) = 0 for scenic T. In addition, scenic tori are simple where:

Definition.

dim(T) = g = 1 - all elliptic curves are projective/algebraic.

dim(T) = g = 2 - there are explicit examples of tori T with a(T) = 0. (e.g., in the book of C. Birkenhake and H. Lange).

There is an example of a K3 surface containing no curves (C.T. McMullen, 2002).

There are already mentioned *scenic tori* introduced C. Voisin (2004) as examples of non-algebraic tori. We prove that a(T) = 0 for scenic T. In addition, scenic tori are simple where:

Definition. A positive-dimensional complex torus T is called simple if $\{0\}$ and T are the only complex subtori of T.

dim(T) = g = 1 - all elliptic curves are projective/algebraic.

dim(T) = g = 2 - there are explicit examples of tori T with a(T) = 0. (e.g., in the book of C. Birkenhake and H. Lange).

There is an example of a K3 surface containing no curves (C.T. McMullen, 2002).

There are already mentioned *scenic tori* introduced C. Voisin (2004) as examples of non-algebraic tori. We prove that a(T) = 0 for scenic T. In addition, scenic tori are simple where:

Definition. A positive-dimensional complex torus T is called simple if $\{0\}$ and T are the only complex subtori of T.

Definition (BZ, 2022) We say that a complex torus T of dimension $g \ge 2$ is special if it enjoys the following properties.

Definition (BZ, 2022) We say that a complex torus T of dimension $g \ge 2$ is special if it enjoys the following properties.

(a) T is simple and has algebraic dimension 0.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.
- (d) If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.
- (d) If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, complex tori T and T^{\vee} are **not** isogenous.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.
- (d) If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, complex tori T and T^{\vee} are **not** isogenous.
- (e) The automorphism group $\operatorname{Aut}(T)$ is infinite commutative and isomorphic to $\{1,-1\}\times\mathbb{Z}^{g-1}$.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.
- (d) If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, complex tori T and T^{\vee} are **not** isogenous.
- (e) The automorphism group $\operatorname{Aut}(T)$ is infinite commutative and isomorphic to $\{1,-1\}\times\mathbb{Z}^{g-1}$.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.
- (d) If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, complex tori T and T^{\vee} are **not** isogenous.
- (e) The automorphism group $\operatorname{Aut}(T)$ is infinite commutative and isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Theorem (BZ, 2022) Let (T, ϕ) be a scenic torus.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.
- (d) If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, complex tori T and T^{\vee} are **not** isogenous.
- (e) The automorphism group $\operatorname{Aut}(T)$ is infinite commutative and isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Theorem (BZ, 2022) Let (T, ϕ) be a scenic torus. Then :

T is special.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.
- (d) If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, complex tori T and T^{\vee} are **not** isogenous.
- (e) The automorphism group $\operatorname{Aut}(T)$ is infinite commutative and isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Theorem (BZ, 2022) Let (T, ϕ) be a scenic torus. Then :

- T is special.
- $\forall u \in \text{End}(T) \setminus \mathbb{Z}$ the pair (T, u) is scenic.
- $\exists \psi \in \operatorname{Aut}(T)$ such that (T, ψ) is scenic.

- (a) T is simple and has algebraic dimension 0.
- (b) The endomorphism algebra $\operatorname{End}^0(T)$ is a purely imaginary number field of degree 2g.
- (c) The Picard number $\rho(T)$ of T is 0.
- (d) If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, complex tori T and T^{\vee} are **not** isogenous.
- (e) The automorphism group $\operatorname{Aut}(T)$ is infinite commutative and isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Theorem (BZ, 2022) Let (T, ϕ) be a scenic torus. Then :

- T is special.
- $\forall u \in \text{End}(T) \setminus \mathbb{Z}$ the pair (T, u) is scenic.
- $\exists \psi \in \operatorname{Aut}(T)$ such that (T, ψ) is scenic.

For a **very general** torus T with $g = \dim(T) \ge 2$ we have a(T) = 0, $\operatorname{End}^0(T) = \mathbb{Q}$, $\operatorname{Aut}(T) = \{\pm 1\}$.

For a **very general** torus T with $g = \dim(T) \ge 2$ we have a(T) = 0, $\operatorname{End}^0(T) = \mathbb{Q}$, $\operatorname{Aut}(T) = \{\pm 1\}$. Thus, a **very general** torus is not special.

For a **very general** torus T with $g = \dim(T) \ge 2$ we have a(T) = 0, $\operatorname{End}^0(T) = \mathbb{Q}$, $\operatorname{Aut}(T) = \{\pm 1\}$. Thus, a **very general** torus is not special. $\rho(T) = 0$ implies that a(T) = 0 but not *vice versa*

```
For a very general torus T with g = \dim(T) \ge 2 we have a(T) = 0, \operatorname{End}^0(T) = \mathbb{Q}, \operatorname{Aut}(T) = \{\pm 1\}. Thus, a very general torus is not special. \rho(T) = 0 implies that a(T) = 0 but not vice versa (Examples are in the book of Birkenhake-Lange)
```

Proposition (BZ, 2021)

```
For a very general torus T with g = \dim(T) \ge 2 we have a(T) = 0, \operatorname{End}^0(T) = \mathbb{Q}, \operatorname{Aut}(T) = \{\pm 1\}. Thus, a very general torus is not special. \rho(T) = 0 implies that a(T) = 0 but not vice versa (Examples are in the book of Birkenhake-Lange) Fact (Shimura-Taniyama, 1961) If \operatorname{End}^0(T) contains a CM field of degree 2g then T is an abelian variety, i.e., a(T) = g.
```

```
For a very general torus T with g = \dim(T) \ge 2 we have a(T) = 0, \operatorname{End}^0(T) = \mathbb{Q}, \operatorname{Aut}(T) = \{\pm 1\}. Thus, a very general torus is not special. \rho(T) = 0 implies that a(T) = 0 but not vice versa (Examples are in the book of Birkenhake-Lange)

Fact (Shimura-Taniyama, 1961) If \operatorname{End}^0(T) contains a CM field of degree 2g then T is an abelian variety, i.e., a(T) = g.

Proposition (BZ, 2021) If \operatorname{End}(T) \otimes \mathbb{Q} contains a degree 2g number field E
```

```
For a very general torus T with g = \dim(T) \ge 2 we have a(T) = 0, \operatorname{End}^0(T) = \mathbb{Q}, \operatorname{Aut}(T) = \{\pm 1\}. Thus, a very general torus is not special. \rho(T) = 0 implies that a(T) = 0 but not vice versa (Examples are in the book of Birkenhake-Lange)

Fact (Shimura-Taniyama, 1961) If \operatorname{End}^0(T) contains a CM field of
```

degree 2g then T is an abelian variety, i.e., a(T) = g.

Proposition (BZ, 2021) If $\operatorname{End}(T) \otimes \mathbb{Q}$ contains a degree 2g number field E such that

E does not contain a CM subfield,

```
For a very general torus T with g = \dim(T) \ge 2 we have a(T) = 0, \operatorname{End}^0(T) = \mathbb{Q}, \operatorname{Aut}(T) = \{\pm 1\}. Thus, a very general torus is not special. \rho(T) = 0 implies that a(T) = 0 but not vice versa (Examples are in the book of Birkenhake-Lange)
```

Fact (Shimura-Taniyama, 1961) If $\operatorname{End}^0(T)$ contains a CM field of degree 2g then T is an abelian variety, i.e., a(T) = g.

Proposition (BZ, 2021) If $\operatorname{End}(T) \otimes \mathbb{Q}$ contains a degree 2g number field E such that

E does not contain a CM subfield, then a(T) = 0.

For a **very general** torus T with $g = \dim(T) \ge 2$ we have a(T) = 0, $\operatorname{End}^0(T) = \mathbb{Q}$, $\operatorname{Aut}(T) = \{\pm 1\}$.

Thus, a very general torus is not special.

 $\rho(T) = 0$ implies that a(T) = 0 but not *vice versa* (Examples are in the book of Birkenhake-Lange)

Fact (Shimura-Taniyama, 1961) If $\operatorname{End}^0(T)$ contains a CM field of degree 2g then T is an abelian variety, i.e., a(T) = g.

Proposition (BZ, 2021) If $\operatorname{End}(T) \otimes \mathbb{Q}$ contains a degree 2g number field E such that

E does not contain a CM subfield, then a(T) = 0. Moreover there exist a simple complex torus S with a(S) = 0 and a positive integer r such that T is isogenous to S^r .

Further in this talk we

Explicitly construct special tori;

Further in this talk we

- Explicitly construct special tori;
- Explicity construct an infinite family of non-isogeneous special tori;

Further in this talk we

- Explicitly construct special tori;
- Explicity construct an infinite family of non-isogeneous special tori;

Construction is based on the following Theorem

Further in this talk we

- Explicitly construct special tori;
- Explicity construct an infinite family of non-isogeneous special tori;

Construction is based on the following Theorem that mimicks the construction of abelian varieties of CM type (Shimura-Taniyama).

Let $g \ge 2$ be an integer and E a degree 2g number field that enjoys the following properties.

Let $g \ge 2$ be an integer and E a degree 2g number field that enjoys the following properties.

(i) E is purely imaginary;

Let $g \ge 2$ be an integer and E a degree 2g number field that enjoys the following properties.

- (i) E is purely imaginary;
- (ii) E has no proper subfields except \mathbb{Q} .

Let $g \ge 2$ be an integer and E a degree 2g number field that enjoys the following properties.

- (i) E is purely imaginary;
- (ii) E has no proper subfields except \mathbb{Q} .

Choose any isomorphism of \mathbb{R} -algebras

$$\Psi: \textit{E}_{\mathbb{R}} := \textit{E} \otimes_{\mathbb{Q}} \mathbb{R} \rightarrow \oplus_{i=1}^{\textit{g}} \mathbb{C} = \mathbb{C}^{\textit{g}}$$

Let $g \ge 2$ be an integer and E a degree 2g number field that enjoys the following properties.

- (i) E is purely imaginary;
- (ii) E has no proper subfields except \mathbb{Q} .

Choose any isomorphism of \mathbb{R} -algebras

$$\Psi: E_{\mathbb{R}} := E \otimes_{\mathbb{Q}} \mathbb{R} \to \bigoplus_{j=1}^{g} \mathbb{C} = \mathbb{C}^{g}$$
 and a \mathbb{Z} -lattice Λ of rank $2g$ in $E \subset E_{\mathbb{R}}$.

Let $g \ge 2$ be an integer and E a degree 2g number field that enjoys the following properties.

- (i) E is purely imaginary;
- (ii) E has no proper subfields except \mathbb{Q} .

Choose any isomorphism of \mathbb{R} -algebras

$$\Psi: \mathit{E}_{\mathbb{R}} := \mathit{E} \otimes_{\mathbb{Q}} \mathbb{R} o \oplus_{j=1}^{\mathit{g}} \mathbb{C} = \mathbb{C}^{\mathit{g}}$$

and a \mathbb{Z} -lattice Λ of rank 2g in $E \subset E_{\mathbb{R}}$.

The isomorphism Ψ provides $E_{\mathbb{R}}$ with the structure of a g-dimensional complex vector space.

Let $g \ge 2$ be an integer and E a degree 2g number field that enjoys the following properties.

- (i) E is purely imaginary;
- (ii) E has no proper subfields except \mathbb{Q} .

Choose any isomorphism of \mathbb{R} -algebras

 $\Psi: E_{\mathbb{R}} := E \otimes_{\mathbb{Q}} \mathbb{R} \to \oplus_{j=1}^{g} \mathbb{C} = \mathbb{C}^{g}$

and a \mathbb{Z} -lattice Λ of rank 2g in $E \subset E_{\mathbb{R}}$.

The isomorphism Ψ provides $E_{\mathbb{R}}$ with the structure of a g-dimensional complex vector space.

Then the complex torus $T = T_{E,\Psi,\Lambda} := E_{\mathbb{R}}/\Lambda$ is special and its endomorphism algebra $\operatorname{End}^0(T)$ is isomorphic to E.

Dense set of special tori

Let

■ $g \ge 2$,;

Dense set of special tori

Let

- $g \ge 2$,;
- *E* a degree 2*g* number field that meets the Theorem conditions;

Dense set of special tori

Let

- $g \ge 2$,
- *E* a degree 2*g* number field that meets the Theorem conditions;
- Γ an integer lattice of rank 2g in E;

Let

- $g \ge 2$,;
- *E* a degree 2*g* number field that meets the Theorem conditions;
- \blacksquare Γ an integer lattice of rank 2g in E;
- $T_0 = T_{E,\Psi,\Gamma}$ the corresponding complex torus of dimension g.

Let

- $g \ge 2$
- *E* a degree 2*g* number field that meets the Theorem conditions;
- \blacksquare Γ an integer lattice of rank 2g in E;
- $T_0 = T_{E,\Psi,\Gamma}$ the corresponding complex torus of dimension g.

Take as Λ any subgroup of finite index in Γ

Let

- $g \ge 2$,;
- *E* a degree 2*g* number field that meets the Theorem conditions;
- \blacksquare Γ an integer lattice of rank 2g in E;
- $T_0 = T_{E,\Psi,\Gamma}$ the corresponding complex torus of dimension g.

Take as Λ any subgroup of finite index in $\Gamma \implies$

 Λ is also an integer lattice of rank 2g in $E\subset E_{\mathbb{R}}$

Let

- $g \ge 2$,;
- *E* a degree 2*g* number field that meets the Theorem conditions;
- \blacksquare Γ an integer lattice of rank 2g in E;
- $T_0 = T_{E,\Psi,\Gamma}$ the corresponding complex torus of dimension g.

Take as Λ any subgroup of finite index in $\Gamma \implies$

 Λ is also an integer lattice of rank 2g in $E \subset E_{\mathbb{R}} \implies$

 $T = T_{E,\Psi,\Lambda}$ is special and $\operatorname{End}^0(T) \cong E$.

Let

- $g \ge 2$
- *E* a degree 2*g* number field that meets the Theorem conditions;
- \blacksquare Γ an integer lattice of rank 2g in E;
- $T_0 = T_{E,\Psi,\Gamma}$ the corresponding complex torus of dimension g.

Take as Λ any subgroup of finite index in $\Gamma \implies$

 Λ is also an integer lattice of rank 2g in $E \subset E_{\mathbb{R}} \implies$

 $T = T_{E,\Psi,\Lambda}$ is special and $\operatorname{End}^0(T) \cong E$.

 $\{T_{E,\Psi,\Lambda}\}$ is precisely the isogeny class of T_0 (up to an isomorphism).

Let $\mathcal{X}_g o B_g$ be a versal family of complex tori of dimension g.

Let $\mathcal{X}_g \to B_g$ be a versal family of complex tori of dimension g. Its base B_g is a homogeneous $\mathrm{GL}_{2g}(\mathbb{R})$ -space. Let $\mathcal{X}_g o B_g$ be a versal family of complex tori of dimension g.

Its base B_g is a homogeneous $\mathrm{GL}_{2g}(\mathbb{R})$ -space.

Each isogeny class is a $\mathrm{GL}_{2g}(\mathbb{Q})$ -orbit in B_g ,

Let $\mathcal{X}_g \to B_g$ be a versal family of complex tori of dimension g.

Its base B_g is a homogeneous $\mathrm{GL}_{2g}(\mathbb{R})$ -space.

Each isogeny class is a $\mathrm{GL}_{2g}(\mathbb{Q})$ -orbit in B_g , which is a dense subset of B_g ,

Let $\mathcal{X}_g \to B_g$ be a versal family of complex tori of dimension g.

Its base B_g is a homogeneous $\mathrm{GL}_{2g}(\mathbb{R})$ -space.

Each isogeny class is a $GL_{2g}(\mathbb{Q})$ -orbit in B_g , which is a dense subset of B

which is a dense subset of B_g ,

because $\mathrm{GL}_{2g}(\mathbb{Q})$ is a dense subgroup of $\mathrm{GL}_{2g}(\mathbb{R})$.

Let $\mathcal{X}_g \to \mathcal{B}_g$ be a versal family of complex tori of dimension g.

Its base B_g is a homogeneous $\mathrm{GL}_{2g}(\mathbb{R})$ -space.

Each isogeny class is a $\mathrm{GL}_{2g}(\mathbb{Q})$ -orbit in B_g , which is a dense subset of B_g , because $\mathrm{GL}_{2g}(\mathbb{Q})$ is a dense subgroup of $\mathrm{GL}_{2g}(\mathbb{R})$.

Thus each isogeny class is dense in the space $B_g/\mathrm{GL}_{2g}(\mathbb{Z})$ of complex tori of dimension g.

Let $\mathcal{X}_g \to \mathcal{B}_g$ be a versal family of complex tori of dimension g.

Its base B_g is a homogeneous $\mathrm{GL}_{2g}(\mathbb{R})$ -space.

Each isogeny class is a $\mathrm{GL}_{2g}(\mathbb{Q})$ -orbit in B_g , which is a dense subset of B_g , because $\mathrm{GL}_{2g}(\mathbb{Q})$ is a dense subgroup of $\mathrm{GL}_{2g}(\mathbb{R})$.

Thus each isogeny class is dense in the space $B_g/\mathrm{GL}_{2g}(\mathbb{Z})$ of complex tori of dimension $g.\Longrightarrow$

 $\{T_{E,\Psi,\Lambda}\}$ is dense

Let $\mathcal{X}_g \to \mathcal{B}_g$ be a versal family of complex tori of dimension g.

Its base B_g is a homogeneous $\mathrm{GL}_{2g}(\mathbb{R})$ -space.

Each isogeny class is a $\mathrm{GL}_{2g}(\mathbb{Q})$ -orbit in B_g , which is a dense subset of B_g , because $\mathrm{GL}_{2g}(\mathbb{Q})$ is a dense subgroup of $\mathrm{GL}_{2g}(\mathbb{R})$.

Thus each isogeny class is dense in the space $B_g/\mathrm{GL}_{2g}(\mathbb{Z})$ of complex tori of dimension g. \Longrightarrow

$$\{T_{E,\Psi,\Lambda}\}$$
 is dense \Longrightarrow

The subset of all *g*-dimensional *special* tori is dense in the "moduli space."

Wanted:

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

• f(x) has no real roots;

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**. If found:

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

If found: then (we prove this)

■ the quotient $E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x]$ is a degree 2g purely imaginary field;

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

- the quotient $E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x]$ is a degree 2g purely imaginary field;
- *E* does not contain proper subfields except Q.

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

- the quotient $E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x]$ is a degree 2g purely imaginary field;
- E does not contain proper subfields except \mathbb{Q} .
- If \tilde{x} be image of $x \in \mathbb{Q}[x]$ in E,

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

- the quotient $E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x]$ is a degree 2g purely imaginary field;
- **E** does not contain proper subfields except \mathbb{Q} .
- If \tilde{x} be image of $x \in \mathbb{Q}[x]$ in E, $\{\alpha_1, \bar{\alpha}_1, \dots, \alpha_g, \bar{\alpha}_g\} \subset \mathbb{C}$ are all the roots of f(x),

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

- the quotient $E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x]$ is a degree 2g purely imaginary field;
- E does not contain proper subfields except Q.
- If \tilde{x} be image of $x \in \mathbb{Q}[x]$ in E, $\{\alpha_1, \bar{\alpha}_1, \dots, \alpha_g, \bar{\alpha}_g\} \subset \mathbb{C}$ are all the roots of f(x), then

$$\tau_i : E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x] \hookrightarrow \mathbb{C}, \ u(\tilde{x}) \mapsto u(\alpha_i)$$

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

If found: then (we prove this)

- the quotient $E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x]$ is a degree 2g purely imaginary field;
- E does not contain proper subfields except \mathbb{Q} .
- If \tilde{x} be image of $x \in \mathbb{Q}[x]$ in E, $\{\alpha_1, \bar{\alpha}_1, \dots, \alpha_g, \bar{\alpha}_g\} \subset \mathbb{C}$ are all the roots of f(x), then

$$\tau_i : E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x] \hookrightarrow \mathbb{C}, \ u(\tilde{x}) \mapsto u(\alpha_i)$$

are the Q-algebra homomorphisms;

Wanted: an **irreducible** polynomial $f(x) \in \mathbb{Q}[x]$, of degree 2g such that

- \bullet f(x) has no real roots;
- Gal(f) is a *primitive* permutation group.

Remark If Gal(f) is doubly transitive then it is **primitive**.

If found: then (we prove this)

- the quotient $E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x]$ is a degree 2g purely imaginary field;
- E does not contain proper subfields except \mathbb{Q} .
- If \tilde{x} be image of $x \in \mathbb{Q}[x]$ in E, $\{\alpha_1, \bar{\alpha}_1, \dots, \alpha_g, \bar{\alpha}_g\} \subset \mathbb{C}$ are all the roots of f(x), then

$$\tau_i : E = \mathbb{Q}[x]/f(x)\mathbb{Q}[x] \hookrightarrow \mathbb{C}, \ u(\tilde{x}) \mapsto u(\alpha_i)$$

are the Q-algebra homomorphisms;

■ $\Phi : E \hookrightarrow \mathbb{C}^g, \beta \mapsto (\tau_1(\beta), \dots \tau_g(\beta))$ is an injective \mathbb{Q} -algebra homomorphism;

- $\Phi: E \hookrightarrow \mathbb{C}^g, \beta \mapsto (\tau_1(\beta), \dots \tau_g(\beta))$ is an injective \mathbb{Q} -algebra homomorphism;
- ullet Φ extends to the isomorphism $\Phi: E_{\mathbb{R}} \cong \mathbb{C}^g$ of \mathbb{R} -algebras.

- $\Phi: E \hookrightarrow \mathbb{C}^g, \beta \mapsto (\tau_1(\beta), \dots \tau_g(\beta))$ is an injective \mathbb{Q} -algebra homomorphism;
- ullet Φ extends to the isomorphism $\Phi: E_{\mathbb{R}} \cong \mathbb{C}^g$ of \mathbb{R} -algebras.
- Take $\Lambda = \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \tilde{x} + \cdots + \mathbb{Z} \cdot \tilde{x}^{2g-1} \subset E$

- $\Phi : E \hookrightarrow \mathbb{C}^g, \beta \mapsto (\tau_1(\beta), \dots \tau_g(\beta))$ is an injective \mathbb{Q} -algebra homomorphism;
- ullet Φ extends to the isomorphism $\Phi: E_{\mathbb{R}} \cong \mathbb{C}^g$ of \mathbb{R} -algebras.
- Take $\Lambda = \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \tilde{x} + \cdots + \mathbb{Z} \cdot \tilde{x}^{2g-1} \subset E$ Then $\Phi(\Lambda) \subset \mathbb{C}^g$ is a lattice.

- $\Phi: E \hookrightarrow \mathbb{C}^g, \beta \mapsto (\tau_1(\beta), \dots \tau_g(\beta))$ is an injective \mathbb{Q} -algebra homomorphism;
- lacktriangle Φ extends to the isomorphism $\Phi: E_{\mathbb{R}} \cong \mathbb{C}^g$ of \mathbb{R} -algebras.
- Take $\Lambda = \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \tilde{x} + \cdots + \mathbb{Z} \cdot \tilde{x}^{2g-1} \subset E$ Then $\Phi(\Lambda) \subset \mathbb{C}^g$ is a lattice.
- By the Theorem,

$$T(f) := \mathbb{C}^g/\Phi(\Lambda) = T_{E,\Phi,\Lambda}$$

is a special torus.

Below we present such polynomials for every even degree $2g \ge 4$.

Let $n \ge 1$ be an integer.

Let $n \ge 1$ be an integer. The **truncated exponent** is $\exp_n(x) = \sum_{j=0}^n \tfrac{x^j}{j!} \in \mathbb{Q}[x] \subset \mathbb{R}[x].$

Let $n \ge 1$ be an integer. The **truncated exponent** is

$$\exp_n(x) = \sum_{j=0}^n \frac{x^j}{j!} \in \mathbb{Q}[x] \subset \mathbb{R}[x].$$

Properties

Let $n \ge 1$ be an integer. The **truncated exponent** is

$$\exp_n(x) = \sum_{j=0}^n \frac{x^j}{j!} \in \mathbb{Q}[x] \subset \mathbb{R}[x].$$

Properties

1. If $n \ge 2$ is an even integer then $\exp_n(x)$ has no real roots.

Let $n \ge 1$ be an integer. The **truncated exponent** is

$$\exp_n(x) = \sum_{i=0}^n \frac{x^i}{i!} \in \mathbb{Q}[x] \subset \mathbb{R}[x].$$

Properties

- 1. If $n \ge 2$ is an even integer then $\exp_n(x)$ has no real roots.
- **2.** Gal($\exp_n(x)$) = **S**_n or **A**_n. (Schur, 1930).

Let $n \ge 1$ be an integer. The **truncated exponent** is

$$\exp_n(x) = \sum_{j=0}^n \frac{x^j}{j!} \in \mathbb{Q}[x] \subset \mathbb{R}[x].$$

Properties

- 1. If $n \ge 2$ is an even integer then $\exp_n(x)$ has no real roots.
- **2.** Gal($\exp_n(x)$) = **S**_n or **A**_n. (Schur, 1930).
- **3.** For $n = 2g \ge 4$:

Let $n \ge 1$ be an integer. The **truncated exponent** is

$$\exp_n(x) = \sum_{j=0}^n \frac{x^j}{j!} \in \mathbb{Q}[x] \subset \mathbb{R}[x].$$

Properties

- 1. If $n \ge 2$ is an even integer then $\exp_n(x)$ has no real roots.
- **2.** Gal($\exp_n(x)$) = **S**_n or **A**_n. (Schur, 1930).
- **3.** For $n = 2g \ge 4$: **S**_n and **A**_n are doubly transitive

Let $n \ge 1$ be an integer. The **truncated exponent** is

$$\exp_n(x) = \sum_{j=0}^n \frac{x^j}{j!} \in \mathbb{Q}[x] \subset \mathbb{R}[x].$$

Properties

- 1. If $n \ge 2$ is an even integer then $\exp_n(x)$ has no real roots.
- **2.** Gal($\exp_n(x)$) = **S**_n or **A**_n. (Schur, 1930).
- **3.** For $n = 2g \ge 4$: **S**_n and **A**_n are doubly transitive

Thus $T(\exp_{2g})$ is special g-dimensional complex torus with endomorphism algebra (field) $K_g = \mathbb{Q}[x]/\exp_{2g}(x)\mathbb{Q}[x]$.

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

1. $\operatorname{selm}_{2g}(x)$ does not have real roots.

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3$

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies$

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3$

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3 \implies$

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3 \implies \operatorname{selm}_{2g}(x)$ is irreducible over \mathbb{Q} (Selmer, 1956).

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3 \implies \operatorname{selm}_{2g}(x)$ is irreducible over \mathbb{Q} (Selmer, 1956).
- **3.** The coefficient at x and the constant term are relatively prime, square free and coprime to both 2g and 2g-1.

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- **1.** $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3 \implies \operatorname{selm}_{2g}(x)$ is irreducible over \mathbb{Q} (Selmer, 1956).
- **3.** The coefficient at x and the constant term are relatively prime, square free and coprime to both 2g and 2g-1. \Longrightarrow

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3 \implies \operatorname{selm}_{2g}(x)$ is irreducible over \mathbb{Q} (Selmer, 1956).
- **3.** The coefficient at x and the constant term are relatively prime, square free and coprime to both 2g and 2g-1. \Longrightarrow $\mathrm{Gal}(\mathrm{selm}_{2g}(x)) = \mathbf{S}_{2g}$ (Nart, Vila, 1979, Osada, 1987).

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3 \implies \operatorname{selm}_{2g}(x)$ is irreducible over \mathbb{Q} (Selmer, 1956).
- **3.** The coefficient at x and the constant term are relatively prime, square free and coprime to both 2g and 2g-1. \Longrightarrow $\mathrm{Gal}(\mathrm{selm}_{2g}(x)) = \mathbf{S}_{2g}$ (Nart, Vila, 1979, Osada, 1987).

Thus for $g \not\equiv 1 \mod 3$

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3 \implies \operatorname{selm}_{2g}(x)$ is irreducible over \mathbb{Q} (Selmer, 1956).
- **3.** The coefficient at x and the constant term are relatively prime, square free and coprime to both 2g and 2g-1. \Longrightarrow $\operatorname{Gal}(\operatorname{selm}_{2g}(x)) = \mathbf{S}_{2g}$ (Nart, Vila, 1979, Osada, 1987).

Thus for $g \not\equiv 1 \mod 3$ the g-dimensional complex torus $T(\operatorname{selm}_{2g})$ is special

$$\operatorname{selm}_{2g}(x) = x^{2g} + x + 1 \in \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x].$$
 Properties

- 1. $\operatorname{selm}_{2g}(x)$ does not have real roots.
- **2.** Take $g \not\equiv 1 \mod 3 \implies 2g \not\equiv 2 \mod 3 \implies \operatorname{selm}_{2g}(x)$ is irreducible over \mathbb{Q} (Selmer, 1956).
- **3.** The coefficient at x and the constant term are relatively prime, square free and coprime to both 2g and 2g-1. \Longrightarrow $\operatorname{Gal}(\operatorname{selm}_{2g}(x)) = \mathbf{S}_{2g}$ (Nart, Vila, 1979, Osada, 1987).

Thus for $g \not\equiv 1 \mod 3$ the g-dimensional complex torus $T(\operatorname{selm}_{2g})$ is special with endomorphism algebra $E = M_g := \mathbb{Q}[x]/\operatorname{selm}_{2g}(x)\mathbb{Q}[x]$.

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic.

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic.

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic. But

1. All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic. But

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic.

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).
 - $g + 1 \le p$.

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic.

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).
 - $g + 1 \le p$.
 - One of ramification indices over p in the field extension K_g/\mathbb{Q} is divisible by p.

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic. But

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).
 - $g + 1 \le p$.
 - One of ramification indices over p in the field extension K_g/\mathbb{Q} is divisible by p.

In particular, this index $\geq p \geq g+1 \geq 5+1=6>2$.

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic.

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).
 - $g + 1 \le p$.
 - One of ramification indices over p in the field extension K_g/\mathbb{Q} is divisible by p.

In particular, this index $\geq p \geq g+1 \geq 5+1=6>2$.

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic. But

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).
 - $g + 1 \le p$.
 - One of ramification indices over p in the field extension K_g/\mathbb{Q} is divisible by p.

In particular, this index $\geq p \geq g+1 \geq 5+1=6>2$.

Contradiction

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic.

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).
 - $g + 1 \le p$.
 - One of ramification indices over p in the field extension K_g/\mathbb{Q} is divisible by p.

In particular, this index $\geq p \geq g+1 \geq 5+1=6>2$.

Contradiction \Longrightarrow

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic. But

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).
 - $g + 1 \le p$.
 - One of ramification indices over p in the field extension K_g/\mathbb{Q} is divisible by p.

In particular, this index $\geq p \geq g+1 \geq 5+1=6>2$.

Contradiction \implies The number fields K_g and M_g are not isomorphic.

Indeed, suppose that they are isogenous.

Then their endomorphism algebras K_g and M_g are isomorphic.

- **1.** All the ramification indices in the field extension M_g/\mathbb{Q} do not exceed 2 (Osada, 1987).
- **2.** For K_g there is a prime p that enjoys the following properties (Z, 2003).
 - $g + 1 \le p$.
 - One of ramification indices over p in the field extension K_g/\mathbb{Q} is divisible by p.

In particular, this index $\geq p \geq g+1 \geq 5+1=6>2$.

Contradiction \implies The number fields K_g and M_g are not isomorphic. \implies The tori are not isogenous.

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$.

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

 \blacksquare a prime divisor l of 2g-1;

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;
- an integer c that is **not** divisible by *l*.

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;
- an integer c that is **not** divisible by I.

We call such a (I, p, b, c) a g-admissible quadruple.

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;
- an integer c that is **not** divisible by I.

We call such a (I, p, b, c) a g-admissible quadruple.

Remark

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;
- an integer c that is **not** divisible by I.

We call such a (I, p, b, c) a g-admissible quadruple.

Remark Let $g \ge 2$ and I be any prime divisor of 2g - 1.

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;
- an integer c that is **not** divisible by I.

We call such a (I, p, b, c) a g-admissible quadruple.

Remark Let $g \ge 2$ and I be any prime divisor of 2g - 1.

By Dirichlet's Theorem about primes in arithmetic progressions, one can choose p.

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;
- an integer c that is **not** divisible by I.

We call such a (I, p, b, c) a g-admissible quadruple.

Remark Let $g \ge 2$ and l be any prime divisor of 2g - 1.

By Dirichlet's Theorem about primes in arithmetic progressions, one can choose p.

By Chinese Remainder Theorem one can choose b

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;
- an integer c that is **not** divisible by I.

We call such a (I, p, b, c) a g-admissible quadruple.

Remark Let $g \ge 2$ and l be any prime divisor of 2g - 1.

By Dirichlet's Theorem about primes in arithmetic progressions, one can choose p.

By Chinese Remainder Theorem one can choose $b \implies$

The construction was inspired by so called **Mori polynomials** (Mori, 1977; Z, 2016).

As above, $g \ge 2$ is an integer, hence $2g - 1 \ge 3$. Let us fix

- \blacksquare a prime divisor I of 2g-1;
- **a** a prime p that is congruent to 1 modulo 2g 1;
- an integer b that is **not** divisible by I and that is a primitive root mod p;
- an integer c that is **not** divisible by I.

We call such a (I, p, b, c) a g-admissible quadruple.

Remark Let $g \ge 2$ and l be any prime divisor of 2g - 1.

By Dirichlet's Theorem about primes in arithmetic progressions, one can choose p.

By Chinese Remainder Theorem one can choose $b \implies$ there are **infinitely many** g-admissible quadruples (J, p, b, c).

Consider a monic degree 2g polynomial

$$f_g(x) = f_{g,l,p,b,c}(x) := x^{2g} - bx - \frac{pc}{l'} \in \mathbb{Z}[1/l][x] \subset \mathbb{Q}[x].$$

Consider a monic degree 2g polynomial

$$f_g(x) = f_{g,l,p,b,c}(x) := x^{2g} - bx - \frac{pc}{l'} \in \mathbb{Z}[1/l][x] \subset \mathbb{Q}[x].$$

Lemma

Consider a monic degree 2g polynomial

$$f_g(x) = f_{g,l,p,b,c}(x) := x^{2g} - bx - \frac{pc}{l'} \in \mathbb{Z}[1/l][x] \subset \mathbb{Q}[x].$$

Lemma

(i) The polynomial $f_g(x) = f_{g,l,p,b,c}(x)$ is irreducible over the field \mathbb{Q}_l of l-adic numbers and therefore over \mathbb{Q} .

Consider a monic degree 2g polynomial

$$f_g(x) = f_{g,l,p,b,c}(x) := x^{2g} - bx - \frac{pc}{l'} \in \mathbb{Z}[1/l][x] \subset \mathbb{Q}[x].$$

Lemma

- (i) The polynomial $f_g(x) = f_{g,l,p,b,c}(x)$ is irreducible over the field \mathbb{Q}_l of l-adic numbers and therefore over \mathbb{Q} .
- (ii) The Galois group $\operatorname{Gal}(f_g)$ of $f_g(x)$ over $\mathbb Q$ is a doubly transitive subgroup of permutation group of roots of $f_g(x)$ (hence, is primitive)

Consider a monic degree 2g polynomial

$$f_g(x) = f_{g,l,p,b,c}(x) := x^{2g} - bx - \frac{pc}{l'} \in \mathbb{Z}[1/l][x] \subset \mathbb{Q}[x].$$

Lemma

- (i) The polynomial $f_g(x) = f_{g,l,p,b,c}(x)$ is irreducible over the field \mathbb{Q}_l of l-adic numbers and therefore over \mathbb{Q} .
- (ii) The Galois group $\operatorname{Gal}(f_g)$ of $f_g(x)$ over $\mathbb Q$ is a doubly transitive subgroup of permutation group of roots of $f_g(x)$ (hence, is primitive)
- (iii) The polynomial $f_g(x)$ has no real roots if and only if $c<\frac{l'\left(\frac{b}{2g}\right)^{1/(2g-1)}\left(\frac{b}{2g}-1\right)}{p}.$

$$c<\frac{I^{\prime}\left(\frac{b}{2g}\right)^{1/(2g-1)}\left(\frac{b}{2g}-1\right)}{p}.$$

$$c<\frac{I^{I}\left(\frac{b}{2g}\right)^{1/(2g-1)}\left(\frac{b}{2g}-1\right)}{p}.$$

Now choose *c* in such a way that inequality holds.

$$c<\frac{l'\left(\frac{b}{2g}\right)^{1/(2g-1)}\left(\frac{b}{2g}-1\right)}{p}.$$

$$T_{g,l,p,b,c}:=T(f_{g,l,p,b,c})$$

$$c < \frac{l'\left(\frac{b}{2g}\right)^{1/(2g-1)}\left(\frac{b}{2g}-1\right)}{p}.$$

$$T_{g,l,p,b,c} := T(f_{g,l,p,b,c})$$
 is special with endomorphism algebra

$$E=L_g=L_{g,l,p,b,c}:=\mathbb{Q}[x]/f_{g,l,p,b,c}(x)\mathbb{Q}[x].$$

$$C < \frac{l'\left(\frac{b}{2g}\right)^{1/(2g-1)}\left(\frac{b}{2g}-1\right)}{p}.$$

$$T_{g,l,p,b,c} := T(f_{g,l,p,b,c})$$
 is special with endomorphism algebra $E = L_g = L_{g,l,p,b,c} := \mathbb{Q}[x]/f_{g,l,p,b,c}(x)\mathbb{Q}[x].$

Using an additional information about the ramification/discriminant of the field extension $L_{g,l,p,b,c}/\mathbb{Q}$, one may build explicitly two sequences $\{b_n\}$ and $\{c_n\}$ such that

$$C < \frac{l'\left(\frac{b}{2g}\right)^{1/(2g-1)}\left(\frac{b}{2g}-1\right)}{p}.$$

$$T_{g,l,p,b,c} := T(f_{g,l,p,b,c})$$
 is special with endomorphism algebra $E = L_g = L_{g,l,p,b,c} := \mathbb{Q}[x]/f_{g,l,p,b,c}(x)\mathbb{Q}[x].$

Using an additional information about the ramification/discriminant of the field extension $L_{g,l,p,b,c}/\mathbb{Q}$, one may build explicitly two sequences $\{b_n\}$ and $\{c_n\}$ such that the number fields L_{g,l,p,b_n,c_n} are pairwise non-isomorphic.

$$c < \frac{l'\left(\frac{b}{2g}\right)^{1/(2g-1)}\left(\frac{b}{2g}-1\right)}{p}.$$

$$T_{g,l,p,b,c} := T(f_{g,l,p,b,c})$$
 is special with endomorphism algebra $E = L_g = L_{g,l,p,b,c} := \mathbb{Q}[x]/f_{g,l,p,b,c}(x)\mathbb{Q}[x].$

Using an additional information about the ramification/discriminant of the field extension $L_{g,l,p,b,c}/\mathbb{Q}$, one may build explicitly two sequences $\{b_n\}$ and $\{c_n\}$ such that the number fields L_{g,l,p,b_n,c_n} are pairwise non-isomorphic.

That gives us a sequence of g-dimensional special non-isogenous tori T_{g,l,p,b_n,c_n} .

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T.

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T. We consider the group $\operatorname{Bim}(X)$ of all bimeromorphic selfmaps of X.

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T. We consider the group $\operatorname{Bim}(X)$ of all bimeromorphic selfmaps of X. There are two **very different cases**.

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T. We consider the group $\operatorname{Bim}(X)$ of all bimeromorphic selfmaps of X. There are two **very different cases**.

Case 1. a(T) = 0 and X is **not** biholomorphic to $T \times \mathbb{P}^1$.

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T. We consider the group $\operatorname{Bim}(X)$ of all bimeromorphic selfmaps of X. There are two **very different cases**.

Case 1. a(T) = 0 and X is **not** biholomorphic to $T \times \mathbb{P}^1$. Then (BZ, 2020)

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T. We consider the group $\operatorname{Bim}(X)$ of all bimeromorphic selfmaps of X. There are two **very different cases**.

Case 1. a(T) = 0 and X is **not** biholomorphic to $T \times \mathbb{P}^1$. Then (BZ, 2020)

 $\bullet \operatorname{Bim}(X) = \operatorname{Aut}(X);$

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T. We consider the group $\operatorname{Bim}(X)$ of all bimeromorphic selfmaps of X. There are two **very different cases**.

Case 1. a(T) = 0 and X is **not** biholomorphic to $T \times \mathbb{P}^1$. Then (BZ, 2020)

- $\blacksquare \operatorname{Bim}(X) = \operatorname{Aut}(X);$
- the identity component $Aut_0(X)$ of the complex Lie group Aut(X) is commutative;

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T. We consider the group $\operatorname{Bim}(X)$ of all bimeromorphic selfmaps of X. There are two **very different cases**.

Case 1. a(T) = 0 and X is **not** biholomorphic to $T \times \mathbb{P}^1$. Then (BZ, 2020)

- $\blacksquare \operatorname{Bim}(X) = \operatorname{Aut}(X);$
- the identity component $Aut_0(X)$ of the complex Lie group Aut(X) is commutative;
- there is a positive integer N such that $\#(B) \leq N$ for every finite subgroup of $\operatorname{Aut}(X)/\operatorname{Aut}_0(X)$.

Let T be a complex torus and X be a \mathbb{P}^1 -bundle over T. We consider the group $\operatorname{Bim}(X)$ of all bimeromorphic selfmaps of X. There are two **very different cases**.

Case 1. a(T) = 0 and X is **not** biholomorphic to $T \times \mathbb{P}^1$. Then (BZ, 2020)

- $\blacksquare \operatorname{Bim}(X) = \operatorname{Aut}(X);$
- the identity component $Aut_0(X)$ of the complex Lie group Aut(X) is commutative;
- there is a positive integer N such that $\#(B) \leq N$ for every finite subgroup of $\operatorname{Aut}(X)/\operatorname{Aut}_0(X)$.

(We say that Bim(X) is very Jordan).

Case 2.

Case 2. a(T) = a > 0.

Case 2. a(T) = a > 0.

Take the algebraic model $\pi:T o T_{\it a}$

Case 2. a(T) = a > 0.

Take the algebraic model $\pi: T \to T_a$ where T_a is the abelian variety with $\dim(T_a) = a$ such that $\mathcal{M}(T) = \mathcal{M}(T_a)$,

Take the algebraic model $\pi: T \to T_a$ where T_a is the abelian variety with $\dim(T_a) = a$ such that $\mathcal{M}(T) = \mathcal{M}(T_a)$,

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Take the algebraic model $\pi: T \to T_a$ where T_a is the abelian variety with $\dim(T_a) = a$ such that $\mathcal{M}(T) = \mathcal{M}(T_a)$,

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle $\mathcal L$ over T_a and its pullback $\tilde{\mathcal L}=\pi^*(\mathcal L)$ to T.

Take the algebraic model $\pi: T \to T_a$ where T_a is the abelian variety with $\dim(T_a) = a$ such that $\mathcal{M}(T) = \mathcal{M}(T_a)$,

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle \mathcal{L} over T_a and its pullback $\tilde{\mathcal{L}} = \pi^*(\mathcal{L})$ to T. By definition, $\tilde{\mathcal{L}}$ is a line bundle over T.

Take the algebraic model $\pi: T \to T_a$ where T_a is the abelian variety with $\dim(T_a) = a$ such that $\mathcal{M}(T) = \mathcal{M}(T_a)$,

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle \mathcal{L} over T_a and its pullback $\tilde{\mathcal{L}} = \pi^*(\mathcal{L})$ to T. By definition, $\tilde{\mathcal{L}}$ is a line bundle over T.

Consider $X := \mathbb{P}(\tilde{\mathcal{L}} \oplus \mathbf{1}_T)$ that is a \mathbb{P}^1 -bundle over T.

Take the algebraic model $\pi: T \to T_a$ where T_a is the abelian variety with $\dim(T_a) = a$ such that $\mathcal{M}(T) = \mathcal{M}(T_a)$,

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle \mathcal{L} over T_a and its pullback $\tilde{\mathcal{L}} = \pi^*(\mathcal{L})$ to T. By definition, $\tilde{\mathcal{L}}$ is a line bundle over T.

Consider $X:=\mathbb{P}(\tilde{\mathcal{L}}\oplus \mathbf{1}_T)$ that is a \mathbb{P}^1 -bundle over T. (E.g., take $\mathcal{L}=\mathbf{1}_{T_a}$ and get $X=T\times \mathbb{P}^1$.)

Take the algebraic model $\pi: T \to T_a$ where T_a is the abelian variety with $\dim(T_a) = a$ such that

 $\mathcal{M}(T) = \mathcal{M}(T_a),$

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle \mathcal{L} over T_a and its pullback $\tilde{\mathcal{L}} = \pi^*(\mathcal{L})$ to T. By definition, $\tilde{\mathcal{L}}$ is a line bundle over T.

Consider $X:=\mathbb{P}(\tilde{\mathcal{L}}\oplus \mathbf{1}_{\mathcal{T}})$ that is a \mathbb{P}^1 -bundle over \mathcal{T} . (E.g., take $\mathcal{L}=\mathbf{1}_{\mathcal{T}_a}$ and get $X=\mathcal{T}\times\mathbb{P}^1$.)

Then Bim(X) is non-Jordan (Z, 2019),

Take the algebraic model $\pi: T \to T_a$ where T_a is the abelian variety with $\dim(T_a) = a$ such that $\mathcal{M}(T) = \mathcal{M}(T_a)$,

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle \mathcal{L} over T_a and its pullback $\tilde{\mathcal{L}} = \pi^*(\mathcal{L})$ to T. By definition, $\tilde{\mathcal{L}}$ is a line bundle over T.

Consider $X := \mathbb{P}(\tilde{\mathcal{L}} \oplus \mathbf{1}_T)$ that is a \mathbb{P}^1 -bundle over T. (E.g., take $\mathcal{L} = \mathbf{1}_{T_a}$ and get $X = T \times \mathbb{P}^1$.)

Then Bim(X) is non-Jordan (Z, 2019),

which means:

Case 2.
$$a(T) = a > 0$$
.

Take the algebraic model $\pi: T \to T_a$ where

 T_a is the abelian variety with dim $(T_a) = a$ such that $\mathcal{M}(T) = \mathcal{M}(T_a)$,

$$\pi: T \to T_a$$
 is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle \mathcal{L} over T_a and its pullback $\tilde{\mathcal{L}} = \pi^*(\mathcal{L})$ to T. By definition, $\tilde{\mathcal{L}}$ is a line bundle over T.

Consider $X:=\mathbb{P}(\tilde{\mathcal{L}}\oplus \mathbf{1}_T)$ that is a \mathbb{P}^1 -bundle over T. (E.g., take $\mathcal{L}=\mathbf{1}_{T_a}$ and get $X=T\times \mathbb{P}^1$.)

Then Bim(X) is non-Jordan (Z, 2019),

which means:

 \exists a sequence $G_n \subset \operatorname{Bim}(X)$ of finite subgroups in $\operatorname{Bim}(X)$ such that

Case 2.
$$a(T) = a > 0$$
.

Take the algebraic model $\pi: T \to T_a$ where

 T_a is the abelian variety with $\dim(T_a) = a$ such that

$$\mathcal{M}(T) = \mathcal{M}(T_a),$$

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle \mathcal{L} over T_a and its pullback $\tilde{\mathcal{L}} = \pi^*(\mathcal{L})$ to T. By definition, $\tilde{\mathcal{L}}$ is a line bundle over T.

Consider $X := \mathbb{P}(\tilde{\mathcal{L}} \oplus \mathbf{1}_T)$ that is a \mathbb{P}^1 -bundle over T. (E.g., take $\mathcal{L} = \mathbf{1}_{T_2}$ and get $X = T \times \mathbb{P}^1$.)

Then Bim(X) is non-Jordan (Z, 2019),

which means:

 \exists a sequence $G_n \subset \operatorname{Bim}(X)$ of finite subgroups in $\operatorname{Bim}(X)$ such that

for every commutative subgroup $B \subset G_n$ the index $[G_n : B] > n$.

Case 2.
$$a(T) = a > 0$$
.

Take the algebraic model $\pi: T \to T_a$ where

 T_a is the abelian variety with $\dim(T_a) = a$ such that

$$\mathcal{M}(T) = \mathcal{M}(T_a),$$

 $\pi: T \to T_a$ is a holomorphic homomorphism.

Let $\mathbf{1}_{\mathcal{T}}$ (resp. $\mathbf{1}_{\mathcal{T}_a}$) be the trivial line bundle over \mathcal{T} (resp. over \mathcal{T}_a).

Take a line bundle \mathcal{L} over T_a and its pullback $\tilde{\mathcal{L}} = \pi^*(\mathcal{L})$ to T. By definition, $\tilde{\mathcal{L}}$ is a line bundle over T.

Consider $X := \mathbb{P}(\tilde{\mathcal{L}} \oplus \mathbf{1}_T)$ that is a \mathbb{P}^1 -bundle over T. (E.g., take $\mathcal{L} = \mathbf{1}_{T_2}$ and get $X = T \times \mathbb{P}^1$.)

Then Bim(X) is non-Jordan (Z, 2019),

which means:

 \exists a sequence $G_n \subset \operatorname{Bim}(X)$ of finite subgroups in $\operatorname{Bim}(X)$ such that

for every commutative subgroup $B \subset G_n$ the index $[G_n : B] > n$.

\overline{T} is a complex torus of dimension $g \geq 2$.

Recall: a torus T is **special** if it has certain **five** propertiess.

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question:

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(T) = \operatorname{End}(T) \otimes \mathbb{Q}$.

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(T) = \operatorname{End}(T) \otimes \mathbb{Q}$.

1. Properties (a) and (c)

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(T) = \operatorname{End}(T) \otimes \mathbb{Q}$.

- 1. Properties (a) and (c)
- (a): a(T) = 0 and T is simple.

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(T) = \operatorname{End}(T) \otimes \mathbb{Q}$.

- 1. Properties (a) and (c)
- (a): a(T) = 0 and T is simple. (c): $\rho(T) = 0$.

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(\mathcal{T}) = \operatorname{End}(\mathcal{T}) \otimes \mathbb{Q}$.

- 1. Properties (a) and (c)
- (a): a(T) = 0 and T is simple. (c): $\rho(T) = 0$.

Proposition (BZ, 2021)

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(T) = \operatorname{End}(T) \otimes \mathbb{Q}$.

- 1. Properties (a) and (c)
- (a): a(T) = 0 and T is simple. (c): $\rho(T) = 0$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(T) = \operatorname{End}(T) \otimes \mathbb{Q}$.

- 1. Properties (a) and (c)
- (a): a(T) = 0 and T is simple. (c): $\rho(T) = 0$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(T) = \operatorname{End}(T) \otimes \mathbb{Q}$.

- 1. Properties (a) and (c)
- (a): a(T) = 0 and T is simple. (c): $\rho(T) = 0$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a subfield of degree g,

Recall: a torus T is **special** if it has certain **five** propertiess. Let us study these properties separately.

Question: For each one of properties (a)-(e) find a sufficient condition on $\operatorname{End}^0(T) = \operatorname{End}(T) \otimes \mathbb{Q}$.

- 1. Properties (a) and (c)
- (a): a(T) = 0 and T is simple. (c): $\rho(T) = 0$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a subfield of degree g, then $\rho(T) = 0$, a(T) = 0 and T is simple.

2. Property (d): If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$.

2. Property (d): If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. Proposition (BZ, 2021)

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} ,

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} , then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$.

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} , then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, T is not isogenous to T^{\vee} .

2. Property (d): If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} , then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, T is not isogenous to T^{\vee} .

3. Property (e):

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} , then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, T is not isogenous to T^{\vee} .

3. Property (e):

 $\operatorname{Aut}(T)$ is isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Proposition (BZ, 2021)

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} , then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, T is not isogenous to T^{\vee} .

3. Property (e):

 $\operatorname{Aut}(T)$ is isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a purely imaginary number field of degree $2s \leq 2g$

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} , then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, T is not isogenous to T^{\vee} .

3. Property (e):

 $\operatorname{Aut}(T)$ is isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a purely imaginary number field of degree $2s \leq 2g$ that does not contain roots of unity except $\{1, -1\}$,

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} , then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, T is not isogenous to T^{\vee} .

3. Property (e):

 $\operatorname{Aut}(T)$ is isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a purely imaginary number field of degree $2s \leq 2g$ that does not contain roots of unity except $\{1, -1\}$, then $\operatorname{Aut}(T)$ is isomorphic to $\{\pm 1\} \times \mathbb{Z}^{s-1}$.

2. Property (d):

If T^{\vee} is the dual of T then $\operatorname{Hom}(T, T^{\vee}) = \{0\}.$

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a degree 2g number field that does not contain a proper subfield except \mathbb{Q} , then $\operatorname{Hom}(T, T^{\vee}) = \{0\}$. In particular, T is not isogenous to T^{\vee} .

3. Property (e):

 $\operatorname{Aut}(T)$ is isomorphic to $\{1,-1\} \times \mathbb{Z}^{g-1}$.

Proposition (BZ, 2021) If $\operatorname{End}^0(T)$ is a purely imaginary number field of degree $2s \leq 2g$ that does not contain roots of unity except $\{1,-1\}$, then $\operatorname{Aut}(T)$ is isomorphic to $\{\pm 1\} \times \mathbb{Z}^{s-1}$. In particular, $\operatorname{Aut}(T)$ is commutative and its torsion subgroup